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where E : X ---; R is a C1-functional and E' : X ---; X* is its Frechet 
derivative. Hence the solutions of the operator equation are the critical 
points of the functional E. The task is to find critical points of extremum 
and saddle points and to localize such points in bounded sets, for instance in 
balls. 

E' (u) = 0, 

in a Banach space X. One says that the equation has a variational form if it 
is equivalent (has the same solutions) to an equation of the form 

Tu=u 
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Proposition 1.2 (a) (Exercise) If Eis Frechet differentiable at u, then Eis 
Gateaux differentiable at u, the two derivatives coincide and E is continuous 
at u. 

(b) If E is Gateaux differentiable in an open neighborhood V of u and 
E' : V -+ X* is continuous at u, then E is Frechet differentiable at u. 

. w (u, v) 
w (u, v) = o (lvl), i.e., lvl -+ 0 as v-+ 0. 

The element E' ( u) is called the Frechei derivative of E at u. 

and 
E (u + v) - E (u) = (E' (u), v) + w (u, v) 

for all v EX. The element E' (u) is called the Gateaux derivative of E at u. 
( c) E is said to be Frechet differentiable at u if there exists an E' ( u) E 

X* such that 

( E' ( u) , v) = lim t-1 ( E ( u + tv) - E ( u)) 
t-+0+ 

if this limit exists. 
(b) E is said to be Gateaux differentiable at u if there exists an E' ( u) E 

X* such that 

lim t:' (E (u + tv) - E (u)) 
t-+0+ 

as 
Definition 1.1 (a) The derivative of E in direction v E X at u is defined 

Let (X, I.I) be a real Banach space, U c X an open set, E : U -+ R a 
functional and u E U a given point. 

1 The Frechet Derivative and 
Fermat's Theorem 

The basic results are the abstract Fermat 's Theorem (for extremum points), 
Ekeland's Variational Principle and the Ambrossetti-Rabinowitz Mountain­ 
Pass Theorem (for saddle points) and their localization versions due to 
Schechter. We shall explain the role for the localization of critical points 
of the Lerau-Schauder boundary condition from the fixed point theory. Ap­ 
plications are given to elliptic problems. 
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w (u,v) = fo1 (E' (u + tv) - E' (u), v) dt. 

For all v E B0 (0), one has 

lw (u, v)I ~ 11 IE' (u + tv) - E' (u)l lvl dt < e lvl. 

Hence w (u, v) = o (lvl) as v-+ 0. Finally (1) shows that E' (u) is the Frechet 
derivative of E at u. • 

We say that E E C1 ( U) if E is Frechet differentiable in U and its Frechet 
derivative E' : U -+ X* is continuous, equivalently, if E is Gateaux dif­ 
ferentiable in U and its Gateaux differentiable derivative E' : U -+ X* is 
continuous. We say that E E C1 (U) if E E C1 (U) and E, E' can be ex­ 
tended continuously to U. 

Example 1.3 (Exercise) Let x = RN) n c RN open, E : n -+ R. If E 
is differentiable in a neighborhood of a point x E n in the classical sense 
and its partial derivatives 8E/8xj, j = 1, 2, ... , N are continuous at x, then 
E is Frechet differentiable at x and its Frechet derivative coincides with its 
gradient, i.e., E' (x) = \7 E (x). 

Let 

Hence 

E (u + v) - E (u) - (E' (u), v) = 11 (E' (u + tv) - E' (u), v) dt. (1) 

Consequently 

11 (E' (u + tv), v) dt = g (1) - g (0) = E (u + v) - E (u). 

g ( t) = E ( u + tv) ( t E [ 0, 1]) . 

is the derivative of the function 

Proof. (b) Let r E (0, I] be such that Br (u) C V. Since E' : V -+ X* is 
continuous at u, for every e > 0 there exists a o E (0, r] with 

IE' (u + tv) - E' (u)I < c for lvl < o, ltl ~ 1. 

On the other hand, for each v E Br (0) the function 

t E [ 0, 1] r-t ( E' ( u + tv) , v) 
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IE ( u) I < fn 1 F ( z, u ( x)) I dx :::; fn 1 u ( x) 11 f ( z , e u,O ( x) u ( x)) I dx 

< lulLP IN1 (eu,ou)ILq < oo. 

Since F (x, 0) = 0, 

eu,v (x) = inf{t E [O, 1] : F (x, v (x) + u (x)) - F (x, v (x)) = 

( u ( x) , f ( x, v ( x) + tu ( x))) } . 

Proof. For u, v E LP (0, Rn) define the measurable function eu,v : 0 - [O, 1], 
by 

( E' ( u) ' v) = 1 (f ( x' u ( x)) ' v ( x)) dx, v E LP ( 0' Rn) . 

E' = N1, i.e., 

E ( u) = 1 F ( x, u ( x)) dx 

belongs to C1 (LP (0, Rn)) and 

and assume that f is (p, q)-Caratheodory. Then the functional E: LP (0, Rn) 
- R given by 

f (x, .) = \l F (x, .) (f is of potential type) 

Example 1.5 Let 0 c RN be a bounded open set, p E (1, oo), q the conju­ 
gate exponent of p, and F: 0 x Rn - R a function with F (x, 0) = 0 on 0. 
Assume that F (., z) is measurable for all z E Rn and F (x, .) is continuously 
differentiable for a.e. x E 0. Let f: 0 x Rn - Rn be defined as 

( E' ( u) , v) = ( u, v) , v E X. 

Then EE C1 (X) and 

Example 1.4 (Exercise) Let X be a Hilbert space and 

1 2 E (u) = 2 lul , u EX. 
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0 :S E ( u0 + v) - E ( u0) = ( E' ( uo) , v) + w ( uo, v) 

Proof. Assume that u0 is a point of local minimum, i.e., E (uo) :SE (u) for 
all u in a neighborhood of u0. Since Eis differentiable at u0, one has 

Theorem 1. 7 (Fermat) Let E : D c X --+ R be any functional. If uo E 
int D is a point of local extremum of E and E is Frechet differentiable at 
u0, then E' (uo) = 0. 

E' ( u) = u - ( - .6. )-1 NJ ( u) . 

Hence the weak solutions of the Dirichlet problem -.6.u = f (x, u) in O; u = 0 
on an are the critical points of the above functional. 

then 

Example 1.6 (Exercise) If f, F are as in Example 5 with p E (1, 2*] and 
E: HJ (n,Rn)--+ R, 

E (u) = ~ iui;11 - f F (x, u (x)) dx, 2 o }0 

Thus E' (u) = N1 (u). • 

w(u,v)--+ 0 as v--+ 0. 
Iv I LP 

lw (u, v)I ::::; lvlLP IN1 (u + eu,vV) - N1 (u)ILq' 
whence, using the continuity of the superposition operator, 

One has 

w (u, v) = 1 (v (x), NJ (u + eu,vv) (x) - NJ (u)(x)) dx. 
where 

E (u + v) - E (u) = 1 (v (x), N1 (u + eu,vv)) dx = 1 (v (x), N1 (u) (x)) dx 

+ 1 (v (x), N1 (u + eu,vv) (x) - N1 (u) (x)) dx 

(NJ (u), v) + w (u, v), 

Thus E is well defined. On the other hand 
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(2) 

(3) 

E(v)-E(u)+cd(u,v)2:'.0 forall vEX, 

E (u) ::; E (u0) - ed (u, uo). 

Theorem 2.1 (Ekeland) Let (X, d) be a complete metric space and let E : 
X ----> R be a lower semicontinuous function bounded from below. Then given 
e > 0 and u0 EX, there exists a point u EX such that 

2 Ekeland's Variational Principle 

Hint. (b) IF (x, z)I ::; a lzl2 + b (x) for sufficiently small a > 0. Use 
Poincare's inequality. 

Exercise 1.10 (a) If the function F from Example 6 is concave in its second 
variable, then E is strictly convex. 

(b} Give a sufficient condition on the growth of F such that E is coercive. 

E (u0) =inf E, E' (uo) = 0. x 

Corollary 1.9 If X is a reflexive Banach space and E : X ----> R is coercive, 
weakly l.s.c. on X and Ftechei differentiable in X, then there exists u0 EX 
with 

Proposition 1.8 Let X be a reflexive Banach space, D c X a closed convex 
set and E : D ----> R a weakly l.s.c. functional on D. If either D is bounded 
or E is coercive, then E is bounded from below and aiiairis its infimum. 

for all w EX, [w[ = 1. As a result E' (u0) = 0. • 

( E' ( u0) , w) < 0 

Similarly, replacing w by -w, we obtain 
(E' (uo), w) 2:: 0. 

w(uo,v) 
0 0 I v I ----> as v ____, . 

Setting v = tw, where t > 0 and w E X, lwl = 1, dividing by t and then 
letting t ----> o+ we obtain 

and 
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(E' (uk), w) S ~ lw\. 

Hence \(E' (uk), w)\:::; f \w\. Therefore \E' (uk)\:::; f· • 

while fort < 0, t--+ o-, we obtain 

Fort> 0, t=« o+, we deduce 

1 
t (E' (u,k), w) + o (\t\) + k \t\ \w\ 2: 0. 

Then for It\ small enough, 

Take any w E X and let v = uk + tw, t E R. It follows that 

(5) > 0, v EX 
. 1 

< 1~f E + k,· 

1 
E (v) - E (uk) + k luk - vi 

E (uk) 

Proof. For E: = ~' by Corollary 2.2 there is an element uk such that 

(4) E ( uk) --+ inf E and E' ( uk) --+ 0. x 

Corollary 2.3 Under the assumptions of Theorem 2.1, if X is a Banach 
space with norm I.I, and E is a C1 functional, there exists a sequence (uk) 
with 

Proof. Apply Theorem 2.1 to an element u0 EX with E (u0) :::; infx E + e . 

• 

E ( u) < inf E + e. - x 

Corollary 2.2 Under the assumptions of Theorem 2.1, for each e > 0, there 
exists an element u EX such that (2) holds and 
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- (E' (uk), uk) + w (uk,t-tuk) + ~R 2 0. 

Letting t ---+ O" we derive 

equivalently 

Proof. As in the proof of the previous Corollary, there exists a sequence ( uk) 
satisfying (5). If for a given k, lukl < R, then the reasoning which follows in 
the proof of Corollary 2.3 remains true. Hence if at least for a subsequence 
lukl < R, we are done. Assume that lukl = R for all k (except eventually a 
finite number). 

(a) We first prove that (passing eventually to a subsequence) (E' (uk), uk) 
---+ b :S 0. To this end take v = (1 - t) uk with 0 < t < 1 and apply (5). We 
obtain 

inf E x 

(7) 

or 

(6) 

Theorem 2.6 (Schechter's first theorem) If X is a Hilbert space with 
inner product (., . ) and norm I· I , R > 0 and E : BR ---+ R is a C1 functional 
bounded from bellow with (E' ( u), u) 2 a > -oo for every u E X, lul = R, 
then there exists a sequence ( uk) such that either 

E(u) =inf E and E' (u) = 0. x 

Corollary 2.5 Under the assumptions of Corollary 2.3, if in addition E 
satisfies the Palais-Smale condition, then there is a point u E X with 

Definition 2.4 We say that functional E satisfies the Palais-Smale (com­ 
pactness) condition if any sequence satisfying (4) has a convergent subse­ 
quence. 
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E(u)=i!.J-fE and E'(u)=O. 
BR 

(9) E' (u) + µu =f 0 for lul =Randµ> 0, 

then there is a point u E BR with 

Corollary 2.8 Under the assumptions of Theorem 2. 6, if in addition E sat­ 
isfies the Palais-Smale-Schechter condition and the Leray-Schauder boundary 
condition 

Definition 2. 7 We say that functional E satisfies the Palais-Smale-Schechter 
(compactness) condition in BR if any sequence satisfying {6) or {1) has a 
convergent subsequence. 

I- 12 = IE' ( )12 - (E' (uk) 'uk)2 < .!.1- I Wk Uk R2 - k Wk . 

Thus lwkl :::; ~ and so wk---+ 0 as desired. • 

(E 1 ( ) ) W (Uk, tw) .!_ > O Uk ,W + t + k _ . 

Letting t ---+ o+ we obtain the desired conclusion. 
(c) Finally we prove that wk:= E' (uk) - (E'(~V,uk)uk---+ 0. We apply (8) 

with w = -1~kl. It is easy to check that (uk, wk) = 0. Hence (E' (uk), w) 2 
-~. This gives 

or equivalently 

whence the conclusion (recall the assumption (E' (u), u) 2 a> -oo for every 
u EX, lul = R). 

(b) Next we prove that 

1 . (E' (uk), w) 2 -k for every w EX with lwl = 1 and (uk, w) :::; 0. (8) 

Apply (5) with v = uk + tw, where w EX, lwl = 1, (uki w) :::; 0 and t > 0. 
We need lvl :::; R, i.e., iuk + twl2 :::; R2. This gives R2 + 2t ( uk, w) + t2 :::; R2, 

that is 2t (uk, w) + t2 :::; 0. This is true fort E (0, -2 (uk, w)]. Now (5) implies 

t (E' (uk), w) + w (uk, tw) + ~ 2 0, 
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Theorem 3.1 (Ambrosetti-Rabinowitz) Let X be a Banach space and 
E E C1 (X). Assume that there exist Uo, U1 E x and r > 0 with luol < r < 
[u1I such that 

max { E ( u0) , E ( u1)} < inf { E ( u) : u E X, I u [ = r} . 

3 The Mountain Pass Theorem 

E (uk) - E (uo) + d (uk, uo) :::; 0, 
whence for k --t oo we derive (3). To prove (2) take any v E X. Two cases 
are possible: (a) v E nX (uk). Then 

E (uk+l) :::; inf E + €k+l :::; E (v) + ck+i for all k. 
X(uk) 

Using the lower semicontinuity of Ewe deduce E (u) :::; E (v) and so (2). (b) 
v rf:. nX (uk). Then v rf:. X (uk) for every k 2: m and some m. Consequently 

E(v)- E(uk) + d(v,uk) > 0, k 2: m. 

Letting k --too we obtain (2). • 

Since uk+l E X ( uk) we have 

E (uk+1) - E (uk) + d (uk+I, uk) :::; 0. 

Hence the sequence E ( uk) is decreasing. It is also bounded since E is 
bounded from below. Thus it converges. On the other hand, from the last 
inequality we deduce that 

E (um) - E (uk) + d (um, Uk) :::; 0 fork< m. 

It follows that the sequence ( uk) is Cauchy. Let u be its limit. From uk E 
X ( u0) we obtain 

X (u) = {v EX: E(v)-E(u) +d(u,v):::; O}. 

One has u EX (u) and if v EX (u), then X (v) c X (u). Let ck> 0, ck --t 0 
and let uk be such that 

Proof of Ekeland's Theorem. We may assume that E = 1. For u EX 
consider the set 
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n 

ip (t) =I: (i (t) iu. 
j=l 

u (ti) = { t E [ 0) 1] : (f ( t) l Ui) > If ( t) I - s} . 

Let Pi (t) =dist (t, [O, 1] \ U (ti)) and (i (t) =Pi (t) / 2:]=1 Pj (t). Notice that 
C : [O, 1] ~ [O, 1] is continuous, (i (t) =J 0 if and only if t E U (ti) and 2:7=1 

C (t) = 1 for all t. Finally the desired function is 

Proof. Let t0 E [O, l]. According to the above remark there is uo EX with 
luo\ :::; 1 and (f (to), uo) > If (to)I - E; Let 

U (to) = { t E [ 0, 1] : (f ( t) , Uo) > If ( t) I - s} . 

Clearly t0 E U (to) and U (to) is open in [O, l]. Since [O, 1] = UtE[0,1JU (t), 
there is a finite open covering of [O, 1] : U (t1), U (t2), ... , U (tn). Let tu, i = 
1, 2, ... , n be the corresponding elements, i.e., 

for all t E [O, l]. 

11.p (t)I :::; 1, U (t), ip (t)) >If (t)I - e 

Lemma 3.2 Let X be a Banach space and f EC ([O, 1], X*). Then for each 
e > 0 there exists a function ip E C ([O, 1], X) such that 

The next Lemma guarantees that if v depends continuously on a parame­ 
ter t, then the corresponding element u can be chosen so that it depends 
continuously on t as well. 

lul:::; 1 and (v,u) > lvl - e. 

We note that (Exercise) if v E X*, then as a simple consequence of the 
definition of the norm of v, for each e > 0 there exists u EX with 

c = inf max E (1' (t)). 
-yEr tE[0,1] 

Then there exists a sequence of elements uk EX with 

and 
r = {1 E C([0,1] ,X): 1(0) = Uo,1(1) = u1} 

Let 
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).. 
E (77 (t>..)) - max E ('Ydt)) + - 2:: 0. 

tE[O,lj k 

for some t>.. E [O, 1]. Hence 

where ( : [O, 1] ---+ [O, 1] is continuous, ( (t) = 1 on Ak and ( (0) = ( (1) = 0. 
We have d (17, 'Yk) = >. lwl S A, 

'l/) (77) = max E (77 (t)) = E (77 (t>.)) 
tE[O,l) 

w (t) = ( (t) r.p (z}, 

In (10) take 77 = 'Yk - >.w with>. > 0 and 

(E' ('Yk (t)), ip (t)) > IE' ('Yk (t))I - ~ on [O, 1]. 

Hence there exists a function r.p E C ([O, 1], X) with lr.p (t) I S 1 and 

J ( t) = E' ('Y k ( t) ) . 

Ak = { t E [ 0, 1] : E ("! k ( t)) = 'l/) ("! k)} . 

For concluding the proof it is sufficient that there exists a tk E Ak with 
IE' ('Yk (tk))I < ~· To this end we apply the above Lemma to the function 

Let 

(11) 

(10) 
1 

'l/J (77) - 'l/J (!k) + kd (77, 'Yk) 2: 0, 77 E I', 

1 1 
c s 'l/) ("! k) s i¥f 'l/) + k = c + k. 

The functional is lower semicontinuous and bounded from below by c. It 
follows that for every natural number k 2 1, there exists a 'Yk E r with 

'l/) (!) = max E (! ( t)) . 
tE[O,l] 

• 
Proof of Theorem 3.1. Apply Corollary 2.2 to the metric spacer and to 
the functional 'l/) : r ---+ R, 
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lukl R, (E' (uk), uk)-+ b:::; 0, 

E (uk) -+ en and E' (uk) - (E' (~; 'uk) uk-+ 0. 

or 

c R = inf max E ('y ( t)) . 
-yEr tE[O,lj 

Then there exists a sequence of elements Uk E BR with 

and 

Let 

IE' bdtk))I - ~ < (E' bdtk))) w (tk)):::; ~) 

whence IE' ('Yk (tk))I < ~· • 
The analogue of Theorem 2.4 for critical points of mountain pass type is 

the following result that we state without proof. 

Theorem 3.3 (Schechter's second theorem) Let X be a Hilbert space, 
R > 0 and E: BR-+ R is a C1 functional with (E' (u), u) ~ -a> -oo for 
every u E X, lul = R. Assume that there exist uo, u1 E BR and r > 0 with 
luol < r < lu1I such that 

max {E (uo), E (u1)} <inf { E (u) : u E BR, lul = r}. (12) 

Thus 

We may assume that t>..-+ tk E Ak as .A-+ 0. Then 

we deduce that 

Since 
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Proposition 4.2 Under the same assumption, the functional E is bounded 
from below on any ball BR· 

Proof. The operator N1 sends bounded sets from LP (0) into bounded sets 
of t» (0) 0 + ~ = 1). Also the embedding HJ (0) c V (0) is compact 
since p < 2*. It follows that the operator (-1:::..)-1 N1 is compact from HJ (0) 
to itself. • 

then E satisfies the Palais-Smale-Schechter condition in any ball BR· 

(14) 

Proposition 4.1 If there are a, b ER+ and p E [1, 2*) with 

f (T) <« ITlp-l + b for all TE R, 

Here S1 c Rn (n 2: 3) is a bounded open set and f : R--+ R+ is a continuous 
function. 

TheenergyfunctionalisE: HJ (0)--+ R, E(u) =Jn(~ l\7ul2 -F(u)) dx 
with E' (u) = u - (-1:::..)-1 N1 (u). 

(13) 
{ 

-!:::.. u = f ( u) in 0 
u > 0 in 0 
u = 0 on 0. 

Consider the elliptic problem 

4 Applications to Elliptic Problems 

E(u) =CR and E' (u) = 0. 

E'(u)+µu=/::Ofor lul=R andµ>O, 

then there is a point u E BR with 

E(u) = c and E'(u) = 0. 

(ii) Under the assumptions of Theorem 3. 3, if in addition E satisfies the 
Palais-Smale-Schechter condition and the Leray-Schauder boundary condi­ 
tion 

Corollary 3.4 (i) Under the assumptions of Theorem 3.1, if in addition E 
satisfies the Palais-Smale condition, then there is a point u E X \ { u0, ui} 
with 
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(16) 

(15) f ( T) ~ CT(>. for 0 :::; T :::; To 

and some c > 0. In addition assume that 

lim SU p j ( T) < A 1 
T-+O+ T 

Proof. Use Corollary 2.8. • 

Theorem 4.5 Assume that f satisfies condition (14) for some p E [1, 2) and 
that 

where b = b lllL9• This is a contradiction provided that R > 0 is chosen large 
enough that c ( ac{-1RP-l + 'b) < R. • 

Theorem 4.4 If f satisfies condition (14) for some p E [1, 2), then in any 
ball BR of HJ (0) of a sufficiently large radius, problem (13) has a solution 
minimizing the energy .functional in BR· 

Proof. Assume the contrary. Then E' (u) + µu = 0, or equivalently 
(-6f1 N1 (u) = (1 + µ) u, for some lulH1 =Randµ> 0. It follows that 

0 

2 1 1 R2 - lulH1 = -1- (N1 (u), u):::; -1- If (u)IH-1 lulH1 
0 +µ +µ 0 

< 1 ~µIf (u)ILq :::; 1 ~ µ (a lul~;1 + 'b) < cR (ad'i-1 RP-1 + 'b), 

Proposition 4.3 Under the same assumption, if p E [1, 2), then the Leray­ 
Schauder boundary condition holds for any ball BR of a sufficiently large 
radius R. 

• 

a E (u) ~ --c{RP - bc2R > -oo. p 

Proof. One has F (T) :::; ~ ITIP + b ITI. Hence 

E (u) ~ -1 F (u) dx ~ -1 (~ lulP + b lul) dx. 

Let c1, c2 be the embedding constants for HJ (0) c £P (0) and HJ (0) c 
L1 (0), i.e., lulLP :::; c1 lulH1 and lulL1 :::; c1 lulH1 for all u E HJ (0). Then 0 0 
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Here c3 is the embedding constant for HJ (0) c £!3 (0). Since ~ - >..~ > O 
and f3 > 2, we can find a small enough r E (0, To) such that E (u) 2:: 'Y > 0 
for all u E HJ (0) with [u[H1 = r and some "( > 0. 

0 
Let uo = 0 and u1 = To</>. Clearly E (0) = 0. From (15) we have 

F (T) > _c_Ta+l for 0 < T <To. - a+l - - 
This together with (17) gives 

E (To¢)= T~ - r F (ro</>) dx:::; T~ - _c_Tg+l j ¢ (xt+l dx:::; 0. 
2 Jn 2 a+ 1 (¢9) 

Hence max { E ( u0) 1 E ( u1)} :::; 0 and thus (12) holds. Therefore Theorem 3.3 
applies. • 

E (u) 

From (14) and (16) we find that there exists a constant ca > 0 with 

F (v ) :::; dT2 + cdT/3 for all TE R+. 
Then, for every u E HJ (0), we have 

Proof. Fix any number f3 E (2, 2*] and choose ad with 

1 . f (T) A1 - lim sup -- < d < - . 
2 T-+O+ T 2 

(17) 

and that for some a > 1 one has 

~ - _c_Tg-1 j ¢ (xt+1 dx < 0. 
2 a+ 1 (¢9) 

Here >.1 tuui d: are the first eiqemiohie and the corresponding positive eigen­ 
function of the Dirichlet problem for-~. 

Then there exist r (small enough) and R (large enough) such that the 
mountain pass condition ( 12) holds. As a result, problem ( 13) has at least 
two solutions. 
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~ { Tu if lul < R 
Tu= ( ) T 

1~1u if lul > R. 

Schauder's fixed point theorem applied to T in B ii guarantees the existence 
of an element u0 E BR with Tuo = uo. If luol > R, then T (i~1uo) = uo 

then T has at least one fixed point in BR· 

Proof. Since T is compact, there is R 2: R with T (BR) c Bk Define 

(18) Tu-=/= >-.u for all u E &BR and>. > 1, 

Theorem 5.2 (Leray-Schauder) Let (X, I.I) be a Banach space and T : 
BR ~ X a compact operator. If 

The main drawback in applying Schauder's fixed point theorem is the 
"invariance condition" T (D) c D. It can be overcome if instead a "boundary 
condition" is required as shown by the next result which is known as the 
Leray-Schauder Principle or Schaefer's Fixed Point Theorem: 

Theorem 5.1 (Schauder) Let X be a Banach space, D c X a nonempty 
closed convex bounded set and T : D ~ D a compact operator (i.e., contin­ 
uous, with T (D) relatively compact). Then T has at least one fixed point in 
D. 

Let us first recall the well known Schauder's Fixed Point Theorem. 

5 Appendix: The Leray-Schauder Boundary 
Condition 

{ 

f ( -T) for T < 0 
f (T) = cT2 for 0::; T::; To 

aJT - To + cT6 for T > To 

for some a, c, To > 0. If CTo is sufficiently large, then all the above conditions 
are satisfied with p = ~ and a= 2. 

Example 4.6 Let f: R ~ R+ be defined by 
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{ 
u' = f (t, u), t E [O, r 
U (0) = Uo. 

Here f: [O, 1] x R ~ R is continuous and u0 ER. The problem is equivalent 
to the integral equation 

u (t) = uo + la·t f (s, u (s)) ds (t E [O, l]) 

in C [O, i}, and thus, to the operator equation u =Tu, where T: C [O, l] ~ 
C [O, I] is given by the right hand side of the integral equation. Show 

Project 2 (The Leray-Schauder boundary condition). Consider the initial 
value problem 

then EE C1 (X) and 

(E' (u), v) = (u, v) for all u, v EX. 

(b) Prove that if X is a Hilbert space endowed with inner product (., . ) and 
norm I· I , and E : X ~ R is the functional 

1 2 E (u) = 2 lul , u EX, 

Project 1 (The Gateaux and Frechet derivatives). 

(a) Prove that if E : X ~ R is Frechet differentiable at a point u, then 
E is Gateaux differentiable at u, the two derivatives coincide and E is 
continuous at u. 

6 Projects 

and if we let v = 1:a1u0, 
then we can see that lvl = Rand Tv = AV, where 

A = l~I > 1. This contradiction to the Leray-Schauder boundary condition 
(18) shows that luol ::::; R. Hence Tu0 = u0 as we wished. • 

Notice that in most applications, the Leray-Schauder condition is ob­ 
tained for a given operator T: X ~ X, by means of the so called "a priori" 
bounds technique. This consists in proving that the set of all possible solu­ 
tions in X of the equations Tu= AU for A> 1, is bounded, i.e., lul < R, for 
some R > 0 independent on A. 

Finally note that if Xis a Hilbert space identified to its dual and E' (u) = 
u - Tu, then condition (9) coincides with (18). 
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( c) Assuming in addition that X is a Banach space with norm I· I and 
EE C1 (X) and using the result in (b) by taking v = u + tw, t > 0, lwl = 1, 
show that there exists u E X with 

E(u) < E(uo) 
d (uo, u) < J"i 

E(v)-E(u)+vfEd(u,v) > 0 forallvEX. 

Hint: apply Theorem 2.1 in the ball B1 (uo). 
(b) Changing the metric d by _fid, prove the existence of u such that 

E(u) < E(uo) 
d (uo, u) < 1 

E(v)-E(u)+cd(u,v) > 0 forallvEX. 

Project 3 (Ekeland's variational principle). Let (X, d) be a complete metric 
space and let E : X ---+ R be a lower semicontinuous function bounded 
from below. (a) Show that for each c > 0 and for each uo E X such that 
E (u0) ~ infx E + e, there exists u EX such that 

100 
dr 11 h( ) > g ( s) ds. 

luol T 0 

and 

If (t, u)I ~ g (t) h (lul) for all t E [O, 1], u ER, 

(b) The same conclusion holds if there are two functions g E C ( [O, 1] , R+) , h E 
C (R+, (0, oo)) such that 

for >.. E [O, 1] is bounded in C [O, 1], that is, the Leray-Schauder con­ 
dition holds for T and each ball BR in C [O, 1] of a sufficiently large 
radius R. 

{ 
u' = >..j (t, u), t E [O, 1] 
u (0) = >..uo 

(a) If there is a function g E C ([O, 1], R+) with f (t, u) u ~ g (t) u for all 
t E [O, 1] and u E R, then the set of all solutions of the problems 
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t E (0, 1) 
{ 

-u" = -A (g ( u) + h ( t)) , 
u (0) = u (1) = 0, 

for A E [O, 1] satisfy JulHJ(O,l) :S R := JhJL2(o,i). 
(d) Deduce the existence of a function u E HJ (0, 1) with lulHJ(O,l) :S R, 

E (u) =inf BR E and E' (u) = 0. 

is C1 and its critical points are the solutions of the problem. 
(b) Prove that E is bounded from below. 
(c) Show that the solutions of the problem 

where h E £2(0,1) and g: R---+ Risa continuous function with g (u) u :S 0 
for every u ER. Denote G (T) = f07 g (s) ds. 

(a) Show that the functional E: HJ (0, 1) ---+ R, 

E (u) = fo1 (~u'2 - G (u) - hu) dt 

{ 
-u" = g (u) + h (t), t E (0, 1) 
u (0) = u (1) = 0, 

Project 4 (Schechter's first critical point theorem). Consider the two point 
boundary value problem 

E (u) < E (uo) 
lu- uoJ < .fi 

IE' (u)I < .fi. 


