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Goal of the lecture-series:

Consider an operator (of fixed point type) equation
Tu=wu

in a Banach space X. One says that the equation has a variational form if it
is equivalent (has the same solutions) to an equation of the form

E'(u) =0,

where F : X — R is a C'-functional and E' : X — X* is its Fréchet
derivative. Hence the solutions of the operator equation are the critical
points of the functional E. The task is to find eritical points of extremum
and saddle points and to localize such points in bounded sets, for instance in

balls.




The basic results are the abstract Fermat’s Theorem (for extremum points),
Ekeland’s Varialtional Principle and the Ambrossetti- Rabinowitz Mountain-
Pass Theorem (for saddle points) and their localization versions due to
Schechter. We shall explain the role for the localization of critical points
of the Leray-Schauder boundary condition from the fixed point theory. Ap-
plications are given to elliptic problems.

1 The Fréchet Derivative and
Fermat’s Theorem

Let (X,|.|) be a real Banach space, U C X anopen set, E: U — R a
functional and v € U a given point.

Definition 1.1 (a) The derivative of E in direction v € X at u s defined
as
W =7 A N :
thlat (E(u—+tv) — F(u))

if this limit exists.
(b) E is said to be Gateaux differentiable at u if there exists an E' (u) €
X* such that

(B (u),v) = tlilg}_ t7HE (2 +tw) — E (u))

Jor all v € X. The element E' (u) is called the Giteauz derivative of £ at w.
(c) E is said to be Fréchet differentiable at u if there exists an E' (u) €
X™ such that
E(u-v)— FEu)=(E(u),v) +w(u,v)

and
w (u,v)

|v|

The element E' (u) is called the Fréchet derivative of E at .

ww,v) =o0(v]), ie, — 0 asv— 0.

Proposition 1.2 (a) (Ezercise) If E is Fréchet differentiable at u, then E is
Gateaux differentiable at u, the two derivatives coincide and E is continuous
al u.

(b) If E is Gateaux differentiable in an open neighborhood V' of u and
E' 1V — X* is continuous at u, then E is Fréchet differentiable ai u.
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Proof. (b) Let r € (0,1] be such that B, (u) C V. Since E' : V — X* is
continuous at u, for every £ > 0 there exists a § € (0, 7] with

|E' (u+tv) — E' (u)| < e for |v| <4, [t <1
On the other hand, for each v € B, (0) the function
te 0,1 — (E'(u+tv),v)
is the derivative of the function
gW)=E{(u+tv) (£e€l0,1]).

Consequently

jc:(E’(u+t'u),v)dt=g(1)—g(U)=E(u+v)—E(uj.
Hence
E(u.+v)—E(u)—(E’(u),-v)=[1(E'(u—|—tv)—E’(u),v)dt. (1)
Jo

Let ;
w (u,v) = f (E' (u+ tv) — E' (u),v)dt.
0
For all v € B; (0), one has

1
lw (u, ) < f |E (w+tv) — E' (u)] |v|dt < e|v].
0

Hence w (u, v) = o(|v|) as v — 0. Finally (1) shows that E’ (u) is the Fréchet
derivative of £ at u. m

We say that £ € C* (U) if E is Fréchet differentiable in I/ and its Fréchet
derivative E' : U — X* is continuous, equivalently, if 2 is Géteaux dif-
ferentiable in U and its Géteaux differentiable derivative E' : U — X* is
continuous. We say that £ € C' (U) if £ € C* (U) and E, E' can be ex-
tended continuously to U.

Example 1.3 (Ezercise) Let X = RN, Q C RV open, E: Q@ > R. If E
is differentiable in a neighborhood of a point © € € in the classical sense
and its partial derivatives OE/0x;, j = 1,2,..., N are continuous at x, then
E is Fréchet differentiable at © and its Fréchet derivative coincides with its

gradient, i.e., E' () = VE (z).




Example 1.4 (Ezercise) Let X be o Hilhert space and
N .
E(u) = 3 lul®, ue€X.
Then E € C*(X) and
(E'(u),v) =(u,v), veX

Example 1.5 Let ) C RY be a bounded open set, p € (1,00), q the conju-
gate exponent of p, and F : Q@ x R® — R a function with F (z,0) = 0 on Q.
Assume that F (., z) is measurable for all z € R™ and F (x,.) is continuously
differentiable for a.e. x € Q. Let f: Q) x R™ — R™ be defined as

flz,.)=VF(z,.) (f is of polential type)

and assume that [ is (p, q)-Carathéodory. Then the functional E : L? (), R®)
— R given by

E (u) = / F(z,u(z))dz
Ja
belongs to C' (L? (Q,R™)) and

Ef= Ny b
B @)= [(@u@), v veP@RY,

Proof. Foru,v € 7 (£, R") define the measurable functiond, , : @ — 0,1 .
by

Buw (z) = inf{t €[0,1]: F(z,v(z) +u(zx))— F(z,v(zr)) =
(u(x), f (2,0 () + tu(x)))}.

Since F' (x,0) =0,

B (u)]

IA

] IF @ u @] de < [ @)1 (@000 (2) ()| do
0 J52

|’h‘,|mJ .Jw'f (911.0“”;‘@ << 0Q.

[



Thus E is well defined. On the other hand
Elu+v)—E(u) = (v (x), Ny (u+ 0yv)) dr = f (v(z), Nf(u) (z)) dz
Q Q

= [ @) Ny bu,0) (&) = Ny () &) e
Q
= (Ny(uw),v) +w(u,v),
where
w@ﬁﬂ:jwvw%Nﬂu;&wﬁﬁﬂ—ﬂ?@ﬂﬁﬁw
Q
One has
o (a1, 0)] < ol |7 (1 But) — Ny ()]0,
whence, using the continuity of the superposition operator,
w (u,v)
[v|L»

Thus E'(u) = Ny(u). =

—0 as v—0.

Example 1.6 (Ezercise) If f,F are as in Example 5 with p € (1,2%] and
E:Hj(Q,R") — R,

E(u) = %mﬁﬁ = f F(z,u(z))dz,
Q
then
E (u) =u— (=A)" Ny (u).

Hence the weak solutions of the Dirichlet problem —Au = [ (z,u) inQ; u=0
on. Y are the critical points of the above functional.

Theorem 1.7 (Fermat) Let E: D C X — R be any functional. If ug €
int D is a point of local extremum of E and E is Fréchet differentiable at
ug, then E' (ug) = 0.

Proof. Assume that up is a point of local minimum, i.e., E (ug) < F (u) for
all » in a neighborhood of uy. Since £ is diflerentiable at uy, one has

0 < E(ug+v) — B (uw) = (E' (w0) , ) +w (1, v)

o




and ]
gl
Setting v = tw, where t > 0 and w € X, |w| = 1, dividing by ¢ and then
letting ¢ — 0F we obtain
(F' (up) ,w) > 0.

Similarly, replacing w by —w, we obtain

(EJr ('&Lg) ,’bb') <0

forall w € X, |w|=1. As aresult E'(up) =0. =

Proposition 1.8 Lel X be a reflexive Banach space, D C X a closed convex
set and E : D — R a weakly l.s.c. functional on D. If either D is bounded
or E is coercive, then E is bounded from below and attains its infimum.

Corollary 1.9 If X is a reflexive Banach space and E : X — R is coercive,
weakly l.s.c. on X and Fréchet differentiable in X, then there exists uy € X
with

E (ug) = iﬁf E, E'(up) =0.

Exercise 1.10 (a) If the function £ from Example 6 is concave in its second
variable, then E is strictly convez.
(b) Give a sufficient condition on lthe growth of F such that £ is coercive.

Hint. (b) |F(2.2)| < al|z|® + b(z) for sufficiently small @ > 0. Use
Poincaré’s inequality.
2 Ekeland’s Variational Principle

Theorem 2.1 (Ekeland) Let (X,d) be a complete metric space and let E :
X — R be a lower semicontinuous function bounded from below. Then given
e >0 and uy € X, there exists a point u € X such that

E(w)—E(u)+ed(u,v) 20 forall veX, (2)

E(u) < E(up) — ed (u, ug) . (3)



Corollary 2.2 Under the assumptions of Theorem 2.1, for each ¢ > 0, there
exists an element u € X such that (2) holds and

E(u-)iig.fE—l—e.

Proof. Apply Theorem 2.1 to an element uy € X with E (ug) < infx E + &.
B

Corollary 2.3 Under the assumptions of Theorem 2.1, if X is a Banach
space with norm |.|, and E is a C' funciional, there exists a sequence (1)
with

E (ug) — iI)}f E  and E' (u) — 0. (4)

Proof. For ¢ = +, by Corollary 2.2 there is an element u;, such that

1
k‘
1
E(-t;)~E(uk)+E|uk—v| > 0, veX (5)
’ 1
E (uk) < H}‘lrfE + E
Take any w € X and let v = uy + tw, t € R. It follows that
1 :
E ('{Lk = ib.b) - K (U,_:c) + ; |i| |?J.J| =0
Then for |¢| small enough,
. 5 i il
HE (ug) ,w) +o(|t]) + - |¢] |w] = 0.
For t > 0,t — 0", we deduce
5 1
(B () ) >~ o,
while for ¢ < 0,{ — 0, we obtain
; it
(B (ug) ,w) < px || -

Hence |(E' (ug) ,w)| < -}; |w| . Therefore |E’ (ug)| < . m

1
=,




Definition 2.4 We say that functional E satisfies the Palais-Smale (com-
pactness) condition if any sequence satisfying (4) has a convergent subse-
quence.

Corollary 2.5 Under the assumptions of Corollary 2.3, if in addition F
salisfies the Palats-Smale condition, then there is a point u € X with

E(u)= iﬁf E and E'(u)=0.

Theorem 2.6 (Schechter’s first theorem) If X is a Hilbert space with
inner product (.,.) and norm |.|, R >0 and E : Bp — R is a C* functional
bounded from bellow with (E' (u),u) > a > —o0 for every u € X, |u| = R,
then there exists a sequence (uy) such that either

uel < B, E(w) = fE  and E'(w) -0, (©)
or
|uk| = R, (EI ('L{,k) ,'I'J-k} —_— b S O! (?)
_ B (o), )

E(u) — iz)l(fE and E' (uy) ue — 0.

R'E
Proof. As iu the proof of the previous Corollary, there exists a sequence ()
satisfying (5). If for a given k, |ux| < R, then the reasoning which follows in
the proof of Corollary 2.3 remains true. Hence if at least for a subsequence
lug| < R, we are done. Assume that |uz| = R for all k& (except eventually a
finite number).

(a) We first prove that (passing eventually to a subsequence) (B’ (ug) , ur)
— b < 0. To this end take v = (1 —¢) u; with 0 <t < 1 and apply (3). We
obtain )

—t (B (ug) , ug) + w (ug, —tuy) + E |ue| = 0,

equivalently
w (uy, —tug) 1
— (B (ug), ux) + 2 (they — i) kt k) +-R>0.

=

Letting t — 0F we derive

(E' (ug) ,ug) < %R:



whence the conclusion (recall the assumption (£’ (u),u) > a > —co for every
uw € X, |ul = R).
(b) Next we prove that

(E' (ug) ,w) > —% for every w € X with |w| =1 and (ug,w) <0. (8)

Apply (5) with v = uy +tw, where w € X, |[w| = 1, (ug,w) <0 and ¢ > 0.
We need |v| < R, i.c., Jup — tw|® < R2. This gives R? + 2¢ (ug, w) + t* < R?,
that is 2¢ (ug, w) +#* < 0. This is truc for ¢t € (0, —2 (ug, w)]. Now (5) implies

t(E (ug),w) + w (ug, tw) + % >0,

or equivalently

w (ug, tw)

(E' (ug) ,w) + ———= + = > 0.

1
t k

Letting ¢ — 07 we obtain the desired conclusion.
(c) Finally we prove that Wy, := E' (ug) — gﬂ‘;—i‘%”‘—"“luk — 0. We apply (8)
with w = — . It is easy to check that (ux,@x) = 0. Hence (E' (ui),w) 2

—+. This gives

2 (B (ug), uk)z

[T |” = | B’ (uy) 2

k '
Thus |‘1U;.,| < = and so wy —r 0 as desired. m

Definition 2.7 We say that functional E satisfies the Palais-Smale-Schechter
(compactness) condition in By if any sequence satisfying (6) or (7) has a
convergent subsequence.

Corollary 2.8 Under the assumptions of Theorem 2.6, if in addition E sat-
isfies the Palais-Smale-Schechter condition and the Leray-Schauder boundary
condition

E'(u) + pu # 0 for |u| =R and p > 0, (9)

then there is a point w € Bp with

E(u)=infE and E' (u)=0.
Tr




Proof of Ekeland’s Theorem. We may assume that ¢ = 1. For v € X
consider the set

Xw)={veX:E@W—E{)+d(uv) <0}.

Onc has u € X (w) and if v € X (u), then X (v) C X (u). Let g, >0, g — 0
and let uy be such that

Uppt € X (ur), E(uger) £ inf B+ g,

)
Since wuy.1 € X (uy) we have
F (ugs1) — E (ug) + d (w1, ug) < 0.

Hence the sequence E (uy) is decreasing. It is also bounded since F is
bounded from below. Thus it converges. On the other hand, from the last
inequality we deduce that

E(uy) — B (ug) + d(tm,ux) <0 fork <m.

It follows that the sequence (u) is Cauchy. Let u be its limit. From u; €
X (ug) we obtain
E (ur) — E(ug) + d (ug, up) <0,

whence for & — oo we derive (3). To prove (2) take any v € X. Two cases
are possible: (a) v € NX (ug). Then

E (ugy1) < Xi_?lf) E+epy <E(v)+epy forallk,
(27,

Using the lower semicontimuity of £ we deduce E (u) < E (v) and so (2). (b)
v ¢ NX (uy). Then v & X (ug) for every k > m and some n. Consequently

E (W) — E(ux) +d(v,u) >0, k>m.

Letting k¥ — oc we obtain (2). =

3 The Mountain Pass Theorem

Theorem 3.1 (Ambrosetti-Rabinowitz) Let X be a Banach space and
E € CY(X). Assume that there exist ug,u1 € X and r > 0 with |ug| <7 <
|ua| such that

max {E (u) , B (u1)} < inf{E(u): v € X,|u| =r}.
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Let
I''={yeC{0,1];X):4(0) = ue,y(1) = w1 }
and

» = inf E 1)).
o= Inf e (v ()

Then there exists a sequence of elements uy € X with
E(uy) —c¢, E (ux)— 0.

We note that (Exercise) if v € X™, then as a simple consequence of the
definition of the norm of v, for each ¢ > 0 there exists u € X with

lul <1 and (v,u) > |v|—=c.

The next Lemma guarantees that if v depends continuously on a parame-
ter ¢, then the corresponding element u can be chosen so that it depends
continuously on ¢ as well.

Lemma 3.2 Let X be a Banach space and f € C([0,1],X*). Then for each
e > 0 there exists a function p € C([0,1].X) such that

eI <1, (F(&), @) >|f@)—¢

Jorallt €[0,1].
Proof. Let ¢y € [0,1]. According to the above remark there is uy € X with
lug| < 1 and (f (o), uo) > |f (to)| — €. Let

U(to) = {t € [0,1] : (f (), u0) > |f ()| — €} .
Clearly ty € U (tp) and U (fy) is open in [0,1]. Since [0,1] = U, U (1),
there is a finite open covering of [0,1] : U (¢1),U (t2) , ..., U (tn) - Let uy, 4 =
1,2,...,n be the corresponding elements, i.e.,

Ut)={tel0,1]: (f{),u) > |f ()| —e}.

Let p; (t) = dist (¢, [0, 1] \ U (&) and ¢; (¢) = p; (¢) / 2271 p; (¢) - Notice that
¢ : [0,1] = [0,1] is continuous, ¢; (t) # 0 if and only if ¢ € U (t;) and 377,
¢; (t) =1 for all ¢. Finally the desired function is

p(t) =3¢ ()u.

=1
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|
Proof of Theorem 3.1. Apply Corollary 2.2 to the metric space I' and to
the functional ¢ : I' — R,

¥ (v) = max E (v (¢)) .
t€[0,1]

The functional is lower semicontinuous and bounded from below by e. Tt
follows that for every natural number £ > 1, there exists a v, € I' with

: : 1 e

Y(n) =4 (ve) + 78 w) 20, neT, (10)
/. 2 : f 1 J‘

CS{UJ(’T]‘;) Sl[’[]\,[w-'—-g‘—_- C—E‘ (11]

Let
Au={t€[0,1]: By (8) = ¥ (v}

For concluding the proof it is sufficient that there exists a ¢, € A, with
|E' (7, (t))| < 2. To this end we apply the above Lemma to the function

F@)=FE (7 ().
Hence there exists a function ¢ € C' (10,1],X) with |¢ (¢)| < 1 and
, 1 :
(B (e @) 0 (8)) > |E (3, ()| — @ [0,1].
In (10) take n = v, — Aw with A > 0 and

wt) =),

where ¢ : [0, 1] — [0, 1] is contimious, ¢ () = 1 on Ay and ¢ (0) = ¢ (1) = 0.
We have d(n,7,) = A|w| € A,

% (n) = il(Izl[ﬁ}l{J E(n(t) =E(n(t\))

for some ty € [0, 1] . Hence

i A
E(n(ta)) = Etﬁﬁ‘i E (v, (1) + . = 1.
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Since

E(n(t2)) — E (v (62)) = =A (B (7, (82)) s (£2)) T 0 (A)

we deduce that

(B (3 () w (B)) + = + 30 (X) 2 0.

E A

We may assume that ty — ¢, € A; as A — 0. Then
; 1
— (B (e (), w () + £ 2 0.
Thus

B (3 ()] — 7 < (B (o (80)) 0 (1)) <

whence |E' (v (t¢))| < 2. m

=
k!

The analogue of Theorem 2.4 for critical points of mountain pass type is

the following result that we state without proof.

Theorem 3.3 (Schechter’s second theorem) Let X be o Hilbert space,
R>0and E: Bg — R is a C' functional with (E' (u) \u) = —a > —oo for
every u € X, |u| = R. Assume that there exist uy,uy € Bg and r > 0 with

lug| < r < |ug| such that

max {E (up) , E (u1)} < inf {E (u) : u € By, |u|=r}. (12)

Let

Tr={vy€C([0,1],Bg) :v(0) = u, (1) = w1}

and
cr = inf Erél[galu]E (v (8)-

Then there exists a sequence of elerments uy € Bp with
E(ux) —cr, E'(uz)—0,
or

|u'k| = R! (Ef [uk) ,'uk:} — b g U'.'

(B () i)

E(u) — c¢g and E'(w) B

13
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Corollary 3.4 (i) Under the assumnptions of Theorem 3.1, if in addition E
satisfies the Palais-Smale condition, then there is a point u € X \ {ug, ur}

with
E(u)=c¢c and E'(u)=0.

(1t) Under the assumptions of Theorem 3.3, if in addition I satisfies the
Palais-Smale-Schechter condition and the Leray-Schauder boundary condi-
tion

F' (uw) + pu # 0 for |u| = R and p > 0,

then there is a point u € Bg with

Eu)=cg and E'(u)=0.

4 Applications to Elliptic Problems

Consider the elliptic problem

—Au= f(u) inQ
u >0 in Q (13)
u=0 on 2.

Here 2 C R™ (n > 3) is a bounded open set and f: R — R is a continuous
function.

The energy functionalis E : H} (Q) = R, E (u) = [, (3 |Vul* — F (u)) dr
with B (u) = u — (—A)™" Ny (u).

Proposition 4.1 If there are a,b € R. and p € [1,2") with
F@) LalrP™ +b forall T€R, (14)
then E satisfies the Palais-Smale-Schechter condition in any ball B y.

Proof. The operator Ny sends bounded sets from Z” (€2} into bounded sets
of L7 () (?{ +i= 1) . Also the embedding H} () C L?(Q) is compact
since p < 2*. It follows that the operator (—A)™" N} is compact from H} ()
to itself. m

Proposition 4.2 Under the same assumption, the functional E is bounded
from below on any ball By.

14



Proof. One has F (1) < ¢ |r|” + b|r . Hence

a
r

E(u)z—/gf(u)d:cz—L(%|u|p—|—b|u)d.:,

Let c1,¢; be the embedding constants for Hj () € LP (Q) and H] (Q) C
M), ie., |ul, < a |u|H1 and wul; <elu |H1 for all w € H} (Q). Then

E(u) > —}—j'c‘f}ifp — beoR > —o0.
[ ]
Proposition 4.3 Under the same assumption, if PE [1,2), then the Leray-
Schauder boundary condition holds for any ball By of a sufficiently large

radius K.

Proof. Assume the contrary. Then FE'(u) + pu = 0, or equivalently
(—A)"E Ny (w) = (1 + ) u, for some |u|H1 = R and u > 0. It follows that
R = |uﬁr;=1+1u(’v F(u),u) £ — T2 | (w71 |U|HE1,

chR chk : X . T 3
% 1+ |f (u)]pe < m (1‘1 |’Uf|ip —|—b) <ch (a,c’f Rl b) ,

where § = b|1|;, . This is a contradiction provided that R > 0 is chosen large
enough that ¢ (acﬁ"lﬂp_l + AF;) <R =

Theorem 4.4 If f satisfies condition (14) for some p € [1,2), then in any
ball By of Hy (Q) of a sufficiently large radius, problem (13) has a solution
minirizing the energy functional in By.

Proof. Use Corollary 2.8. =

Theorem 4.5 Assume that f satisfies condition (14) for somep € [1,2) and
that

) 2er™ for L Eny (15)

and some ¢ > 0. In addition assume that
lim sup F1) < A (16)

T—0= T

15




and that for some a > 1 one has
1 C

2 a-+l

ﬁ*f ¢ ()" dr <0, (17)
(#<1)

Here Ay and ¢ are the first eigenvalue and the corresponding posilive eigen-
function of the Dirichlet problem for —A.

Then there exist r (small enough) and R (large enough) such that the
mountain pass condition (12) holds. As a result, problem (13) has at least
two solutions.

Proof. I'ix any number 3 € (2,2*] and choose a d with

'

5

From (14) and (16) we find that there exists a constant ¢; > 0 with
F(r)<dr?4c¢” forall 7 €Ry.

i}
—limsupgcid(

T—0= i

Then, for every u € H} (), we have

Lo 1
&t (u=0)
1 ; ) 1. y
2 5 h"*l?{é —j (du2 +Cd’fi~‘j) di 2 5 !UEf’{r{ _f (duz 4 Cy |’U,!'J) d:?:
(u=0) % 0

1 2 d 2 B, 8 2 1 d 8
2 B |’U:|Hr_§ % J“IH& —~rEgCs iU|H% = |’€!-IH5 77 :\—1 = CdCg |U|H3 :

Here ¢; is the embedding constant for H} (©2) < L7 (€). Since 3 — £ > 0
and £ > 2, we can find a small enough r € (0, 7¢) such that £ (u) >~y >0
for all u € Hj () with u|y = r and some > 0.

Let up = 0 and uy = 7o¢. Clearly E (0) = 0. From (15) we have

F(r)> ~© e for O£+ X 7%
* a+1

This together with (17) gives
2

2
Birod) =2 - [ Flrog)do< ] —;ﬁ“[}Mﬂwmsa
) $<1

Hence max {F (ug) , E (v1)} < 0 and thus (12) holds. Therefore Theorem 3.3
applies. ®
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Example 4.6 Let f: R — R, be defined by

f(=7) forT <0
flr)=¢ or* for0 <7< 719

a\/T—To+ s for T > Ty

for some a,c, 7o > 0. If ety is sufficiently large, then all the above conditions

are satisfied with p =3 and a = 2.

5 Appendix: The Leray-Schauder Boundary
Condition

Let us first recall the well known Schauder’s Fixed Point Theorem.

Theorem 5.1 (Schauder) Let X be a Banach space, D C X a nonempty
closed convex bounded set and T : D — D a compact operator (i.e., contin-
wous, with 1" (D) relatively compact). Then T has at least one fized point in
D.

The main drawback in applying Schauder’s fixed point theorem is the
"invariance condition" 7' (D) C D. It can be overcome if instead a "boundary
condition" is required as shown by the next result which is known as the
Leray-Schauder Principle or Schaefer’s IFixed Point Theorem:

Theorem 5.2 (Leray-Schauder) Let (X, |.|) be a Banach space and T :
Br — X a compact operator. If

Tu# A forall u€0Bg and A > 1, (18)
then T' has at least one fived point in Bp.

Proof. Since T is compact, there is B > R with T (Br) € Bp. Define
i BE — Bﬁ,
i Tu if |u| < R
.I"llu — R .
r (mu) if |u| > R.
Schauder’s fixed point theorem applied to T in ﬁﬁ guarantees the existence
of an element uy € By with Tuo = ug. If |ug| > R, then T (h%ug) = ug
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and if we let v = F%'le, then we can see that |v| = R and Tv = Av, where

A= MT"' > 1. This contradiction to the Leray-Schauder boundary condition
(18) shows that |uy| < R. Hence T'uy = up as we wished. m

Notice that in most applications, the Leray-Schauder condition is ob-
tained for a given operator 1" : X — X, by means of the so called "a priori"
bounds technique. This consists in proving that the set of all possible solu-
tions in X of the equations Tu = Au for A > 1, is bounded, i.e., |u| < R, for
some Rt > 0 independent on A.

Finally note that if X is a Hilbert space identified to its dual and £’ (u) =
u — Tu, then condition (9) coincides with (18).

6 Projects

Project 1 (The Gateaux and Fréchet derivatives).

(a) Prove that if £ : X — R is Fréchet differentiable at a point u, then
E is Gateaux diflerentiable at u, the two derivatives coincide and F is
continuous at u.

(b) Prove that if X is a Hilbert space endowed with inner product (.,.) and
norm |.|, and E : X — R is the functional

1
B i) = z lf?, uweX,
then E € C'(X) and
(E' (u),v) = (u,v) forallu, ve X.

Project 2 (The Leray-Schauder boundary condition). Consider the initial
value problem

v = f(t,u), t€]0,1]
u (0) = up.

Here f: [0.1] x R — R is continuous and u5 € R.. The problem is equivalent
to the integral equation

G =t fo s uta)ds (e 0,1)

in C'[0,1], and thus, to the operator equation v = Tu, where T : C'[0,1] —
C'[0, 1] is given by the right hand side of the integral equation. Show
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(a) If there is a function g € C'([0,1],Ry) with f(f,u)u < g(¢)u for all
t € 0,1] and u € R, then the set of all solutions of the problems

u'=Af(t,w), te(0,1]
u (0) = Aug

for A € [0,1] is bounded in C'[0,1], that is, the Leray-Schauder cou-
dition holds for T" and each ball Bp in C'[0,1] of a sufficiently large
radius R.

(b) The same conclusion holds if there are two functions g £ C'([0,1] ,Ry) ,h €
C (R4, (0,2¢)) such that

|f (t,u)] < g@)h(|u]) forall £tc[0,1], ueR,

oc d'?" [1
— > (s)ds.
-/lucul h (T) J0 ds

Project 3 (Ekeland’s variational principle). Let (X, d) be a complete metric
space and let £ : X — R be a lower semicontinuous function bounded
from below. (a) Show that for each £ > 0 and for each uy € X such that
E (ug) < infx E + &, there exists # € X such that

and

E(u) < E(uo)
d(up,u) < 1
E(@)—E(u)+ed(u,v) = 0 forallve X.

Hint: apply Theorem 2.1 in the ball By (ug).
(b) Changing the metric d by éd: prove the existence of u such that

E(u) < E(ug)

d(ug,u) < Ve

E(v)— E(u)++ed(u,v) = 0 forallveX.

(¢) Assuming in addition that X is a Banach space with norm |.| and

E € C'(X) and using the result in (b) by taking v = u+tw, t >0, |w| =1,
show that there exists u € X with
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E{u) < Ef{ug)
lu—uy] < Ve
B (w)] £ Ve

Project 4 (Schechter’s first critical point theorem). Consider the two point
boundary value problem

—" = g(u)+h(), te(0,1)
R(O) =1u {1) = U:

where h € L?(0,1) and g : R — R is a continuous function with g (u)u <0
for every u € R. Denote G (1) = [ g(s) ds.
(a) Show that the functional E : H} (0,1) — R,

1
E(u) = / (%u’fa — G (u) — hu) di
40

is C! and its critical points are the solutions of the problem.
(b) Prove that E is bounded from below.
(c) Show that the solutions of the problem

{ -t =A(glu)+h{t)), te(01)
u(0) =u(l) =0,

(d) Deduce the existence of a function u € Hg (0,1) with |u|H(j(0,lJ < R,
E(u) = infgz B and B’ (u) = 0.
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