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Abstract. The high speed of xk \rightarrow x\ast \in \BbbR is usually measured using the C-, Q-, or R-orders:

lim
| x\ast  - xk+1| 
| x\ast  - xk| p0

\in (0,+\infty ), lim
ln | x\ast  - xk+1| 
ln | x\ast  - xk| 

= q0, or lim
\bigm| \bigm| ln | x\ast  - xk| 

\bigm| \bigm| 1
k = r0.

By connecting them to the natural, term-by-term comparison of the errors of two sequences,
we find that the C-orders---including (sub)linear---are in agreement. Weird relations may
appear though for the Q-orders: we expect | x\ast  - xk| = \scrO (| x\ast  - yk| \alpha ) \forall \alpha > 1 to imply ``\geq ""
for the Q-orders of \{ xk\} vs. \{ yk\} ; the contrary is shown by an example providing no vs.
infinite Q-orders. The R-orders appear to be even worse: an \{ xk\} with infinite R-order
may have unbounded nonmonotone errors: | x\ast  - xk+1| /| x\ast  - xk| \rightarrow +\infty .

Such aspects motivate the study of equivalent definitions, computational variants, and
so on.

These orders are also the perspective from which we analyze the three basic itera-
tive methods for nonlinear equations in \BbbR . The Newton method, widely known for its
quadratic convergence, may in fact attain any C-order from [1,+\infty ] (including sublinear);
we briefly recall such convergence results, along with connected aspects (such as historical
notes, known asymptotic constants, floating point arithmetic issues, and radius of attrac-
tion balls), and provide examples.

This approach leads to similar results for the successive approximations method, while
the secant method exhibits different behavior: it may not have high C-orders, but only
Q-orders.
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1. Introduction. The analysis of the convergence speed of sequences is an im-
portant task, since in numerical applications the aim is to use iterative methods with
fast convergence, which provide good approximations in few steps.

The ideal setting for studying a given sequence \{ xk\} := (xk)k\geq 0 \subset \BbbR is that of
error-based analysis, where the finite limit x\ast is assumed to be known and we analyze
the absolute values of the errors, ek := | xk  - x\ast | . The errors allow the comparison of
the speeds of two sequences in the most natural way, even if their limits are distinct
(though here we write both as x\ast ). Let us first define notation, for later reference.

Notation. Given \.xk,\r xk \rightarrow x\ast \in \BbbR , denote their errors by \{ \.ek\} , resp., \{ \r ek\} , etc.
Comparison A. \{ \.xk\} converges faster (not slower) than \{ \r xk\} if

( \.ek \leq \r ek) | x\ast  - \.xk| \leq | x\ast  - \r xk| , k \geq k0

(or, in brief, \{ \.xk\} is ( \.ek \leq \r ek) faster than \{ \r xk\} ) and strictly faster if

( \.ek <\r ek) | x\ast  - \.xk| < | x\ast  - \r xk| , k \geq k0.

Furthermore, increasingly faster convergence holds if
- for some c \in (0, 1) we have | x\ast  - \.xk| \leq c| x\ast  - \r xk| , k \geq k0;
- the constant c above is not fixed, but tends to zero (see, e.g., [9, p. 2], [53]),

( \.ek = o(\r ek)) | x\ast  - \.xk| = o(| x\ast  - \r xk| ) as k \rightarrow \infty ; 1

1This means that | x\ast  - \.xk| \leq ck| x\ast  - \r xk| , k \geq k0, with ck \rightarrow 0, which allows a finite number of
elements ck to be greater than one.
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HOW MANY STEPS STILL LEFT TO x*? 587

- given \alpha > 1, we have

( \.ek = \scrO (\r e\alpha k )) | x\ast  - \.xk| = \scrO (| x\ast  - \r xk| \alpha ) as k \rightarrow \infty .2

Obviously, ( \.ek = \scrO (\r e\alpha k )) \Rightarrow ( \.ek = o(\r ek)) \Rightarrow ( \.ek <\r ek) \Rightarrow ( \.ek \leq \r ek).

Let us first illustrate the convergence speed in an intuitive fashion, using some
graphs.

Example 1.1. Consider the following two groups of sequences (\{ xk\} = \{ ek\} ):
(a) \{ 1\surd 

k
\} , \{ 1

k\} , \{ 
1
k4 \} ;

(b) \{ k
2k
\} , \{ 1

2k
\} = \{ ( 12 )

k\} = \{ 2 - k\} , \{ 1
k2k

\} , \{ 1
4k
\} .

Handling the first terms of these sequences raises no difficulties, as all the com-
mon programming languages represent them as fl(xk) in standard double precision
arithmetic (called digits64 by the IEEE 754-2008 standard); see Exercise 1.3 below.

The plotting of (k, ek) in Figure 1.1(a) does not help in analyzing the behavior of
the errors, as for k \geq 10 we cannot see much, even if the graph is scaled.3 All we can
say is that \{ 1\surd 

k
\} has the slowest convergence, followed by \{ 1

k\} , and also that the first

terms of \{ 1
k4 \} are smaller than those of \{ 1

2k
\} .

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 1\surd 
k
1
k
1
k4

k
2k
1
2k
1

k2k
1
4k

(a) Plotting (k, ek) does not help much.

0 10 20 30 40 50
10 - 33

10 - 24

10 - 15

10 - 6

103

1\surd 
k
1
k
1
k4

k
2k
1
2k
1

k2k
1
4k

(b) Plotting (k, lg ek) is better.

Fig. 1.1 (Scaled) Cartesian vs. semilog coordinates in visualizing the errors.

In order to compare the last terms we must use the semilog coordinates (k, lg ek)
in Figure 1.1(b) (see [43, p. 211]); for \{ 1

2k
\} , they are (k, k lg 1

2 ), belonging to the line

y = ax, a = lg 1
2 . As the graph is twice scaled,4 it actually shows another line, y = bx.

Figure 1.1(b) shows that, in reality, \{ 1
2k
\} is ( \.ek <\r ek) faster than \{ 1

k4 \} (k0 = 17).
We will see later that the convergence is sublinear in group (a) and linear in group
(b).

Exercise 1.2. Show that (a) \{ 1
2k
\} is [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1] faster than \{ 1

k4 \} ;
(b) \{ 1

2k
\} is ( \.ek = o(\r ek)) but not [( \.ek = \scrO (\r e\alpha k )) for some \alpha > 1] faster than \{ k

2k
\} .

Exercise 1.3. (a) The smallest positive digits64 number, which we denote by
realmin(digits64), is 2.225 073 858 507 201 4 \cdot 10 - 308. Analyzing its binary repre-
sentation, express its value as a power of 2 (see [69, p. 14], [28], or [45]).

2That is, \exists K > 0 such that | x\ast  - \.xk| \leq K| x\ast  - \r xk| \alpha , k \geq k0.
3The implicit fitting of the figures in the window usually results in different units for the two

axes (scaled graph). In Figure 1.1(a) we would see even less if the graph were unscaled.
4The first scaling is by the use of an unequal number of units (50 on axis x vs. 36 on axis y),

and the second one results from the fact that the final figure is a rectangle instead of a square.
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(b) For each sequence from (a) and (b) in the example above, compute the largest
k such that fl(xk) \not = 0.

(c) Give a formula for the largest index k for which all the elements fl(xk) of all
the sequences from (a) and (b) in the example above are nonzero.

Next we analyze some increasingly faster classes of sequences.

Example 1.4. Consider
(c)

\bigl\{ 
1

2k2

\bigr\} 
,
\bigl\{ 

1
2k3

\bigr\} 
, \{ 1

kk \} ;

(d)
\Bigl\{ 

1

2
2k
k

\Bigr\} 
,
\bigl\{ 

1

22k

\bigr\} 
= \{ ( 12 )

2k\} = \{ 2 - 2k\} ,
\bigl\{ 

1

2k2k

\bigr\} 
,
\bigl\{ 

1

32k

\bigr\} 
;

(e)
\bigl\{ 

1

23k

\bigr\} 
;

(f)
\Bigl\{ 

1

22k
\surd 

k

\Bigr\} 
,
\Bigl\{ 

1

22k
2

\Bigr\} 
.

In Figure 1.2 we plot \{ 1
4k
\} ,

\bigl\{ 
1

2k2

\bigr\} 
, and \{ 1

kk \} . Their graphs are on a line (the

fastest from Figure 1.1(b)), on a parabola y = cx2, and, resp., in between.

0 5 10 15 20
10 - 132

10 - 96

10 - 60

10 - 24

1012

1
4k
1
kk

1
2k2

Fig. 1.2 Linear vs. superlinear order.

The computation with what appears at first sight to be a ``reasonable"" number
of terms (say, 10) becomes increasingly challenging as we successively consider \{ xk\} 
from (c)--(f).

We leave as an exercise the calculation/computation of the largest index k for
each \{ xk\} in (c)--(f) such that fl(xk) is a nonzero digits64 number; we note though

that all fl(1/22
k2

) and fl(1/22
k
\surd 

k

) are zero for k \geq 4, respectively, k \geq 5, and so
digits64 numbers are not enough here.

There are plenty of choices for increased precision: the well-known MATLAB [58]
(but with the Advanpix toolbox [1] providing arbitrary precision), the recent, freely
available Julia [5], and many others (not to mention the programming languages for
symbolic computation). All the graphs from this paper were obtained using the tikz/pgf
package [92] for LATEX.

5 The figures are easy to customize and the instructions to
generate them have a simple form, briefly,

``addplot [domain=1:20, samples=20] --1/sqrt(x)\H ;

Equally important, we will see that the tikz/pgf library allows the use of higher
precision than digits64 (more precisely, smaller/larger numbers by increased repre-
sentation of the exponent, e.g., realmin around 10 - 6500). The LATEX sources for the
figures are posted on https:// github.com/ ecatinas/ conv-ord.

5The initial TEX system was created by D. E. Knuth [54].
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The sequence groups (c)--(f) are presented in Figure 1.3;
\bigl\{ 

1
2k3

\bigr\} 
belongs to a cubic

parabola, and
\bigl\{ 

1

22k

\bigr\} 
to an exponential. The parabola of

\bigl\{ 
1

2k2

\bigr\} 
appears flat, which

shows how much faster the other sequences converge. The descent of the three terms

of
\bigl\{ 
1/22

k2\bigr\} 
is the steepest.

As will be seen later, the sequence groups (c)--(f) have increasing order: strict
superlinear, quadratic, cubic, and infinite, respectively.

0 5 10 15 20
10 - 6500

10 - 4750

10 - 3000

10 - 1250

10500
1

2k2

1
2k3

1

22k/k

1

22k
1

32k
1

2k2k

1

23k
1

22k
\surd 

k

1

22k
2

Fig. 1.3 Sequences with superlinear, quadratic, cubic, and infinite orders.

Exercise 1.5. Show that
\bigl\{ 

1

32k

\bigr\} 
is
\bigl[ 
( \.ek = \scrO (\r e\alpha k )), \alpha \in (1, ln 3

ln 2 ]
\bigr] 
faster than

\bigl\{ 
1

22k

\bigr\} 
.

Obviously, when comparing two sequences by ( \.ek <\r ek), the faster one must have
its graph below the other one (k \geq k0) (cf. Polak [75, p. 47]). While the more concave
the graph the better (cf. Kelley [50, Ex. 5.7.15]), fast convergence does not in fact
necessarily require smooth graphs (see Jay [47]).

Exercise 1.6. Prove that any convergence curve between
\bigl\{ 

1

23k

\bigr\} 
and

\bigl\{ 
1

32k

\bigr\} 
is at

least
\bigl[ 
( \.ek = \scrO (\r e\alpha k )), \alpha \in (1, ln 3

ln 2 ]
\bigr] 
faster than

\bigl\{ 
1

22k

\bigr\} 
(hint: use Exercise 1.5).

Consider, for instance, the merging of certain sequences.

Example 1.7. Let

xa
k =

\biggl\{ 1

32k
, k odd,

1

23k
, k even,

xb
k =

\biggl\{ 1

22k
, k even,

1

32k
, k odd,

xc
k =

\biggl\{ 1

22k
, k even,

1

52k
, k odd.\bigl\{ 

1

23k

\bigr\} 
, \{ xa

k\} ,
\bigl\{ 

1

32k

\bigr\} 
, \{ xb

k\} ,
\bigl\{ 

1

22k

\bigr\} 
, written in ( \.ek \leq \r ek) order of decreasing speed, are

plotted in Figure 1.4(a). The usual ranking by convergence orders is instead
\bigl\{ 

1

23k

\bigr\} 
,\bigl\{ 

1

32k

\bigr\} 
,
\bigl\{ 

1

22k

\bigr\} 
, \{ xb

k\} , \{ xa
k\} (C-orders 3, 2, 2, R-order 2, no order). Though \{ xa

k\} has

the second fastest convergence, the orders actually rank it as the slowest. \{ xb
k\} does

not have C- or Q-order (but just exact R-order 2), so is usually ranked below
\bigl\{ 

1

22k

\bigr\} 
.\bigl\{ 

1

52k

\bigr\} 
, \{ xc

k\} ,
\bigl\{ 

1

22k

\bigr\} 
,
\bigl\{ 

1

1.32k

\bigr\} 
from Figure 1.4(b) have ranking

\bigl\{ 
1

52k

\bigr\} 
,
\bigl\{ 

1

22k

\bigr\} 
,\bigl\{ 

1

1.32k

\bigr\} 
, \{ xc

k\} (C-orders 2, 2, 2, R-order 2). Though nonmonotone, \{ xc
k\} has exact

R-order 2 and is (at least) ( \.ek <\r ek) faster than the C-quadratic
\bigl\{ 

1

1.32k

\bigr\} 
.
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2 4 6 8
10 - 400

10 - 300

10 - 200

10 - 100

100

1

22k

xb
k
1

52k

xa
k
1

23k

(a)

2 4 6 8
10 - 400

10 - 300

10 - 200

10 - 100

100

1

1.32k
1

22k

xc
k
1

52k

(b)

Fig. 1.4 Ranking sequences visually by ( \.ek \leq \r ek).

Quiz 1.8. Given \{ \.xk\} , \{ \r xk\} with errors shown in Figure 1.5, which one is faster?

0 5 10 15 20
10 - 4000

10 - 3000

10 - 2000

10 - 1000

100

\{ \.xk\} 

(a) The first 14 terms of \{ \.xk\} .

0 2 4 6 8 10
10 - 550

10 - 400

10 - 250

10 - 100

1050

\{ \r xk\} 

(b) The first 10 terms of \{ \r xk\} .

Fig. 1.5 Quiz 1.8 (the answers to quizzes are given at the end of the paper).

The study of errors using Comparison A seems6 perfect in theory, but has a
notable disadvantage: it requires two sequences. The alternative is to use a ``scale""
for measuring any single sequence---the convergence orders. The (classical) C-orders,
though they demand some strong conditions, appear in the convergence of the most
often encountered iterative methods for nonlinear equations.7

Still, some problems appear, for example, when one wants to check the usual
predictions such as ``in quadratic convergence, the error is squared at each step.""
Indeed, as a sequence is an infinite set, its order refers to the asymptotic range (all
sufficiently large indices), where statements such as

``if \varepsilon > 0 is suff. small, \exists k0 \geq 0 s.t. [some property] holds \forall k \geq k0""

come to life. Clearly, the first k0 terms (k0 = 2, 10, or perhaps 106) are not necessarily
connected to the order: a finite number of terms does not contribute to the order of
an abstract sequence, while, most painful, the high order of an iterative method may
not be reflected in its first steps if the initial approximation is not good enough.

6Of course, one cannot always compare all sequences by ( \.ek \leq \r ek): consider \{ xa
k\} and \{ 1

62
k \} , for

example.
7A notable exception: the higher orders of the secant method are Q- but not necessarily C-orders.
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HOW MANY STEPS STILL LEFT TO x*? 591

Therefore, such predictions, instead of being applicable to the very first term, are
usually applied only starting from the first terms from the asymptotic range.

When the stringent conditions of C-orders are not fulfilled, the Q-orders are con-
sidered instead, but unfortunately they can be in disagreement with the term-by-term
comparison of the errors of two sequences; indeed, we show that convergence even with
no Q- (or C)-order may in fact hide a fast overall speed, only some of the consecutive
errors do not decrease fast enough. The R-orders are instead known for their limited
usefulness, requiring the weakest conditions and allowing nonmonotone errors.

Consider now a further problem: given some iterations for which the calculation
of the order turns out to be difficult or even impossible, can the computer be used to
approximate it? A positive answer is given by the computational convergence orders.

Despite the fact that convergence orders have a long history, it is only recently
that some final connections were made and a comprehensive picture was formed of
the C-, Q-, and R-orders, together with their computational variants [20].

The understanding of these notions is important from both the theoretical and
the practical viewpoints, the comments of Tapia, Dennis, and Sch\"afermeyer [93] being
most relevant:

The distinction between Q- and R-convergence is quite meaningful and
useful and is essentially sacred to workers in the area of computational
optimization. However, for reasons not well understood, computational
scientists who are not computational optimizers seem to be at best only
tangentially aware of the distinction.

We devote section 2 to error-based analysis of the problem of measuring and
comparing convergence speeds of abstract real sequences, using either the convergence
orders we review, or the term-by-term comparison of errors.

In section 3 we deal with the computational versions of the convergence orders
(based either on the corrections8 xk+1  - xk or on the nonlinear residuals f(xk)) and
show that in \BbbR they are equivalent to the error-based ones.

In section 4 we deal with three main iterative methods (Newton, secant, and
successive approximations), presenting results on their attainable convergence orders,
as well as other connected aspects (asymptotic constants, estimation of the attraction
balls, floating point arithmetic issues, brief history, etc.).

2. \bfitC -, \bfitQ -, and \bfitR -Orders \bfitp \bfzero > 1 vs. Asymptotic Rates. Even though the roots
of iterative methods trace back to the Babylonians and Egyptians (ca. 1800 B.C.)
[3], the first comment on convergence orders seems to have been made by Newton
(ca. 1669) on the doubling of digits in quadratic convergence (quoted by Ypma in
[101]): ``But if I desire to continue working merely to twice as many figures, less
one, . . . ,"" and then in 1675: ``That is, the same Division, by wch you could finde the
6th decimal figure, if prosecuted, will give you all to the 11th decimal figure.""

In the Journal Book of the Royal Society, it is recorded ``17 December 1690: Mr
Ralphson's Book was this day produced by E Halley, wherein he gives a Notable
Improvemt of ye method [. . . ], which doubles the known figures of the Root known
by each Operation. . . .""

Halley noticed the tripling of digits in the method he introduced.
In his Tracts, Hutton showed that one of his schemes is of third order [3]. In 1818,

Fourier [38] also noted that the iterates double the exact figures at each Newton step.

8Each xk+1 can be seen as being obtained from xk by adding the correction.
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In 1870, Schr\"oder [87] implicitly defined the high C-orders for some iterative
methods by considering conditions on the nonlinear mapping.

Three types of convergence orders are used at present: the classical C-order
(notation adopted from [4]), the Q-order (which contains the C-order as a particular
case), and the R-order. Outstanding contributions to their study were successively
made by Ortega and Rheinboldt (1970) in their fundamental book [67], Potra and
Pt\'ak (1984) [79], Potra (1989) [76], and finally by Beyer, Ebanks, and Qualls (1990),
in the less known but essential paper [4]. In [20] we connected and completed these
results (in \BbbR N ).

We analyze here only the high orders, noting that the various equivalent defini-
tions of the Q-orders lead to intricate implications for linear convergence [4].

2.1. \bfitC -Order \bfitp \bfzero > 1. The definition of C- and Q-orders is obtained by consid-
ering for p \geq 1 the quotient convergence factors [67, sect. 9.1]

Qp(k) :=
ek+1

(ek)p
=

| x\ast  - xk+1| 
| x\ast  - xk| p

, k = 0, 1, . . . .3

It is assumed that xk \not = x\ast , k \geq 0. If, though, xk0
= x\ast in an iterative method, then

(hopefully) we get xk = x\ast , k \geq k0 (this holds for the three methods in section 4).
Let us briefly list the four slowest types of C-order:
\bullet no C-order, when \nexists Q1 := limk\rightarrow \infty Q1(k) (e.g., xk = 1\surd 

k
, k odd; xk = 2\surd 

k
, k

even);
\bullet C-sublinear, if Q1 = 1 (e.g., \{ 1

k\} );
\bullet C-linear, if 0 < Q1 < 1 (e.g., \{ 1

2k
\} );

\bullet C-superlinear (defined later, usually called (strict) Q-superlinear);
notice that Q1 > 1 cannot hold, and that \{ xa

k\} , \{ xc
k\} , with no C-order, in fact are

fast.

Remark 2.1. (a) (see [65, p. 620]) C-linear order implies strict monotone errors:

(2.1) ek+1 < ek, k \geq k0.

(b) C-sublinear \nRightarrow monotone errors (e.g., xk = 1
k - 2 , k even, xk = 1

k , k odd,
k \geq 3).

(c) \{ xa
k\} , \{ xc

k\} , both nonmonotone, have no C-order.

Exercise 2.2. If \{ \r xk\} has C-sublinear and \{ \.xk\} C-linear order, show that \{ \.xk\} 
is [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1] faster than \{ \r xk\} .

The following definition of high orders is well known; p0 > 1 is implicitly assumed
throughout this paper even if not explicitly mentioned.

Definition 2.3. \{ xk\} has C-order p0 > 1 if

(C) Qp0
:= lim

k\rightarrow \infty 
Qp0

(k) \in (0,+\infty ).

Remark 2.4. It is important to stress that Qp0
above cannot be zero or infinite;

these two cases will arise when analyzing the Q-orders.

By denoting (see [67, sect. 9.1], [88, p. 83])

(2.2) Q
p
= lim inf

k\rightarrow \infty 
Qp(k), \=Qp = lim sup

k\rightarrow \infty 
Qp(k), p \geq 1,

condition (C) is equivalent either to relation

(CQ) 0 < Q
p0

= Qp0
= \=Qp0

< \infty 
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HOW MANY STEPS STILL LEFT TO x*? 593

or to requiring that \forall \varepsilon > 0, \exists k0 \geq 0 such that

(C\varepsilon ) (Qp0
 - \varepsilon )ep0

k \leq ek+1 \leq (Qp0
+ \varepsilon )ep0

k \forall k \geq k0.

Remark 2.5. (C) \Rightarrow (2.1) (by (C\varepsilon ), or because (C) is stronger than C-linear).

Example 2.6. (a) xk = \theta p
k
0 for some \theta \in (0, 1), p0 > 1, is the standard example

for C-order p0 (Qp0 = 1). The usual instances are the C-quadratic \{ 2 - 2k\} , \{ 3 - 2k\} 
(\theta = 1

2 , resp., \theta = 1
3 , p0 = 2), the C-cubic \{ 2 - 3k\} (\theta = 1

2 , p0 = 3), etc.

(b) \{ c \cdot 2 - 2k\} (c \in \BbbR given, c \not = 0) also has C-quadratic convergence.

(c) The C-quadratic \{ ( - 1)k \cdot 2 - 2k\} is nonmonotone, but with monotone \{ ek\} .

(d) xd
k =

\Bigl\{ 
c( 1

3 )
2k , k odd,

1
c (

1
3 )

2k , k even
, c > 1, does not have C-order 2: Q

2
= 1

c3 ,
\=Q2 = c3.

Quiz 2.7 ([42, Ex. 5.6 and p. 245]). What is the rate of \{ xk\} if \{ ek\} is
(a) 10 - 2, 10 - 3, 10 - 4, 10 - 5, . . . ;
(b) 10 - 2, 10 - 4, 10 - 6, 10 - 8, . . . ;
(c) 10 - 2, 10 - 3, 10 - 5, 10 - 8, 10 - 13, 10 - 21, . . . ;
(d) 10 - 2, 10 - 4, 10 - 8, 10 - 16, . . .?

Remark 2.8 (see, e.g., [4]). If it exists, the C-order p0 > 1 of \{ xk\} is unique.
Indeed, if raising the power of the denominator in Qp0

(k), the quotient tends to infin-
ity, since Qp0+\varepsilon (k) = Qp0

(k) 1
(ek)\varepsilon 

\forall \varepsilon > 0. Similarly, if lowering the power, it tends
to zero.

Example 2.9. Let \{ 10 - 5 \cdot 2 - 2k\} , \{ 2 - 2k/k\} , and \{ xd
k\} (c = 10); in Figure 2.1 we

plot \{ Q1.8(k)\} , \{ Q2(k)\} , and \{ Q2.2(k)\} for each of them.

Fig. 2.1 Qp(k), k = 1, 13 (p = 1.8, 2, 2.2).

The limiting values of Q
p
, \=Qp from (2.2) may be regarded as ``functions"" of p \geq 1.

Their graphical illustration leads to the so-called Q-convergence profile of \{ xk\} [4] (or
Q-profile here, for short).

For all C-orders p0 > 1, it holds that \=Qp = Q
p
= Qp \forall p \geq 1, and Qp is a

``function"" given by Qp = 0, p \in [1, p0), Qp0
\in (0,+\infty ), and Qp = +\infty , p > p0.
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\infty 

p0 = 2

1

p

\=Qp

Q
p

Fig. 2.2 Q-convergence profile for
\bigl\{ 

1

22
k

\bigr\} 
: the limit points of Qp(k) as ``functions"" of p. The vertical

axis is not to scale.

In Figure 2.2 we plot the Q-profile of \{ 2 - 2k\} .

Exercise 2.10 ([4]). Show that xk \rightarrow x\ast cannot have C-order p0 < 1.

Exercise 2.11. (a) Show that if \{ xk\} has C-order p0 > 1, then so has \{ ek+1

ek
\} 

and

(2.3) Qp0

\Bigl\{ ek+1

ek

\Bigr\} 
= 1,

regardless of Qp0\{ ek\} \not = 0 [20, Rem. 3.9]. Does the converse hold? (Hint: take \{ 1
k\} .)

(b) [20, Rem. 3.9] Find a similar statement for \{ ek+1ek\} .
(c) (Kelley [50, Ex. 5.7.15]) If \{ xk\} has C-order p0 > 1, show that lg ek is concave,

i.e., lg ek+1  - lg ek is decreasing.

Not only convergence with any high order exists, but even the infinite C-order,

defined either by Qp = 0 \forall p > 1 (take, e.g., \{ 2 - 22
k

\} [67, E 9.1-3(g)] or \{ 2 - 2k
2

\} ) or
by convention, when the convergence is in a finite number of steps.

``The higher the order, the better"" is a well-known clich\'e, which we will express
in subsection 2.5 in terms of the big Ohs.

2.2. \bfitQ -Order \bfitp \bfzero > 1. We propose the following definitions ofQ-order convergence:
\bullet no Q-order if \=Q1 = \infty (e.g., \{ xa

k\} , \{ xc
k\} );

\bullet Q-sublinear if 1 \leq \=Q1 < +\infty (e.g., xk = 2
k , k odd, xk = 1

k , k even);
\bullet exact Q-sublinear if 0 < Q

1
\leq 1 \leq \=Q1 < +\infty ;

\bullet at least Q-linear if \=Q1 < 1;
\bullet Q-linear if 0 < \=Q1 < 1;
\bullet exact Q-linear if 0 < Q

1
\leq \=Q1 < 1.

Remark 2.12. (a) Obviously, when xk \rightarrow x\ast , then Q
1
\leq 1 and Q

1
\leq \=Q1.

(b) \=Q1 \in [0,+\infty ] always exist, while Q1 may not (i.e., when Q
1
< \=Q1).

(c) \=Q1 < 1 \Rightarrow monotone, while \=Q1 > 1 \Rightarrow nonmonotone errors; \=Q1 = \infty means
unbounded nonmonotone errors. Unlike 0 < Q1 \leq 1, 0 < \=Q1 \leq +\infty alone does not
necessarily imply slow speed (e.g., \{ xa

k\} , \{ xc
k\} with unbounded nonmonotone errors).

The convergence may be fast when Q
1
= 0, even if \=Q1 = \infty (e.g., \{ xa

k\} , \{ xc
k\} ),

but is no longer fast when 0 < \=Q1.

Strict Q-superlinear is an intermediate order between linear and p0 > 1.
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Definition 2.13 ([67, p. 285]). \{ xk\} has Q-superlinear order9 if \=Q1 = 0(= Q1):

lim
k\rightarrow \infty 

ek+1

ek
= 0, (\leftrightarrow \exists ck \rightarrow 0 s.t. ek+1 = ckek).

Strict Q-superlinear order holds when, moreover, \=Qp = +\infty \forall p > 1.

Remark 2.14 (cf. [75, (37b)]). Q-superlinear order holds if \exists \theta k > 0 and c > 0

such that \theta k \rightarrow 0 and ek = c
\prod k

i=1 \theta i (c may be taken to be 1).

Example 2.15 (strict Q-superlinear). (a) Let
\bigl\{ 

1
kk

\bigr\} 
[6, p. 22],

\bigl\{ 
1

10k2

\bigr\} 
[11], [4],\bigl\{ 

1
k!

\bigr\} 
[47],

\bigl\{ 
1

ck2

\bigr\} 
, c > 1 [67, E 9.2-1(j)].

(b) [67, E 10.1-4], [79, p. 94] Given 0 < c < 1
e , let xk+1 =  - xk

ln xk
, k \geq 0, x0 = c.

Exercise 2.16. \{ xb
k\} has Q-superlinear order, but not strict Q-superlinear order.

The following formulation has been commonly used for half a century, since the
1970 book of Ortega and Rheinboldt: ``\{ xk\} converges with Q-order at least p0 > 1""
[67], [79], [76], [85]. Here we deal, as in [4] and [20], with a more restrictive notion,
with the classic notion corresponding to the lower Q-order ql from Definition 2.30.

Definition 2.17 (see [20]; cf. [76], [4]). \{ xk\} has Q-order p0 > 1 if any of the
following equivalent conditions hold:

lim
k\rightarrow \infty 

Qp(k) =

\biggl\{ 
0, p \in [1, p0),

+\infty , p \in (p0,+\infty );
(Q)

lim
k\rightarrow \infty 

QL(k) = p0, QL(k) :=
ln ek+1

ln ek
;(QL)

lim
k\rightarrow \infty 

Q\Lambda (k) = p0, Q\Lambda (k) :=
ln ek+2

ek+1

ln ek+1

ek

;(Q\Lambda )

or \forall \varepsilon > 0, \exists A,B > 0 such that

(Q\varepsilon ) Aep0+\varepsilon 
k \leq ek+1 \leq Bep0 - \varepsilon 

k \forall k \geq k0.

Remark 2.18. (a) If the Q-order p0 exists, it is unique (recall Remark 2.8).
(b) If \{ xk\} has Q-order p0 > 1, then the right-hand side inequalities in (Q\varepsilon )

imply that the errors are strictly monotone (k \geq k0); see Remarks 2.1 and 2.5.

In [20] we proved the equivalence of the four conditions above for \{ xk\} \subset \BbbR N ,
connecting and completing the independent, fundamental results of Potra [76] and
Beyer, Ebanks, and Qualls [4]. This proof does not simplify for \{ xk\} \subset \BbbR , but a
natural connection between these conditions is found, e.g., by taking logarithms in
(C\varepsilon ) to obtain (QL).

10 Also, (QL) and (Q\Lambda ) can be connected by Exercise 2.11 and
as follows.

Exercise 2.19. If \{ xk\} has strict monotone errors for k \geq k0, prove that (Q\Lambda )
\Rightarrow (QL) (hint: use the Stolz--Ces\`aro Theorem).

Remark 2.20. (a) One can always set k0 = 0 in (Q\varepsilon ) (this is actually used in
the definitions of Potra from [76]), by a proper choice of smaller A and larger B.

9Or at least Q-superlinear, or even superlinear, as R-superlinear is seldom encountered.
10p0 in (QL) roughly means that the number of figures is multiplied by p0 at each step (k \geq k0);

see, e.g., [48] and [79, p. 91].
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(b) In [20] we have denoted by (Q\varepsilon ) a condition which is trivially equivalent to
(Q). Here we use (Q\varepsilon ) instead of (QI,\varepsilon ) from [20] (``I"" stood for ``inequality"" in that
paper).

(c) (Q) implies that the Q-profile of \{ xk\} has a single jump at p0 > 1, but that
the limit Qp0 is not required to exist, so

(2.4) 0 \leq Q
p0

\leq \=Qp0
\leq \infty ,

and so six cases result for the possible values of Q
p0

and \=Qp0 (0, finite > 0, +\infty ).

(d) Relations Q
p0

= 0 or \=Qp0
= +\infty might seem rather abstract, but they do

actually occur (even simultaneously, as we shall see for the higher orders of the secant
method; see also [99, p. 252 and Chap. 7], where Q

2
= \=Q2 = +\infty , for a problem in

\BbbR N ).
(e) Q-order p0 > 1 implies \=Q1 = 0, but the converse is not true.

Figure 2.3 shows the Q-profiles of \{ 2 - 2k/k\} and \{ xd
k\} (c = 5

4 = 1.25).

\infty 

p0 = 2

1

p

\=Qp

Q
p

(a) Q-profile for
\bigl\{ 

1

22
k/k

\bigr\} 
.

\infty 

p0 = 2

1/c3

c3

1

p

\=Qp

Q
p

(b) Q-profile for \{ xd
k\} , c = 5

4 .

Fig. 2.3 Q-profiles: (a) Q-subquadratic; (b) exact Q-quadratic.

Superlinearity may also be defined in conjunction with higher Q-orders, but this
is tricky.

Definition 2.21 (see [47], [20]). The Q-order p0 > 1 is called
\bullet Q-superorder p0 if \=Qp0

= 0(= Qp0
);

\bullet Q-suborder p0 if Q
p0

= +\infty (= Qp0
).11

The Q-order 2 with \=Q2 = 0 is Q-superquadratic (analogously, Q-supercubic, etc.).

Exercise 2.22. (a) The Q-superquadratic \{ \.xk\} = \{ 2 - k2k\} , the Q- (and C-)qua-

dratic \{ 2 - 2k\} , and the Q-subquadratic \{ \r xk\} = \{ 2 - 2k

k \} are in [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1]

decreasing order of speed. Study the Q-order of zk =
\Bigl\{ 

\.xk, k odd,

\r xk, k even,
(2 is erroneous in

[20]).

(b) Although the C-quadratic \{ 2 - 2k\} is ( \.ek = o(\r ek)) faster than \{ k2 - 2k\} , the

latter, considered in [47], is actually Q-superquadratic; similarly, \{ 2 - 2k/k\} is Q-
subquadratic. The terminology ``Q-sub/superquadratic"" appears here to be in disagree-
ment with the real speed.

(c) Determine the Q-orders from Quiz 2.7 by using (QL).

11In [20] this was defined by \=Qp0 = +\infty , which we believe is not strong enough.
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2 4 6 8 10 12 14

1

2

3

k

\Bigl\{ 
10 \cdot 2 - 3(k - 1/4k)

\Bigr\} 
QL(k)

Q\Lambda (k  - 1)\Bigl\{ 
10 \cdot 3 - 2(k+1/3k)

\Bigr\} 
QL(k)

Q\Lambda (k  - 1)

\{ 1
kk \} 

QL(k)

Q\Lambda (k  - 1)

Fig. 2.4 QL(k) and Q\Lambda (k  - 1) computed for three sequences.

Example 2.23. Let
\bigl\{ 
10 \cdot 2 - 3(k - 1/4k)\bigr\} 

(C-cubic),
\bigl\{ 
10 \cdot 3 - 2(k+1/3k)\bigr\} 

(C-quadratic),
and \{ 1

kk \} (Q-superlinear); in Figure 2.4 we see that QL(k), Q\Lambda (k - 1) tend to 3, 2, and 1,
respectively.

Remark 2.24. Plotting/comparing QL(k) and Q\Lambda (k - 1) avoids conclusions based
on Q\Lambda (k) using information ahead of that from QL(k) (i.e., xk+2 vs. xk+1).

The calculation of the order may be made easier by using logarithms.

Exercise 2.25. Let xk \rightarrow x\ast \in \BbbR .
(a) If, for some given q \geq 1 and A,B > 0, one has

(2.5) Aeke
q
k - 1 \leq ek+1 \leq Beke

q
k - 1, k \geq k0,

show that \{ xk\} has Q-order

\lambda q :=
1 +

\surd 
1 + 4q

2
.

Thus, \lambda 1 \approx 1.618 (the golden ratio), \lambda 2 = 2, \lambda 3 = 1+
\surd 
13

2 \approx 2.3, etc. Inequality (2.5)
appears in the analysis of the secant method (see Theorems 4.18 and 4.22), and it
does not necessarily attract C- or even exact Q-orders, even if \exists limk\rightarrow \infty 

ek+1

eke
q
k - 1

= c \in 
(0,\infty ).

(b) Calculate the Q-order of \{ xk\} if it satisfies (see [94], [78])

Ae2kek - 1 \leq ek+1 \leq Be2kek - 1.

(c) If \{ xk\} verifies the general relation (see, e.g., [95, Chap. 3], [7], [76], [44],
[72])

Ae\alpha 0

k \cdot \cdot \cdot e\alpha q

k - q \leq ek+1 \leq Be\alpha 0

k \cdot \cdot \cdot e\alpha q

k - q,

determine the condition verified by the Q-order (see [76] for the exact Q-order).

A special case holds when \varepsilon = 0 in (Q\varepsilon ) (see also [9], [88], [79], [11], [76]).

Definition 2.26 (see, e.g., [8]). \{ xk\} has exact Q-order p0 if \exists A,B, k0 \geq 0, s.t.

( \=Q) A \cdot ep0

k \leq ek+1 \leq B \cdot ep0

k \forall k \geq k0.
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This case can be characterized in terms of the asymptotic constants Q
p0
, \=Qp0

.

Proposition 2.27. \{ xk\} has exact Q-order p0 iff Q
p0
, \=Qp0

are finite and nonzero,

( \=Q
Q
) 0 < Q

p0
\leq \=Qp0

< \infty ,

in which case the constants A,B in ( \=Q) are bounded by

A \leq Q
p0

\leq \=Qp0
\leq B,

and these bounds are attained in some special restrictive circumstances.

Example 2.28. (a) \{ xd
k\} in Example 2.6 has exact Q-order 2: Q

2
= 1

c3 \not = \=Q2 =

c3.

(b) xk = 2 - 2k , k odd, xk = 3 \cdot 2 - 2
k - 1

33
k

, k even, has Q(2k) < Q
2
= 1

9 , i.e.,
A < Q

2
.

Remark 2.29. The sequences \{ \r ek\} and \{ 
\r 
ek\} are asymptotically similar when

\r ek = \scrO (
\r 
ek) and

\r 
ek = \scrO (\r ek), as k \rightarrow \infty , denoted by

\r 
ek = \Theta (\r ek) (see, e.g., [53],

[25, p. 50]).
The exact Q-order may also be expressed as ek+1 = \scrO (ep0

k ) and ep0

k = \scrO (ek+1),
as k \rightarrow \infty (see [8], [9, p. 2], and also [71]), i.e., ek+1 = \Theta (ep0

k ).

The classical Q-order of Ortega and Rheinboldt is the ql below.

Definition 2.30 ([4], [67], [88], [76]). The lower/upper Q-orders of \{ xk\} are

(2.6) ql =
\Bigl\{ \infty , if \=Qp = 0 \forall p \geq 1,

inf\{ p \in [1,\infty ) : \=Qp = +\infty \} ,
resp., qu = sup

\bigl\{ 
p \in [1,\infty ) : Q

p
= 0

\bigr\} 
.

When \{ xk\} has Q-order p0 > 1, the lower and upper orders coincide, ql = qu = p0;
otherwise, ql < qu [4]; we will also see this in Theorem 2.48 (relation (2.13)).

Next we analyze \{ xb
k\} from Example 1.7, which has no Q-order, despite it being

( \.ek \leq \r ek) faster than
\bigl\{ 

1

22k

\bigr\} 
. We keep in mind that the Q-order does not measure the

overall speed, but just compares the consecutive errors.

Example 2.31 ([20]). Let xb
k =

\Bigl\{ 
2 - 2k , k even,

3 - 2k , k odd,
with the Q-profile in Figure 2.5(a).

\{ xb
k\} does not have a Q-order, as ql = log3 4 = 1.2 . . . < qu = 4 log4 3 = 3.1, . . . ,

but still it has (exact) R-order 2 (see Definitions 2.35 and 2.38). We note the usual
statement in this case that ``\{ xb

k\} converges with Q-order at least ql = 1.2 . . . and with
R-order at least 2,"" that no longer holds in the setting of this paper.

Exercise 2.32. Show that \{ xc
k\} has Q

1
= 0, \=Q1 = +\infty and determine ql, qu (here

we find ql < 1, and the Q-profile can be extended, as in [4], for p < 1).
Determine the Q-profiles of \{ xa

k\} and \{ xc
k\} .

The inequalities implied by the lower/upper Q-orders are as follows.

Remark 2.33. If 1 < ql < \infty , then \forall \varepsilon > 0, with 1 < ql  - \varepsilon , \exists B > 0, k0 \geq 0, s.t.
[80]

(2.7) ek+1 \leq B \cdot eql - \varepsilon 
k \forall k \geq k0

(and relation (2.6) says that ql is the largest value satisfying the above inequalities).
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\infty 

ql qu

1

p

\=Qp

Q
p

(a) Q-profile of \{ xb
k\} (no Q-order).

0.5

p0 = 2

1

p

\=Rp

Rp

(b) R-profile of \{ xb
k\} (exact R-order 2).

Fig. 2.5 (a) A Q-profile; (b) an R-profile.

When 1 < qu < \infty , then \forall \varepsilon > 0, \exists A > 0, k1 \geq 0, such that

(2.8) A \cdot equ+\varepsilon 
k \leq ek+1 \forall k \geq k1.

One can say that the lower Q-order is small when the maximum error reduction
w.r.t. the previous step is small (i.e., small exponent ql + \varepsilon for ek). Analogously, the
upper order is large when the minimum error reduction per step is small.

The exact lower/upper Q-orders ql, respectively, qu are defined if \varepsilon = 0 in (2.7)--
(2.8):

A \cdot equk \leq ek+1 \leq B \cdot eqlk \forall k \geq k2.

The role of qu will be seen in Example 2.46.
The lower and upper Q-orders verify the relations (see [76], [20])

ql =Q
L
:= lim inf

k\rightarrow \infty 

ln ek+1

ln ek
,(2.9)

qu = \=QL := lim sup
k\rightarrow \infty 

ln ek+1

ln ek
,(2.10)

which will be completed in formulae (3.5), respectively, (3.6) by some computational
variants.

2.3. \bfitR -Order \bfitp \bfzero > 1. The root factors consider some averaged quantities in-
stead of relating the consecutive terms to one another; they are defined for p = 1
by

R1(k) = e
1
k

k , k \geq 1.

We propose the following terminology (see also [67], [63], [75], [79], [100]):
\bullet R-sublinear/with noR-order if \=R1 = 1 (e.g., \{ 1

k\} , \{ 
1\surd 
k
\} ; see [75, Rem. 1.2.40]);

\bullet R-linear if 0 < \=R1 < 1;
\bullet at least R-linear if \=R1 < 1 (e.g., xk = 1

2k
, k odd, xk = 1

4k
, k even [75,

Rem. 1.2.40], or xk = 1
2k
, k even, xk = 1

22k
, k odd);

\bullet exact R-linear if 0 < R1 \leq \=R1 < 1;
\bullet (at least) R-superlinear if \=R1 = 0(= R1) (e.g., xk = 1

kk , k even, xk = xk - 1, k
odd).

The R-orders are alternatively defined by requiring the errors to be bounded by
sequences converging to zero with corresponding Q-orders [32, p. 21], [51, Def. 2.1.3],
[43, p. 218]:
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\bullet at least R-linear if \exists \theta \in (0, 1) and c > 0 s.t. ek \leq c \cdot \theta k (k \geq 0) [75, (37a)];

\bullet R-superlinear if \exists \theta k \rightarrow 0 and c > 0 s.t. ek \leq c
\prod k

i=1 \theta i [75, (37b)].

Remark 2.34. (a) At least Q-linear \Rightarrow at least R-linear [67, E 9.3-5], [75, Thm.
1.2.41], [77], [100], [43, p. 213] (using, e.g., (2.14)); the converse is false (see above or
[100]).

(b) Q-superlinear \Rightarrow R-superlinear, with the converse again being false (see, e.g.,
the above example).

When p > 1, the root factors are defined by (see [67], [79], [76], [85])

Rp(k) = ek
1

pk , k \geq 0.

Definition 2.35 (see [20]; cf. [76], [7]). \{ xk\} has R-order p0 > 1 if any of the
equivalent relations hold:12

lim
k\rightarrow \infty 

Rp(k) =

\biggl\{ 
0, p \in [1, p0),

1, p \in (p0,+\infty );
(R)

lim
k\rightarrow \infty 

RL(k) = p0, RL :=
\bigm| \bigm| ln ek\bigm| \bigm| 1

k ;(RL)

lim
k\rightarrow \infty 

R\Lambda (k) = p0, R\Lambda :=

\bigm| \bigm| \bigm| \bigm| ln ek+1

ek

\bigm| \bigm| \bigm| \bigm| 1
k

;(R\Lambda )

or \forall \varepsilon > 0, \exists A,B > 0, 0 < \eta , \theta < 1, and k0 \geq 0 such that

(R\varepsilon ) A \cdot \eta (p0+\varepsilon )k \leq ek \leq B \cdot \theta (p0 - \varepsilon )k \forall k \geq k0.

Remark 2.36. (a) If the R-order p0 exists, it is unique (see also [67, 9.2.3,
p. 289]).

(b) We can always set k0 = 0 in (R\varepsilon ), by choosing smaller A and larger B suitably
(cf. [76], where k0 = 0 was used in definitions).

(c) We prefer here the notation (R\varepsilon ) instead of (RI,\varepsilon ) from [20].

For p \geq 1 one defines the asymptotic quantities (see [67, sect. 9.2] and [88, p. 85])

Rp = lim inf
k\rightarrow \infty 

Rp(k), \=Rp = lim sup
k\rightarrow \infty 

Rp(k) \leq 1.(2.11)

An example of an R-profile is shown in Figure 2.5(b) for \{ xb
k\} , with (exact) R-

order 2.

Remark 2.37 ([67, p. 290], [20]). If \=Rp0 < 1, then \forall \varepsilon > 0 with \=Rp0 + \varepsilon < 1,
\exists k0 \geq 0 s.t.

ek \leq 
\bigl( 
\=Rp0

+ \varepsilon 
\bigr) pk

0 \forall k \geq k0,

while if Rp0
> 0, then \forall \varepsilon > 0 with 0 < Rp0

 - \varepsilon , \exists k1 \geq 0 s.t.

\bigl( 
Rp0

 - \varepsilon 
\bigr) pk

0 \leq ek \forall k \geq k1.

The following notion is defined similarly to the exact Q-order.

12In order that relation (R\Lambda ) is properly defined and equivalent to the rest of the following
definitions, an additional assumption is required (see [20]): 1 < ql \leq qu < +\infty .
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Definition 2.38 ([76]). \{ xk\} has exact R-order p0 if \exists A,B > 0, 0 < \eta , \theta < 1, s.t.

( \=R) A \cdot \eta p
k
0 \leq ek \leq B \cdot \theta p

k
0 \forall k \geq k0.

Example 2.39. \{ xb
k\} , \{ xc

k\} have exact R-orders 2: R2 = 1
3 ,

\=R2 = 1
2 , and R2 = 1

5 ,
\=R2 = 1

2 , respectively.

Exercise 2.40. The Q-sub-/superquadratic \{ 2 - 2k/k\} , \{ k2 - 2k\} have R2 = 1
2 , but

not exact R-order 2. The Q-sub-/superquadratic \{ 2 - 2k/k\} , \{ 2 - k2k\} have R2 = 1,
respectively, R2 = 0, i.e., they are R-sub-/superquadratic, again without having exact
R-order 2.

Remark 2.41. Perhaps a proper definition of Q-superorder p0 would be Q-order
p0 with Qp0

= 0 = Rp0
, while Q-suborder p0 would be Q-order p0 with Qp0

= \infty ,
Rp0

= 1.

We characterize the exact R-order in the following result.

Proposition 2.42. The exact R-order p0 of \{ xk\} is equivalently defined by

( \=RR) 0 < Rp0
\leq \=Rp0 < 1,

which implies the following bounds for \eta , \theta from ( \=R):

\eta \leq Rp0
\leq \=Rp0

\leq \theta ;

these bounds are attained in some special restrictive circumstances.

Remark 2.43. A particular instance from ( \=R), i.e., ek \leq B \cdot \theta 2k , was considered
as a definition for (at least) R-quadratic convergence, and some computational scien-
tists (who we suspect are not computational optimizers) have misled by simply calling
it ``quadratic convergence,"" leading to the confusion noted in [93].

As the R-orders require weaker conditions than the Q-orders, they may allow
nonmonotone errors. This aspect is perhaps not widely known; we have found it
pointed out in [65, p. 620, and in the 1st ed.], [51, p. 14], [25, p. 51], and [47].

Clearly, iterative methods with nonmonotone errors are usually not desired.
We can easily find conditions for monotone errors in the case of exact R-order

p0 > 1.

Theorem 2.44 (monotone errors in exact R-orders). If \{ xk\} obeys ( \=R) and

p0 >
ln \eta 

ln \theta 

\biggl( 
\geq ln \=Rp0

ln
\=
Rp0

\biggr) 
or

\biggl( 
p0 =

ln \eta 

ln \theta 
and B < A

\biggr) 
,

then it has strict monotone errors (k \geq k0).

The lower and upper R-orders, rl, respectively, ru, and further notations from
[20] are

rl = inf
\bigl\{ 
p \in [1,\infty ) : \=Rp = 1

\bigr\} 
, ru = sup

\bigl\{ 
p \in [1,\infty ) : Rp = 0

\bigr\} 
,

RL := lim inf
k\rightarrow \infty 

\bigm| \bigm| ln ek\bigm| \bigm| 1
k , \=RL := lim sup

k\rightarrow \infty 

\bigm| \bigm| ln ek\bigm| \bigm| 1
k ,

R\Lambda := lim inf
k\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| ln ek+1

ek

\bigm| \bigm| \bigm| \bigm| 1
k

, \=R\Lambda := lim sup
k\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| ln ek+1

ek

\bigm| \bigm| \bigm| \bigm| 1
k

.
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Remark 2.45. The lower R-order rl of \{ xk\} was also defined as follows: \exists \{ \r xk\} 
with C-order \r p0 = rl s.t. \{ xk\} is ( \.ek \leq \r ek) faster than \{ \r xk\} [29], [76], [50, Def. 4.1.3].

We now consider some sequences similar to those in Example 1.7.

Example 2.46. (a) Let \r xk = 2 - 2k and take \.xk =
\Bigl\{ 

2 - 2k , k even,

2 - 3k , k odd
(Jay [47]).

Then \{ \.xk\} converges ( \.ek \leq \r ek) faster than \{ \r xk\} and though \{ \.xk\} has neither
C-order, nor Q-order, nor R-order ( \.rl = 2, \.ru = 3), \{ \r xk\} has C-order 2.

(b) Extending the above behavior, \.xk =
\Bigl\{ 

2 - 4k , k even,

2 - 5k , k odd
has no C-, Q-, or R-order,

but it converges [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1] faster than \r xk = 2 - 2k .

(c) \.xk =
\Bigl\{ 

2 - 32
k

, k even,

2 - 42
k

, k odd

is [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1] faster than \r xk = 2 - 22
k

; \{ \.xk\} 

has no C- or Q-order (but has infinite R-order), while \{ \r xk\} has infinite C-order.
Here \{ \.xk\} deserves a closer look, as it is a perfect candidate to support the com-

ments from [93]: indeed, it attains infinite R-order, but its errors are unbounded
nonmonotone. Nocedal and Wright [65, p. 620] also noted such possible behavior.

Remark 2.47. Clearly, statements such as those in the above example can appear
only for sequences \{ \.xk\} with Q

1
= 0, as this condition allows large upper orders qu.

When Q
1
> 0, the corresponding sequence cannot converge quickly.

2.4. Relations between the \bfitC -, \bfitQ -, and \bfitR -Orders of a Sequence. C-order
p0 > 1 of \{ xk\} implies Q-order p0 and in turn R-order p0 (see Exercise 2.22 and Ex-
ample 2.31 for converses). We state this below and, as in [4], we use curly braces for
equivalent orders.

Theorem 2.48 (see [20]; cf. [76], [4]). Let xk \rightarrow x\ast and p0 > 1. Then (see
footnote 12)

(2.12) \{ C,CQ, C\varepsilon \} \Rightarrow 
\nLeftarrow 

\{ Q,QL, Q\Lambda , Q\varepsilon \} \Rightarrow 
\nLeftarrow 

\{ R,RL, R\Lambda , R\varepsilon \} ,

or, in a more generic fashion (i.e., \{ C\} := \{ C,CQ, C\varepsilon \} ),

\{ C\} \Rightarrow 
\nLeftarrow 

\{ Q\} \Rightarrow 
\nLeftarrow 

\{ R\} .

Moreover, the following relation holds for the lower and upper orders:

(2.13) ql = Q
L
\leq RL = R\Lambda = rl \leq ru = \=RL = \=R\Lambda \leq \=QL = qu.

Relation (2.13) is obtained from the well-known inequalities for positive numbers,

(2.14) lim inf
k\rightarrow \infty 

ak+1

ak
\leq lim inf

k\rightarrow \infty 
| ak| 

1
k \leq lim sup

k\rightarrow \infty 
| ak| 

1
k \leq lim sup

k\rightarrow \infty 

ak+1

ak
,

taking ak =
\bigm| \bigm| ln ek\bigm| \bigm| ; see [76] and [20].

Any inequality from (2.13) may be strict. Now we see (e.g., in Examples 2.31
and 2.49) that the inner inequality may be an equality (i.e., obtain R-order), while
one of the outer inequalities may be strict (i.e., no Q-order).

An \{ xk\} with exact R-order \tau > 1 arbitrarily large and 1 < ql (but arbitrarily
close) is again suitable for justifying the comments from [93].

Example 2.49 ([67, E 9.3-3], [76]). Given any numbers 1 < s < \tau , take 0 < \theta <

1, \eta = \theta q with q > 1 such that qs > \tau . Then xk =
\Bigl\{ 

\theta \tau k
, k odd,

\eta \tau k
, k even

has exact R-order

\tau , while ql = Q
L
= \tau 

q and qu = \=QL = \tau q(> \tau ), and thus it has no Q-order (in the

classical sense from [67] \{ xk\} has Q-order at least \tau 
q ).
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2.5. Comparing the Speeds of Two Sequences. We consider only C-orders.

Comparison B (higher C-order, faster speed). If \{ \r xk\} , \{ \.xk\} have C-orders 1 <
\r p0 < \.p0, then \{ \.xk\} is [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1] faster than \{ \r xk\} .

For the proof, one may use (C\varepsilon ). In [21] we show some simplified proofs.

Remark 2.50. (a) Comparison B holds regardless of the magnitude of \.p0  - \r p0.
(b) The C-orders (i.e., sublinear, linear, strict superlinear, 1 < \r p0 < \.p0, and

infinite) form classes in [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1] increasing speed (cf. Exercise 2.2).

As seen in previous examples, comparing by [( \.ek = \scrO (\r e\alpha k )) \forall \alpha > 1] is much
stronger than by [( \.ek = \scrO (\r e\alpha k )), \alpha \in (1, \alpha 0]] for some given \alpha 0 > 1.

How similarly do two sequences with the same C-order and identical Qp0
behave?

Comparison C. \{ 1

32k
\} is

\bigl[ 
( \.ek = \scrO (\r e\alpha k )), \alpha \in (1, ln 3

ln 2 ]
\bigr] 
faster than \{ 1

22k
\} (recall

Exercise 1.5). This shows that if \{ \r xk\} , \{ \.xk\} have C-order p0 with the same Qp0 , this
does not necessarily mean that (in the asymptotic range) one has \{ \.ek\} \approx \{ \r ek\} .

Brezinski [11] noted that both \{ 1
k\} and \{ 1

k2 \} have the same Q1 = 1 (i.e., C-
sublinear order), but quite different speeds.

Remark 2.51. Assessing the asymptotic constant Qp0
may not make sense when

\{ xk\} \subset \BbbR N , N \geq 2, as its definition is norm-dependent [67, E 9.1-2], [20].

3. Computational Versions of the Convergence Orders. The error-based anal-
ysis of the orders above is similar in some ways to the local convergence theory for
iterative methods from section 4: both assume the existence of the limit/solution x\ast 

and infer essential properties, even if x\ast is not known and in practice one needs to
use quantities based solely on information available at each step k.

Next, we analyze two practical approaches, equivalent to error-based analysis: the
replacing of | x\ast  - xk| by (the absolute value of) either the corrections sk := | xk+1 - xk| 
or the nonlinear residuals | fk| := | f(xk)| .

We keep the notation from previous work and obtain a rather theoretical setting
in this analysis (e.g., sk requiring xk+1); in numerical examples, however, we will use
only information available at step k (i.e., xk, | fk| , sk - 1, xk - 1, | fk - 1| , sk - 2, . . . , etc.).

3.1. Computational Convergence Orders Based on Corrections. When the
corrections \{ sk\} converge with lower Q-order ql, then \{ xk\} also converges and attains
at least lower R-order ql.

Theorem 3.1 (see [75, Thm. 1.2.42], [43, Lem. 4.5.6]). Let \{ xk\} \subset \BbbR . If \exists c \in 
(0, 1) and k0 \in \BbbN with

| xk+1  - xk| \leq c \cdot | xk  - xk - 1| (i.e., sk \leq c \cdot sk - 1), k \geq k0 + 1,

then \exists x\ast \in \BbbR such that xk \rightarrow x\ast at least R-linearly.
If \exists c > 0, p0 > 1, and k0 \in \BbbN s.t.

c
1

p0 - 1 sk0
< 1

and

sk \leq c \cdot sp0

k - 1, k \geq k0 + 1,

then \exists x\ast \in \BbbR such that xk \rightarrow x\ast with lower R-order at least p0.

The errors and corrections are tightly connected when the convergence is fast.
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Lemma 3.2 (Potra--Pt\'ak--Walker Lemma; [79, Prop. 6.4], [98]). xk \rightarrow x\ast Q-
superlinearly iff xk+1  - xk \rightarrow 0 Q-superlinearly.

In the case of Q-superlinear convergence, it holds (the Dennis--Mor\'e Lemma [30])
that

(3.1) lim
k\rightarrow \infty 

| xk+1  - xk| 
| x\ast  - xk| 

= 1.

Remark 3.3. (a) As pointed out by Dennis and Mor\'e in [30], (3.1) alone does not
imply Q-superlinear convergence: take x2k - 1 = 1

k! , x2k = 2x2k - 1, k \geq 1, for example.
(b) While the statement and the proofs of this result consider multidimensional

spaces and norms (or even metrics) in (3.1), Brezinski [10] has noted that in \BbbR the
sufficiency can also be proved by using l'H\^opital's rule for sequences.

As in [4], we use an apostrophe for the resulting quotient factors (p > 1):

Q\prime 
p(k) :=

sk+1

spk
=

| xk+2  - xk+1| 
| xk+1  - xk| p

, k \geq 0,

and the above lemma shows that C-order p0 \Rightarrow C \prime -order p0 with Qp0
= Q\prime 

p0
(see also

[40]). The same statement holds for the Q-orders and corresponding upper/lower lim-
its of Qp0(k). The equivalence of the error-based and computational orders (\{ C,C \prime \} ,
etc.) is stated in subsection 3.3, which incorporates the nonlinear residuals as well.

The C \prime -, Q\prime -, and Q\prime 
\varepsilon -orders are semicomputational: they do not use x\ast but still

require p0. Instead, of much practical interest are the (full) computational expressions

lim
k\rightarrow \infty 

Q\prime 
L(k) = p0, Q\prime 

L(k) :=
ln sk+1

ln sk
,(Q\prime 

L)

lim
k\rightarrow \infty 

Q\prime 
\Lambda (k) = p0, Q\prime 

\Lambda (k) :=
ln sk+2

sk+1

ln sk+1

sk

,(Q\prime 
\Lambda )

as they are equivalent to the corresponding error-based orders (see Corollary 3.5).

3.2. Computational Convergence Orders Based on Nonlinear Residuals. In
section 4 we study the speed of some iterative methods toward a zero x\ast of f . The non-
linear mapping f : D \subseteq \BbbR \rightarrow \BbbR is assumed to be sufficiently many times differentiable
and the solution is assumed simple:13 f \prime (x\ast ) \not = 0 (this means that f(x) = (x - x\ast )g(x)
and g(x\ast ) \not = 0). However, we will consider multiple solutions as well.

The use of the nonlinear residuals for controlling the convergence to x\ast is natural,
as they can be seen as ``proportional"" to the errors: by the Lagrange theorem,

(3.2) f(x) = f \prime (x+ \theta (x\ast  - x))(x - x\ast ) for some \theta \in (0, 1),

which in applied sciences is usually written as

(3.3) f(x) \approx f \prime (x\ast )(x - x\ast ) (x \approx x\ast ).

However, instead of an asymptotic relation, this is often regarded as an approximate
equality. Such an approach is as precise as the idiomatic ``the higher the order, the
fewer the iterations (needed)"": it may not refer to the asymptotic range.

13This terminology is used for equations in \BbbR , while for systems in \BbbR N the terminology is ``non-
singular,"" as (the Jacobian) F \prime (x\ast ) is a matrix.
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Quiz 3.4. If f is a polynomial of degree 2 with f \prime (x\ast ) = 1 at the root x\ast = 0,
how large can | f(x)| be when | x - x\ast | = 0.0001 holds (and then for | x - x\ast | = 10 - 16)?

Returning to the quotient factors, we use, as in [20], double prime marks,

Q\prime \prime 
p0
(k) :=

| f(xk+1)| 
| f(xk)| p0

=:
| fk+1| 
| fk| p0

,

and notice that if Qp0 \in (0,+\infty ), then, by (3.2),

(3.4) Q\prime \prime 
p0
(k) \rightarrow Qp0

| f \prime (x\ast )| p0 - 1
.

This leads us to the C \prime \prime - and Q\prime \prime -orders p0 > 1. For instance,

lim
k\rightarrow \infty 

Q\prime \prime 
L(k) = p0, Q\prime \prime 

L(k) :=
ln | fk+1| 
ln | fk| 

,(Q\prime \prime 
L)

lim
k\rightarrow \infty 

Q\prime \prime 
\Lambda (k) = p0, Q\prime \prime 

\Lambda (k) :=
ln | fk+2/fk+1| 
ln | fk+1/fk| 

.(Q\prime \prime 
\Lambda )

3.3. The Equivalence of the Error-Based and Computational Orders. This
equivalence was given in \BbbR N [20] (see also [76] and [4]). Here we formulate it as a
corollary, since in \BbbR the three C-orders are equivalent (see [20, Ex. 3.22] for \{ C \prime \prime \} \nRightarrow 
\{ C,C \prime \} in \BbbR N ).

Corollary 3.5 (cf. [20]). Let f be smooth, x\ast simple, xk \rightarrow x\ast , p0 > 1. Then
(see footnote 12)

\{ C,C \prime , C \prime \prime \} \Rightarrow 
\nLeftarrow 

\{ Q,Q\prime , Q\prime \prime \} \Rightarrow 
\nLeftarrow 

\{ R,R\prime , R\prime \prime \} .

Moreover, the lower/upper orders and asymptotic constants obey

Q
L
= Q\prime 

L
= Q\prime \prime 

L
= ql and \=QL = \=Q\prime 

L = \=Q\prime \prime 
L = qu, resp.,(3.5)

Q
qu

= Q\prime 
qu

= | f \prime (x\ast )| p0 - 1Q\prime \prime 
qu

and \=Qql =
\=Q\prime 
ql
= | f \prime (x\ast )| p0 - 1 \=Q\prime \prime 

ql
.(3.6)

Consequently, one has C-order p0 > 1 iff

0 < Qp0
= Q\prime 

p0
= | f \prime (x\ast )| p0 - 1Q\prime \prime 

p0
< \infty 

and Q-order p0 > 1 iff

p0 = Q
L
= Q\prime 

L
= Q\prime \prime 

L
= ql = \=QL = \=Q\prime 

L = \=Q\prime \prime 
L = qu = Q\Lambda = Q\prime 

\Lambda = Q\prime \prime 
\Lambda .

Relation (3.5) shows equalities of orders, while (3.6) shows that of constants.
The equivalence of the computational orders based on the corrections follows from

the Potra--Pt\'ak--Walker lemma, while (3.5) and (3.6) follow from the Dennis--Mor\'e
lemma.

The equivalence of the computational orders based on the nonlinear residuals is
obtained using the Lagrange theorem, by (3.2).
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4. Iterative Methods for Nonlinear Equations. Unless otherwise stated, the
nonlinear mapping f : D \subseteq \BbbR \rightarrow \BbbR is sufficiently smooth and the solution x\ast is
simple.

Since an equation f(x) = 0 might have a unique, several (even infinite), or no
solution at all, the iterative methods usually need an initial approximation close to
an x\ast .

Definition 4.1 ([67, Def. 10.1.1]). A method converges locally to x\ast if \exists V \subseteq D
(neighborhood of x\ast ) s.t. \forall x0 \in V , the generated iterations \{ xk\} \subset D and xk \rightarrow x\ast .

4.1. The Newton Method. The first result on the local convergence of a method
was given for the Newton iterations (see [67, NR 10.2-1], [101], [23, sect. 6.4]),

(4.1) xk+1 = xk  - f(xk)

f \prime (xk)
, k = 0, 1, . . . , x0 \in D,

and it is to due to Cauchy in 1829 ([22], available on the Internet). These iterates are
also known as the tangent method, though their initial devising did not consider this
geometric interpretation.14

4.1.1. History. This method can be traced back to ancient times (Babylon and
Egypt, ca. 1800 B.C.), as it is conjectured that it was used in the computation (with
five correct---equivalent---decimal digits) of

\surd 
2 (see [3], [49, sect. 1.7], [74], with the

references therein, and also [86, p. 39] for an annotated picture). While this is not
certain, there is no doubt that Heron used these iterations for

\surd 
a [3].

``Heron of Alexandria (first century A.D.) seems to have been the first to explicitly
propose an iterative method of approximation in which each new value is used to
obtain the next value,"" as noted by Chabert et al. [23, p. 200]. Indeed, Heron has
approximated

\surd 
720 in an iterative fashion by elements corresponding to the Newton

method for solving x2  - 720 = 0 [23, sect. 7.1].
We can also recognize the Newton method for x2  - A = 0 used by Theon of

Alexandria (ca. 370 A.D.) in approximating
\surd 
4500, based entirely on geometric con-

siderations (originating from Ptolemy; see [74]). See [23, sect. 7.2].
So efficient is this method in computing two of the basic floating point arithmetic

operations---the square root and division (see Exercise 4.4)---that it is still a choice
even in current (2021) codes (see, e.g., [62, pp. 138, 124]).

Let us recall some general comments on the subsequent history of this method,
thoroughly analyzed by Ypma in [101].

A method algebraically equivalent to Newton's method was known to the
12th century algebraist Sharaf al-D\={\i}n al- .T\=us\={\i} [. . . ], and the 15th century
Arabic mathematician Al-K\=ash\={\i} used a form of it in solving xp  - N = 0 to
find roots of N . In western Europe a similar method was used by Henry
Briggs in his Trigonometria Britannica, published in 1633, though Newton
appears to have been unaware of this [. . . ]. [101] (see also [82])

In solving nonlinear problems using such iterates, Newton (\approx 1669) and subse-
quently Raphson (1690) dealt only with polynomial equations,15, 16 described in [90].

14The first such interpretation was given by Mourraille (1768) [23, sect. 6.3].
15x3  - 2x - 5 = 0 is ``the classical equation where the Newton method is applied"" [90].
16Actually, as noted by Ypma, Newton considered such iterations in solving a transcendent equa-

tion, namely, the Kepler equation x - e sinx = M . ``However, given the geometrical obscurity of the
argument, it seems unlikely that this passage exerted any influence on the historical development of
the Newton-Raphson technique in general"" [101].
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Newton considered the process of successively computing the corrections, which are
ultimately added together to form the final approximation (cf. [90]); see Algorithm 4.1.

Algorithm 4.1 The algorithm devised by Newton (left), and his first example (right)

Let f(x), x0 [f(x) = x3  - 2x - 5, x0 = 2]
Let g0(s) = f(x0 + s) [g0(s) = (2 + s)3  - 2(2 + s) - 5 = s3 + 6s2 + 10s - 1]
For k = 0 : m - 1

Compute \~gk(s) (the order-one approx. of gk(s)) [\~g0(s) = 10s - 1]
Solve for sk in \~gk(s) = 0 [s0 = 0.1]
Let gk+1(s) = gk(sk + s) [g1(s) = g0(s0 + s) = s3 + 6.3s2 + 11.23s+ 0.061]

xn := x0 +
\sum n - 1

k=0 sk [xn = 2 + 0.1 - 0.061
11.23 + \cdot \cdot \cdot + sn - 1]

Raphson considered approximations updated at each step, a process equivalent to
(4.1) (see [55], [101], [90]). However, the derivatives of f (which could be calculated
with the ``fluxions"" of that time) do not appear in their formulae, only the first-order
approximations from the finite series development of polynomials (using the binomial
formula). For more than a century, the belief was that these two variants represented
two different methods;17 it was Stewart (1745) who pointed out that they are in fact
equivalent (see [90]). As noted by Steihaug [90],

It took an additional 50 years before it was generally accepted that the
methods of Raphson and Newton were identical methods, but implemented
differently. Joseph Lagrange in 1798 derives the Newton-Raphson method
[. . . ] and writes that the Newton's method and Raphson's method are the
same but presented differently and Raphson's method is \itp \itl \itu \its \its \iti \itm \itp \itl \ite \itq \itu \ite 
\itc \ite \itl \itl \ite \itd \ite \itN \ite \itw \itt \ito \itn .

Simpson (1740) was the first to apply the method to transcendent equations,
using ``fluxions.""18, 16 Even more important, he extended it to the solving of nonlinear
systems of two equations (see [23], [101], [90]),19 subsequently generalized to the usual
form known today: F (x) = 0 with F : \BbbR N \rightarrow \BbbR N , for which, denoting the Jacobian
of F at xk by F \prime (xk), one has to solve for sk at each step the linear system

(4.2) F \prime (xk)s =  - F (xk).

Cajori [13] noted (see also [101]):

Then appear writers like Euler, Laplace, Lacroix and Legendre, who ex-
plain the Newton-Raphson process, but use no names. Finally, in a publi-
cation of Budan in 1807, in those of Fourier of 1818 and 1831, in that of
Dandelin in 1826, the Newton-Raphson method is attributed to Newton.

17``Nearly all eighteenth century writers and most of the early writers of the nineteenth century
carefully discriminated between the method of Newton and that of Raphson"" (Cajori [13]). For
a given input (n fixed), the result of Algorithm 4.1 may depend on how accurately the different
fractions (e.g., 0.061

11.23
) are computed.

18The fluxions \.x did not represent f \prime , but are ``essentially equivalent to dx/dt; implicit differenti-
ation is used to obtain dy/dt, subsequently dividing through by dx/dt as instructed produces the
derivative A = dy/dx of the function. [. . . ] Thus Simpson's instructions closely resemble, and are
mathematically equivalent to, the use of [(4.1)]. The formulation of the method using the now fa-
miliar f \prime (x) calculus notation of [(4.1)] was published by Lagrange in 1798 [. . . ]"" [101] (see also
[90]).

19The first nonlinear system considered was y +
\sqrt{} 

y2  - x2  - 10 = 0, x+
\sqrt{} 

y2 + x - 12 = 0, with
(x0, y0) = (5, 6), according to [101] and [90].
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The immense popularity of Fourier's writings led to the universal adoption
of the misnomer ``Newton's method"" for the Newton-Raphson process.

While some authors use ``the Newton--Raphson method,""20 the name Simpson---
though appropriate21---is only occasionally encountered (e.g., [59], [34], [41], [39]). In
a few cases ``Newton--Kantorovich"" appears, but refers to the mid-1900 contributions
of Kantorovich to semilocal convergence results when F is defined on normed spaces.

4.1.2. Attainable \bfitC -Orders. The method attains at least C-order 2 for simple
solutions. Regarding rigorous convergence results, ``Fourier appears to have been the
first to approach this question in a note entitled Question d'analyse alg\'ebrique (1818)
[. . . ], but an error was found in his formula,"" as noted by Chabert et al. [23, sect.
6.4], who continue by noting that

Cauchy studied the subject from 1821 onwards [. . . ], but did not give
a satisfactory formulation until 1829. [. . . ] The concern for clarity and
rigour, which is found in all of Cauchy's work, tidies up the question of the
convergence of Newton's method for the present.

Theorem 4.2 (cf. [22], [23, Thm. II, p. 184]). If x\ast is simple and f \prime \prime (x\ast ) \not = 0,
then the Newton method converges locally, with C-quadratic order:

(4.3) lim
k\rightarrow \infty 

| x\ast  - xk+1| 
| x\ast  - xk| 2

=

\bigm| \bigm| \bigm| \bigm| f \prime \prime (x\ast )

2f \prime (x\ast )

\bigm| \bigm| \bigm| \bigm| =: Q2.

Remark 4.3. The usual proofs for (4.3) consider the Taylor developments of
f(xk) and f \prime (xk), assuming small errors and neglecting ``higher-order terms"":
(4.4)

\ell k+1 = \ell k  - f(x\ast ) + f \prime (x\ast )\ell k + \cdot \cdot \cdot 
f \prime (x\ast ) + f \prime \prime (x\ast )\ell k + \cdot \cdot \cdot 

\approx f \prime \prime (x\ast )

2f \prime (x\ast )
\ell 2k (\ell k := xk  - x\ast , i.e., signed).

Exercise 4.4. (a) Write the Newton iterates for computing
\surd 
2 (cf. [62, p. 138]).

(b) (Newton everywhere [96, sect. 17.9]) Apply (4.1) to compute the division a/b
of real numbers in terms of only the operations +, - , \ast (cf. [62, p. 124]).

Remark 4.5. (a) The usual perception is that the smaller Q2, the faster the
asymptotic speed; expression (4.3) shows that for the Newton method this is realized
with smaller | f \prime \prime | and larger | f \prime | , and this means that near x\ast , the graph of f resembles
a line (| f \prime \prime | small) having large angle with Ox (the line is not close to Ox).22 While
this interpretation holds locally for the asymptotic range of the Newton iterates, it is
worth mentioning that the larger the region with such a property, the larger the attrac-
tion set (see also (4.12)), and the better conditioned the problem of solving f(x) = 0
(see subsection 4.1.6).

We note that taking 2f(x) instead of f(x), despite doubling f \prime (x), does not reduce
Q2, leading in fact to the same iterates (this property is called affine invariance; see
[34]).

20``Who was `--Raphson'?"" (N. Bi\'cani\'c and K. H. Johnson, 1979) has the popular answer ``Raph-
son was Newton's programmer"" (S. Nash, 1992).

21``[. . . ] it would seem that the Newton--Raphson--Simpson method is a designation more nearly
representing the facts of history in reference to this method"" (Ypma [101]).

``I found no source which credited Simpson as being an inventor of the method. None the less,
one is driven to conclude that neither Raphson, Halley nor anyone else prior to Simpson applied
fluxions to an iterative approximation technique"" (Kollerstrom [55]).

22In the opposite situation, when the angle is zero (x\ast is multiple), the convergence is only linear.
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(b) Of course, it would be of major interest to state a conclusion like ``the smaller
Q2, the fewer the iterates needed."" However, even if supported by a number of numeri-
cal examples, such a statement should be treated with great care. The reason is simple:
we do not address similar objects (Q2 is an asymptotic constant, referring to k \rightarrow \infty ,
while the desired conclusion refers to a finite number of steps). Moreover, when we
say ``the smaller Q2,"" this means that we consider different mappings f ; even if they
have the same x\ast , the attraction set and the dynamics of the iterates may be different.

The role of the asymptotic constants will be analyzed in the forthcoming work [21].

Let us analyze the expectation that this method behaves similarly for the same
Q2.

Example 4.6. (a) Let a \in \BbbR be given and

f(x) := x+ x2 + ax3 = 0, with x\ast = 0.

We get f \prime (0) = 1 and f \prime \prime (0) = 2, so by (4.3), Q2 = 1 (\forall a \in \BbbR given).
The full Taylor series gives the exact relation for the signed errors from (4.4):

(4.5) \ell k+1 =
1 + 2a\ell k

1 + 2\ell k + 3a\ell 2k
\ell 2k.

Take x0 = 0.0001(= e0) fixed. By (4.4), we should obtain | \ell 1| = e1 \approx e20 = 10 - 8 for
any a > 0. In Table 4.1 we see this does not hold when a has large values.

As | a| grows, despite being ``small,"" the error e0 in fact is not ``squared,"" as
suggested by (4.4). Indeed, when | a| is very large, in (4.4) the terms with larger
errors (corresponding to f \prime \prime \prime (x) = 6a) are actually neglected, despite their having
higher powers.

(b) Taking x0 = 0.0001 for f as above and then for f(x) = x+2x2 shows that Q2

and the number of iterates needed (for the same accuracy) are not in direct proportion.

Table 4.1 e1 = | \ell 1| computed in two equivalent ways, for different a's (digits64, Julia).

a \ell 1(= x1) \ell 1 by (4.5)

1 9.999 999 700 077 396 \cdot 10 - 9 9.999 999 700 059 996 \cdot 10 - 9

10 1.001 799 339 592 549 2 \cdot 10 - 8 1.001 799 339 592 279 7 \cdot 10 - 8

105 2.093 301 435 406 632 7 \cdot 10 - 7 2.093 301 435 406 699 \cdot 10 - 7

106 1.951 077 460 687 246 8 \cdot 10 - 6 1.951 077 460 687 245 \cdot 10 - 6

107 1.538 994 000 922 936 2 \cdot 10 - 5 1.538 994 000 922 934 8 \cdot 10 - 5

Remark 4.7. Igarashi and Ypma [46] noticed that a smaller Q2 does not neces-
sarily attract fewer iterates for attaining a given accuracy. However, the numerical
examples used to support this claim were based not on revealing the individual asymp-
totic regime of the sequences, but on the number of iterates required to attain a given
(digits64) accuracy.

If f \prime \prime (x\ast ) = 0, then (4.3) implies Q-superquadratic order, but actually the order
is higher: it is given by the first index\geq 2 of the nonzero derivative at the solution.

Theorem 4.8 (see, e.g., [37]). Let x\ast be simple. The Newton method converges
locally with C-order p0 \in \BbbN , p0 \geq 2, iff

f (p0)(x\ast ) \not = 0 and f \prime \prime (x\ast ) = \cdot \cdot \cdot = f (p0 - 1)(x\ast ) = 0,
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in which case

Qp0
=

p0  - 1

p0!

\bigm| \bigm| \bigm| \bigm| f (p0)(x\ast )

f \prime (x\ast )

\bigm| \bigm| \bigm| \bigm| .
4.1.3. Examples for the Attained \bfitC -Orders. We consider decreasing orders.
(a) Infinite C-order. If f(x) = ax+ b, a \not = 0, then x1 = x\ast \forall x0 \in \BbbR .
(b) Arbitrary natural C-order p0 \geq 2 (see Remark 4.13 for p0 /\in \BbbN ).

Example 4.9. Let p \geq 2 be a natural given number and consider

f(x) = x+ xp, x\ast = 0, p = 2, 3, 4 [83].

By Theorem 4.8, we obtain local convergence with C-order p and Qp = p - 1.
Let us first deal with p = 2. In double precision, for x0 = 0.46 we obtain six

nonzero iterates (shown truncated in Table 4.2). In analyzing QL(k - 1) (shown with
the last six decimal digits truncated), we note that QL(4) is a better approximation
than the last one, QL(5). This phenomenon may appear even if we increase the
precision (see Figure 4.2).

When x0 = 0.47 and 0.45 we obtain five nonzero iterates (see Exercise 4.11), and
QL(k) is increasingly better.

Table 4.2 Newton iterates for x+ x2 = 0 (digits64, Julia).

k xk QL(k  - 1) xk QL(k  - 1) xk QL(k  - 1)

0 0.47 0.46 0.45

1 1.1 \cdot 10 - 1 2.877 706 159 1.1 \cdot 10 - 01 2.840 052 802 1.0 \cdot 10 - 1 2.803 816 781

2 1.0 \cdot 10 - 2 2.094 428 776 9.9 \cdot 10 - 03 2.090 320 979 9.3 \cdot 10 - 3 2.086 305 525

3 1.0 \cdot 10 - 4 2.004 592 994 9.7 \cdot 10 - 05 2.004 275 304 8.6 \cdot 10 - 5 2.003 972 042

4 1.1 \cdot 10 - 8 2.000 023 942 9.4 \cdot 10 - 09 2.000 021 019 7.4 \cdot 10 - 9 2.000 018 386

5 1.4 \cdot 10 - 16 2.000 000 001 8.8 \cdot 10 - 17 2.000 000 001 5.4 \cdot 10 - 17 2.000 000 001

6 0 1.2 \cdot 10 - 32 1.987 981 962 0

7 0 0

For p = 3 and 4, we obtain four nonzero iterations for the three choices of x0,
and therefore a single meaningful term in computing \{ Q\prime 

\Lambda (k)\} .
Remark 4.10. The higher the convergence order, the faster fl(x\ast ) may be reached,

and we might end up with fewer distinct terms.

Higher precision is needed in this study. We have chosen to use the Julia language
here, which allows not only quadruple precision (digits128, compliant with IEEE
754-2008) but arbitrary precision as well (by using the setprecision command).
Some examples are posted at https:// github.com/ ecatinas/ conv-ord and may be easily
run online (e.g., by IJulia notebooks running on Binder).23

In Figure 4.1 we show the resulting QL(k - 1), Q\Lambda (k - 2), Q\prime 
L(k - 2), Q\prime 

\Lambda (k - 3)
(in order to use only the information available at step k).

We see that all four (computational) convergence orders approach the correspond-
ing p's, but we cannot clearly distinguish their speed.

In Figure 4.2 we present | Q\Lambda (k  - 2) - p| and | QL(k  - 1) - p| .

23Such examples may be also performed in MATLAB [58] (by choosing the Advanpix [1] toolbox,
which handles arbitrary precision), or in other languages.
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2 4 6 8

2

3

4

k

p = 4

QL(k  - 1)

Q\Lambda (k  - 2)

Q\prime 
L(k  - 2)

Q\prime 
\Lambda (k  - 3)
p = 3

QL(k  - 1)

Q\Lambda (k  - 2)

Q\prime 
L(k  - 2)

Q\prime 
\Lambda (k  - 3)
p = 2

QL(k  - 1)

Q\Lambda (k  - 2)

Q\prime 
L(k  - 2)

Q\prime 
\Lambda (k  - 3)

Fig. 4.1 Convergence orders: the Newton iterates for f[p](x) = x+ xp = 0, p = 2, 3, 4.

2 4 6 8
10 - 69

10 - 51

10 - 33

10 - 15

103

k

p = 4

| QL(k  - 1) - 4| 
| Q\Lambda (k  - 2) - 4| 

p = 3

| QL(k  - 1) - 3| 
| Q\Lambda (k  - 2) - 3| 

p = 2

| QL(k  - 1) - 2| 
| Q\Lambda (k  - 2) - 2| 

Fig. 4.2 | Q\Lambda (k  - 2) - p| , | QL(k  - 1) - p| (Newton iterates, f[p](x) = x+ xp = 0).

Exercise 4.11. Examining the numerator and denominator in the Newton cor-
rections, give the two different reasons why x7 is 0 in Table 4.2 (when x0 = 0.47 and
0.45). When is realmin or machine epsilon (or both) too large?

(c) C-order p \in (1, 2). The C-order 2 is lost with the smoothness of f (when
\nexists f \prime \prime ).

Example 4.12 ([67, E 10.2-4], [31]). The Newton method has C-order 1 + \alpha for

f(x) = x+ | x| 1+\alpha , \alpha \in (0, 1) given, x\ast = 0.

Remark 4.13. Modifying the above example by taking f(x) = x+ | x| p0 shows that
the Newton method may in fact attain any real nonnatural order p0 \in (2,+\infty ).
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(d) C-linear order. This appears for a multiple solution x\ast , which is implicitly
assumed to be isolated (f \prime (x) \not = 0 \forall x \not = x\ast in a neighborhood of x\ast ).24 Indeed, if the
multiplicity of x\ast is q \in \BbbN ,

(4.6) f(x\ast ) = f \prime (x\ast ) = \cdot \cdot \cdot = f (q - 1)(x\ast ) = 0, f (q)(x\ast ) \not = 0

(i.e., f(x) = (x - x\ast )qg(x), g(x\ast ) \not = 0), then (see, e.g., [67, E 10.2-8], [36], [41])

(4.7) Q1 = 1 - 1

q
.

If q is known, one may use the Schr\"oder formula [68] to restore the C-order 2:

xk+1 = xk  - q
f(xk)

f \prime (xk)
, with Q2 =

| f (q+1)(x\ast )| 
q(q + 1)| f (q)(x\ast )| 

(see, e.g., [68, (8.13)]).

Exercise 4.14. (a) Calculate the Newton and Schr\"oder iterates for f(x) = x2.
(b) The Schr\"oder iterates are the Newton iterates for q

\sqrt{} 
f(x) = (x - x\ast ) q

\sqrt{} 
g(x).

Approximation of the unknown q is surveyed in [60, sect. 7.9]; see also [81,
sect. 6.6.2].

(e) C-sublinear order.

Exercise 4.15. Let f(x) = e - 1/x2

, x \not = 0, f(0) = 0. Show that the Newton
method converges locally to x\ast = 0, with Q1(\{ xk\} ) = 1, i.e., C-sublinearly.

4.1.4. Convexity. The influence of x0 and the convexity of f were first analyzed
by Mourraille (1768) [23, sect. 6.3], in an intuitive fashion.

In 1818, Fourier ([38], available on the Internet) gave the condition

(4.8) f(x0)f
\prime \prime (x0) > 0,

which ensures the convergence of the Newton method, provided f maintains the
monotony and convexity in the interval determined by x\ast and x0. This condition
can lead to sided convergence intervals (i.e., not necessarily centered at x\ast ).

Clearly, the method may converge even on the whole axis, a result which is more
interesting to consider in \BbbR n (cf. the Baluev theorem [66, Thm. 8.3.4]).

Remark 4.16. (a) By (4.4), the signs of the errors are periodic with period either
1 (i.e., monotone iterates) or 2 (k \geq k0).

(b) The Fourier condition is sufficient for convergence but not also necessary; the
iterates may converge locally (by Theorem 4.2) even when (4.8) does not hold: take,
e.g., f(x) = sin(x), x\ast = 0, with the signs of errors alternating at each step (k \geq k0).

4.1.5. Attraction Balls. Estimations for Br(x
\ast ) = \{ x \in D : | x\ast  - x| < r\} 

= (x\ast  - r, x\ast + r) as V in Definition 4.1 are usually given using the condition

(4.9) | f \prime (x) - f \prime (y)| \leq L| x - y| \forall x, y \in D.

The Lipschitz constant L of f \prime measures the nonlinearity of f (i.e., how much the
graph of f is bent); its exact bound shows this is in accordance with Remark 4.5,
since

(4.10) L \geq sup
x\in D

| f \prime \prime (x)| .

24Otherwise, an iterative method would not be able to converge to a specific solution we were
interested in (take, e.g., the constant function f(x) = 0 with \BbbR as the solution set, or f(x) = x sin 1

x
,

x \not = 0, f(0) = 0).
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HOW MANY STEPS STILL LEFT TO x*? 613

The usual assumptions also require

(4.11) | f \prime (x\ast )| \geq 1

\beta 
,

and the Dennis--Schnabel [32], Rheinboldt [84], and Deuflhard--Potra [35] estimations
are, respectively,

(4.12) r =
1

2\beta L
, r =

2

3\beta L
, and r =

2

\omega 
,

where \omega satisfies | f \prime (x) - 1| \cdot | f \prime (x+ t(y - x)) - f \prime (x)| \leq t\omega | y - x| \forall t \in (0, 1), \forall x, y \in D,
i.e., it can be viewed as a combination of both L and \beta (see also [2]).

We note that (4.12) estimates a small r for Example 4.6, as L is large.

4.1.6. Floating Point Arithmetic. Curious behavior may arise in this setting.
The derivative f \prime measures the sensitivity in computing f(x) using \~x \approx x instead:

| f(x) - f(\~x)| \approx | f \prime (x)| \cdot | x - \~x| . This shows that for large | f \prime (x)| , the absolute error in
x may be amplified. When the relative error in x is of interest, the condition number

becomes | f \prime (x)| \cdot | x| : | f(x) - f(\~x)| \approx | f \prime (x)| \cdot | x| | x - \~x| 
| x| .

For the relative errors of f , the condition numbers are given by [69], [42, sects. 1.2.6
and 5.3]

| f(x) - f(\~x)| 
| f(x)| 

\approx | xf \prime (x)| 
| f(x)| 

| x - \~x| 
| x| 

or
| f(x) - f(\~x)| 

| f(x)| 
\approx | f \prime (x)| 

| f(x)| 
| x - \~x| ,

which show that the relative errors in f(x) may be large near a solution x\ast .
However, as shown in [42, sects. 1.2.6 and 5.3] and [81, Ex. 2.4, sect. 6.1], the

problem of solving an equation has the conditioning number 1/| f \prime (x\ast )| , which is equal
to the inverse of the conditioning number for computing f(x).

When | f \prime (x)| (i.e., | f \prime (x\ast )| ) is not small, Shampine, Allen, and Pruess argue
that the Newton method is ``stable at limiting precision"" [89, p. 147], as the Newton

corrections f(x)
f \prime (x) are small.

When | f \prime (x\ast )| is small (e.g., x\ast is multiple), notable cancellations may appear in
computing f and prevent the usual graphical interpretation. The (expanded) poly-
nomial (x - 2)9 of Demmel [28, p. 8] computed in double precision is well known.

Even simpler examples exist: f(x) = x3  - 2x2 + 4
3x - 8

27 (= (x - 2
3 )

3) (Sauer [86,
p. 45]) and f(x) = x3e3x  - 3x2e2x + 3xex  - 1(= (ex  - 1)3), x\ast \approx 0.56 (Shampine,
Allen, and Pruess [89, Fig. 1.2, p. 23]).

| f \prime | not being small is no guarantee that things won't get weird due to other
reasons.

Quiz 4.17 (Wilkinson; see [89, Ex. 4.3]). Let f(x) = x20  - 1, x\ast = 1, and (here)
x0 = 10. Why, in double precision, are the (rounded) Newton iterates: x1 = 9.5, x2 =
9.0, x3 = 8.6, x4 = 8.1, etc.? Take \ell 0 = \pm 0.001 and compute x1 and e1.

4.1.7. Nonlinear Systems in \BbbR \bfitN . When Newton-type methods are used in prac-
tice to solve nonlinear systems in \BbbR N , obtaining high Q-orders becomes challenging.
As the dimension may be huge (N = 106 and even higher) the main difficulty resides---
having solved the representation of the data in memory25---in accurately solving the

25One can use Newton--Krylov methods, which do not require storage of the matrices F \prime (x), but
instead computation of matrix-vector products F \prime (x)v, further approximated by finite differences
[12].
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614 EMIL CĂTINAŞ

resulting linear systems (4.2) at each step. In many practical situations, superlinear
convergence may be considered satisfactory.

The most common setting allows the systems (4.2) to be only approximately
solved (the corrections verify F \prime (xk)sk =  - F (xk)+rk, rk \not = 0), leading to the inexact
Newton method ; its superlinear convergence and the orders p \in (1, 2] were character-
ized by Dembo, Eisenstat, and Steihaug in [27], the approach being easily extended
by us for further sources of perturbation in [14], [17].

The quasi-Newton methods form another important class of Newton-type itera-
tions; they consider approximate Jacobians, in order to produce linear systems that
are easier to solve [31]. Their superlinear convergence was characterized by Dennis
and Mor\'e [30].

The inexact and quasi-Newton methods are in fact tightly connected models [17].

4.2. The Secant Method. This is a two-step method, requiring x0 \not = x1 \in D,

(4.13) xk+1 = xk  - f(xk)
f(xk) - f(xk - 1)

xk - xk - 1

=
xk - 1f(xk) - xkf(xk - 1)

f(xk) - f(xk - 1)
, k = 1, 2, . . . ,

but none of the above formulae is recommended for programming (see subsection 4.2.5).

4.2.1. History. Though nowadays the secant method is usually seen as a Newton-
type method with derivatives replaced by finite differences (i.e., a quasi-Newton
method) or an inverse interpolatory method, this is not the way it first appeared.
The roots of this method can be traced back to approximately the same time as that
of the Newton method, the 18th century B.C., found on Babylonian clay tablets and
on the Egyptian Rhind Papyrus [23], [70], when it was used as a single iteration for
solving linear equations.26 During these times and even later, the terminology for
such a noniterated form was ``the rule of double false position"" (see, e.g., [70]); in-
deed, two initial ``false positions"" x0, x1 yield in one iteration the true solution of the
linear equation.

Heron of Alexandria [33] approximated the cubic root of 100 by this method
(as revealed by Luca and P\u av\u aloiu [57], it turns out that it can be seen as applied
equivalently to x2  - 100

x = 0).
While reinvented in several cultures (in China,27 India,28 Arab countries, and

Africa,29 sometimes even for 2-by-2 systems of equations), its use as an iterative
method was first considered by Cardano (1545), who called it Regula Liberae Positio-
nis [70] (or regula aurea [82, note 5, p. 200]).

Vi\`ete also used a secant-type method, and it appears that Newton (around 1665)
independently rediscovered the secant method [70], [101].

4.2.2. Attainable \bfitQ -Orders. The standard convergence result shows the usual

convergence with C-order given by the golden ratio \lambda 1 := 1+
\surd 
5

2 \approx 1.618; as noted
by Papakonstantinou and Tapia [70], this was first obtained by Jeeves in 1958 (in a
technical report, published as [48]).

Theorem 4.18 ([68, Chap. 12, sects. 11--12]). If x\ast is simple and f \prime \prime (x\ast ) \not = 0,

26Such equations appear trivial these days, but their solution required ingenuity back then: the
decimal system and the zero symbol were used much later, in the 800s (see, e.g., [61, pp. 192--193]).

27Jiuzhang Suanshu (Nine Chapters on the Mathematical Art) [23, sect. 3.3].
28For example, in the work of Madhava's student Paramesvara [73], [74], [23, sect. 3.4].
29al- .T\=us\={\i}, al-K\=ash\={\i}, al-Khayy\=am (see [82], [101], [23, sect. 3.5]).
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then the secant method has local convergence with C-order \lambda 1 = 1+
\surd 
5

2 :

(4.14) lim
k\rightarrow \infty 

| x\ast  - xk+1| 
| x\ast  - xk| \lambda 1

=

\bigm| \bigm| \bigm| \bigm| f \prime \prime (x\ast )

2f \prime (x\ast )

\bigm| \bigm| \bigm| \bigm| \lambda 1 - 1

=: Q\lambda 1
.

Remark 4.19. The Q-order \lambda 1 follows by considering signed errors (see, e.g.,
[48])

(4.15) \ell k+1 =
[xk - 1, xk, x

\ast ; f ]

[xk - 1, xk; f ]
\ell k\ell k - 1, k \geq 1 (\ell k := xk  - x\ast ),

and then Exercise 2.25. Indeed, the divided differences converge, [xk - 1, xk; f ] \rightarrow 
f \prime (x\ast ), [xk - 1, xk, x

\ast ; f ] \rightarrow f \prime \prime (x\ast )
2 , and denoting l =

\bigm| \bigm| f \prime \prime (x\ast )
2f \prime (x\ast )

\bigm| \bigm| , it follows that in (2.5)

we may take A = l  - \varepsilon and B = l + \varepsilon for some small \varepsilon .

Quiz 4.20. Find the incompleteness in proving the C-order \lambda 1 in (4.14) by arguing
that

(l - \varepsilon )
\Bigl( e\lambda 1

k - 1

ek

\Bigr) 1
\lambda 1
e

1
\lambda 1

+1 - \lambda 1

k \leq (l - \varepsilon )
ekek - 1

e\lambda 1

k

\leq ek+1

e\lambda 1

k

\leq (l+\varepsilon )
ekek - 1

e\lambda 1

k

= (l+\varepsilon )
\Bigl( e\lambda 1

k - 1

ek

\Bigr) 1
\lambda 1
,

1
\lambda 1

+ 1 - \lambda 1 = 0, and therefore Q\lambda 1 satisfies Q\lambda 1 = lQ
 - 1

\lambda 1

\lambda 1
, i.e., is given by (4.14).

Remark 4.21. By (4.15), the signs of the errors (and of f(xk) as well) are peri-
odic with period at most 3 (k \geq k0), as noted by Neumaier [64, Cor. 5.1.3].

Higher Q- (but not necessarily C-)orders may be attained.

Theorem 4.22 (Raydan [83]). If x\ast is simple and q \geq 1 is the first index such
that f (q+1)(x\ast ) \not = 0, then the secant method converges locally with Q-order given by

\lambda q =
1 +

\surd 
1 + 4q

2

and obeys

lim
ek+1

eke
q
k - 1

=
| f (q+1)(x\ast )| 

(q + 1)!| f \prime (x\ast )| 
.

Moreover, specific results hold in the following cases, noting the attained orders:
\bullet q = 1: C-order \lambda 1;
\bullet q = 2: exact Q-order \lambda 2 = 2 (but not necessarily C-order 2);
\bullet q = 3: Q-order \lambda 3 \approx 2.3 (but not necessarily exact Q-order \lambda 3).

Remark 4.23. When q \geq 2, the secant iterates may have only Q- but no C-order,
despite ek+1

eke
q
k - 1

converging to a finite nonzero limit (see Exercise 2.25).

Example 4.24 (cf. [83]). Let f[q+1](x) = x + xq+1, x0 = 0.5, x1 = 1
(q+1)\lambda q

,

q = 1, 2, 3, and compute the secant iterates (by (4.16)).
The assertions of Theorem 4.22 are verified in this case, since | QL(k  - 1)  - \lambda q| 

and | Q\Lambda (k - 2) - \lambda q| , computed using setprecision(500), tend to 0 (see Figure 4.3).
In Figure 4.4 we plot Q\lambda q

(k) when q = 1, 2, and 3.
We see that Q\lambda 1

(k) tends to 1.
For q = 2, Q\lambda 2

(k) oscillates (suggesting Q
\lambda 2
(k) \approx 0.57, \=Q\lambda 2

(k) \approx 1.74).

For q = 3, \=Q\lambda 3
(k) tends to infinity (as rigorously proved by Raydan for q \geq 3).

For this particular data it appears that Q
\lambda 3

= 0 (which remains to be rigorously
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0 2 4 6 8 10 12 14

10 - 6

10 - 5

10 - 4

10 - 3

10 - 2

10 - 1

100

k

q = 1

| QL(k  - 1) - \lambda 1| 
| Q\Lambda (k  - 2) - \lambda 1| 

q = 2

| QL(k  - 1) - \lambda 2| 
| Q\Lambda (k  - 2) - \lambda 2| 

q = 3

| QL(k  - 1) - \lambda 3| 
| Q\Lambda (k  - 2) - \lambda 3| 

Fig. 4.3 | Q\Lambda (k  - 2) - \lambda q | , | QL(k  - 1) - \lambda q | (secant iterates, f(x) = x+ x1+q = 0).

0 2 4 6 8 10 12 14

10 - 6

10 - 3

100

103

106

k

prec. 500:

Q\lambda 1(k)

Q\lambda 2
(k)

Q\lambda 3
(k)

prec. 5000:

Q\lambda 3(k)

Fig. 4.4 Q\lambda q (k) (secant iterates, f[1+q](x), setprecision(500), resp., (5000)).

proved). In order to see it more clearly, we have also used further increased precision
(setprecision(5000)), providing confirmation.

When q = 3, \=Q\lambda 3
= \infty or Q

\lambda 3
= 0 do not necessarily hold for any x0, x1:

they do not hold (numerically) for x0 = 0.5, x1 = 0.25 (but they do hold, e.g., for
x0 = 1, x1 = 0.5).

The higher the order, the faster the iterates attain fl(x\ast ). We see in Figure 4.4
that setprecision(500) allows 14 iterates when q = 1 and only 7 iterates when q = 3
(increased to 11 for setprecision(5000)).

4.2.3. Multiple Solutions. Not only the high orders, but even very local conver-
gence may be lost if x\ast is not simple.
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Example 4.25 (cf. [41]). If f(x) = x2, x0 =  - \varepsilon , x1 = \varepsilon , \nexists x2 in (4.16) (\forall \varepsilon > 0).

Assuming that the secant method converges, only a linear rate is obtained [95];
D\'{\i}ez [36] showed that if the multiplicity of x\ast in (4.6) is

\bullet q = 2, then Q1 = 1
\lambda 1

= \lambda 1  - 1 \approx 0.618;

\bullet q \geq 3, then Q1 is the 0 < \lambda \ast < 1 solution of xq + xq - 1  - 1 = 0.
Also, if the iterates verify at each step | f(xk)| < | f(xk - 1)| (by swapping), one

obtains superlinear convergence for the root secant method of Neumaier [64, p. 241]:

xk+1 = xk  - xk  - xk - 1

1 - 
\sqrt{} 
f(xk - 1)/f(xk)

.

For other references on this topic, see [60, sect. 7.9] and [91, Ex. 1.9].

4.2.4. Attraction Balls. Estimates for the radius of an attraction ball were given
by Liang [56]: if (4.9) and

\bigm| \bigm| [x, y, z; f ]\bigm| \bigm| \leq K \forall x, y, z \in D hold, then

r =
1

3\beta K
.

When using a specific x1 in the secant method (x0 \in Br arbitrary, x1 = x0  - 
f(x0)
f \prime (x0)

), estimates similar to (4.12) were obtained: if (4.11) and (4.10), then

r =
2

3\beta L
(see [56]).

4.2.5. Floating Point Arithmetic. The two expressions in (4.13) are not recom-
mended for programming in an ad literam fashion, respectively, at all; indeed, the
first one should be written instead as

(4.16) xk+1 = xk  - f(xk)(xk  - xk - 1)

f(xk) - f(xk - 1)
, k = 1, 2, . . . ,

while the second one can lead, close to x\ast , to cancellations when f(xk) and f(xk - 1)
have the same sign [26, p. 228], [60, p. 4].

Further equivalent formulae are

xk+1 = xk  - xk  - xk - 1

1 - f(xk - 1)
f(xk)

, k = 1, 2, . . . ,

and (Vandergraft [97, p. 265])

xk+1 = xk  - 
\biggl[ 
(xk - 1  - xk)

\biggl( 
f(xk)

f(xk - 1)

\biggr) \biggr] \bigg/ \biggl( 
1 - f(xk)

f(xk - 1)

\biggr) 
,

which requires | f(xk)
f(xk - 1)

| < 1 at each step (by swapping the iterates).

It is worth noting, however, that swapping the consecutive iterates in order to
obtain | f(xk)| < | f(xk - 1)| leads to iterates that may have a different dynamic than
is standard.

The secant method may not be stable at limiting precision, even for large | f \prime (x\ast )| 
(Shampine, Allen, and Pruess [89, p. 147]), and higher precision may be needed.
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4.3. Successive Approximations for Fixed Point Problems. We consider a suf-
ficiently differentiable mapping g : D \rightarrow D, D \subseteq \BbbR , and the fixed point problem

g(x) = x.

A solution x\ast is called a fixed point of g; x\ast is further called an attraction fixed point
when one has local convergence for the successive approximations

xk+1 = g(xk), k \geq 0.

4.3.1. History. Assuming that the computation of
\surd 
2 with five (decimal) digits

is highly improbable in the absence of an iterative method, it is likely that successive
approximations date back to at least 1800 B.C. (considering the Newton iterates as
particular instances of successive approximations).

Regarding the first use of iterates not connected to the Newton or secant-type
iterates, they seem have appeared in the fifth and sixth centuries in India (see Plofker
[74]; in this paper the author describes as an example the Brahmasphutasiddhanta of
Brahmagupta from the seventh century).

Later occurrences are mentioned for Ibn al-Banna as cited in [23, sect. 7.3], al- .T\=us\={\i}
[23, sect. 7.4], Vi\`ete [23, sect. 7.5], Parame\'svara (avi\'se.sa) [73], al-K\=ash\={\i} [23, sect. 7.5],
and .Habash al- .H\=asib al-Marwazi [52], [3].

Further occurrences of such iterates appear for Kepler (1618--1622) in [23, sect. 7.6],
Gregory (1672 [101]; 1674 [3]), Dary (1674) [3], and Newton (1674) [101].

4.3.2. Local Convergence, Attainable \bfitC -Orders. The first part of the follow-
ing local convergence result was first obtained by Schr\"oder in 1870 [87]. The extension
to mappings in \BbbR N implied the analysis of the eigenvalues of the Jacobian at the fixed
point, which is an important topic in numerical analysis.30 The standard formulation
of the result was first given by Ostrowski in 1957, but Perron had essentially already
obtained it in 1929 (see [67, NR 10.1-1]).

Theorem 4.26.
(a) ([67, Thm. 10.1.3], [68]) Let g be continuous on D \subseteq \BbbR and differentiable at

the fixed point x\ast \in D. If
| g\prime (x\ast )| < 1,

then x\ast is an attraction fixed point.
(b) ([37]) Conversely, if x\ast is an attraction fixed point, then | g\prime (x\ast )| \leq 1.

Remark 4.27 (see [67, E 10.1-2]). Condition | g\prime (x\ast )| \leq 1 is sharp: by considering
| g\prime (x\ast )| = 1 and taking g(x) = x  - x3, x\ast = 0 is an attraction fixed point, while if
g(x) = x+ x3, the same fixed point x\ast is no longer of attraction.

The higher orders attained are characterized as follows.

Theorem 4.28 (see, e.g., [68, Chap. 4, sect. 10, p. 44], [95], [37]). Let p0 \geq 2 be
an integer and x\ast a fixed point of g. Then xk+1 = g(xk) \rightarrow x\ast with C-order p0 iff

g\prime (x\ast ) = g\prime \prime (x\ast ) = \cdot \cdot \cdot = g(p0 - 1)(x\ast ) = 0 and g(p0)(x\ast ) \not = 0,

in which case

(4.17) lim
k\rightarrow \infty 

| x\ast  - xk+1| 
| x\ast  - xk| p0

=
| g(p0)(x\ast )| 

p0!
=: Qp0 .

30Given H \in \BbbR N\times N and the linear system x = Hx+ c, the following result was called by Ortega
[66, p. 118] the fundamental theorem of linear iterative methods: If x = Hx+c has a unique solution
x\ast , then the successive approximations converge to x\ast \forall x0 \in \BbbR N iff the spectral radius \rho (H) is < 1.
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Example 4.29 ([67, E 10.1-10]). Any C-order p0 > 1 is possible: let g(x) = xp0 .

The C-sublinear order may be attained too.

Exercise 4.30. Let g(x) = x - x3 and xk+1 = g(xk) \rightarrow 0; then Q1(\{ xk\} ) = 1.

The successive approximations are usually regarded as the most general iterations,
but actually, they may also be seen as instances of an inexact Newton method [15];
such an approach allows us to study acceleration techniques in a different setting.

4.3.3. Attraction Balls. The following result holds.

Theorem 4.31 ([19]). Let x\ast be an attraction fixed point of g for which

| g\prime (x\ast )| \leq q < 1.

Suppose there exist r1 > 0, L > 0 such that g is differentiable on Br1 , with g\prime 

Lipschitz continuous of constant L, and denote

(4.18) r = min

\biggl\{ 
r1,

\sqrt{} 
2(1 - q)

L

\biggr\} 
.

Then, \forall x0 \in Br, letting t = L
2 | x0  - x\ast | + q < 1 we get

| xk+1  - x\ast | \leq t| xk  - x\ast | , k \geq 0,

which implies that xk+1 = g(xk) \in Br and xk+1 = g(xk) \rightarrow x\ast .

Remark 4.32. It is important to note that this result does not require g to be
a contraction on D (i.e., L < 1), in contrast to the classical Banach contraction
theorem.

The center-Lipschitz condition (i.e., x\ast instead of y in (4.9)) is an improvement
[24].

The estimate (4.18) may be sharp in certain cases.

Example 4.33 ([19]). Let g(x) = x2 with x\ast = 0, g\prime (x\ast ) = 0, r1 > 0 arbitrary,
and L = 2. Then (4.18) gives the sharp r = r2 = 1, since x\ast = 1 is another fixed
point.

We observe that | g\prime (x)| = 2 at | x - x\ast | = r = 1, which upholds Remark 4.32.

Regarding the general case of several dimensions with G : D \subseteq \BbbR N \rightarrow D, we
note that the trajectories with high convergence orders are characterized by the zero
eigenvalue of G\prime (x\ast ) and its corresponding eigenvectors (see [16]).

Remark 4.34 ([18, Ex. 2.8]). Definition 4.1 allows a finite number of xk /\in V

(regardless of how ``small"" V is chosen to be): take, e.g., G(x) = Ax, A =
\bigl( 0 2

1
8 0

\bigr) 
,

V = Br(0).

5. Conclusions. Various aspects of convergence orders have been analyzed here,
but rather than providing a final view, we see this work as a fresh start; in [21]
we pursue the study of the following themes: the characterizations of the C-order,
the connections between the Q- and R-orders and the big Oh rates, the asymptotic
constants (with their immediate computational variants), the convergence orders of
the discretization schemes (to mention a few).
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6. Answers to Quizzes. Quiz 1.8: \{ \.xk\} = \{ 1

22k
\} = \{ \r xk\} in different windows.

Quiz 2.7: (a) Q1 = 10 - 1; (b) Q1 = 10 - 2; (c) 10 - xk , \{ xk\} the Fibonacci sequence;
(d) Q2 = 1.

Quiz 3.4: unbounded (take f(x) = x+ ax2).
Quiz 4.17: fl(1020  - 1) = fl(1020), in double precision.
Quiz 4.20: the limit Q\lambda 1

is not proved to exist; see also Theorem 4.22.

Acknowledgments. I am grateful to two referees for constructive remarks which
helped to improve the manuscript, particularly the one who brought the Julia language
to my attention; also, I am grateful to my colleagues M. Nechita and I. Boros, as well
as to S. Filip for useful suggestions regarding Julia.

REFERENCES

[1] Advanpix team, Advanpix, Version 4.7.0.13642, 2020, https://www.advanpix.com/ (accessed
2021/04/07). (Cited on pp. 588, 610)

[2] I. K. Argyros and S. George, On a result by Dennis and Schnabel for Newton's method:
Further improvements, Appl. Math. Lett., 55 (2016), pp. 49--53, https://doi.org/10.1016/
j.aml.2015.12.003. (Cited on p. 613)

[3] D. F. Bailey, A historical survey of solution by functional iteration, Math. Mag., 62 (1989),
pp. 155--166, https://doi.org/10.1080/0025570X.1989.11977428. (Cited on pp. 591, 606,
618)

[4] W. A. Beyer, B. R. Ebanks, and C. R. Qualls, Convergence rates and convergence-order
profiles for sequences, Acta Appl. Math., 20 (1990), pp. 267--284, https://doi.org/10.
1007/bf00049571. (Cited on pp. 592, 593, 594, 595, 598, 602, 604, 605)

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to nu-
merical computing, SIAM Rev., 59 (2017), pp. 65--98, https://doi.org/10.1137/141000671.
(Cited on p. 588)

[6] R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood
Cliffs, NJ, 1973. (Cited on p. 595)

[7] R. P. Brent, S. Winograd, and P. Wolfe, Optimal iterative processes for root-finding,
Numer. Math., 20 (1973), pp. 327--341, https://doi.org/10.1007/bf01402555. (Cited on
pp. 597, 600)

[8] C. Brezinski, Comparaison des suites convergentes, Rev. Fran\c caise Inform. Rech. Op\'er., 5
(1971), pp. 95--99. (Cited on pp. 597, 598)

[9] C. Brezinski, Acc\'el\'eration de la Convergence en Analyse Num\'erique, Springer-Verlag, Berlin,
1977. (Cited on pp. 586, 597, 598)

[10] C. Brezinski, Limiting relationships and comparison theorems for sequences, Rend. Circolo
Mat. Palermo Ser. II, 28 (1979), pp. 273--280, https://doi.org/10.1007/bf02844100. (Cited
on p. 604)

[11] C. Brezinski, Vitesse de convergence d'une suite, Rev. Roumaine Math. Pures Appl., 30
(1985), pp. 403--417. (Cited on pp. 595, 597, 603)

[12] P. N. Brown, A local convergence theory for combined inexact-Newton/finite-difference pro-
jection methods, SIAM J. Numer. Anal., 24 (1987), pp. 407--434, https://doi.org/10.1137/
0724031. (Cited on p. 613)

[13] F. Cajori, Historical note on the Newton-Raphson method of approximation, Amer. Math.
Monthly, 18 (1911), pp. 29--32, https://doi.org/10.2307/2973939. (Cited on p. 607)

[14] E. C\u atina\c s, Inexact perturbed Newton methods and applications to a class of Krylov
solvers, J. Optim. Theory Appl., 108 (2001), pp. 543--570, https://doi.org/10.1023/a:
1017583307974. (Cited on p. 614)

[15] E. C\u atina\c s, On accelerating the convergence of the successive approximations method, Rev.
Anal. Num\'er. Th\'eor. Approx., 30 (2001), pp. 3--8, https://ictp.acad.ro/accelerating-
convergence-successive-approximations-method/ (accessed 2021/04/07). (Cited on
p. 619)

[16] E. C\u atina\c s, On the superlinear convergence of the successive approximations method, J.
Optim. Theory Appl., 113 (2002), pp. 473--485, https://doi.org/10.1023/a:1015304720071.
(Cited on p. 619)

[17] E. C\u atina\c s, The inexact, inexact perturbed and quasi-Newton methods are equivalent models,
Math. Comp., 74 (2005), pp. 291--301, https://doi.org/10.1090/s0025-5718-04-01646-1.
(Cited on p. 614)

D
ow

nl
oa

de
d 

08
/2

9/
21

 to
 1

88
.2

7.
12

9.
10

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://www.advanpix.com/
https://doi.org/10.1016/j.aml.2015.12.003
https://doi.org/10.1016/j.aml.2015.12.003
https://doi.org/10.1080/0025570X.1989.11977428
https://doi.org/10.1007/bf00049571
https://doi.org/10.1007/bf00049571
https://doi.org/10.1137/141000671
https://doi.org/10.1007/bf01402555
https://doi.org/10.1007/bf02844100
https://doi.org/10.1137/0724031
https://doi.org/10.1137/0724031
https://doi.org/10.2307/2973939
https://doi.org/10.1023/a:1017583307974
https://doi.org/10.1023/a:1017583307974
https://ictp.acad.ro/accelerating-convergence-successive-approximations-method/
https://ictp.acad.ro/accelerating-convergence-successive-approximations-method/
https://doi.org/10.1023/a:1015304720071
https://doi.org/10.1090/s0025-5718-04-01646-1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOW MANY STEPS STILL LEFT TO x*? 621

[18] E. C\u atina\c s, Newton and Newton-type Methods in Solving Nonlinear Systems in \BbbR N ,
Risoprint, Cluj-Napoca, Romania, 2007, https://ictp.acad.ro/methods-of-newton-and-
newton-krylov-type/ (accessed on 2021/6/9). (Cited on p. 619)

[19] E. C\u atina\c s, Estimating the radius of an attraction ball, Appl. Math. Lett., 22 (2009), pp. 712--
714, https://doi.org/10.1016/j.aml.2008.08.007. (Cited on p. 619)

[20] E. C\u atina\c s, A survey on the high convergence orders and computational convergence orders
of sequences, Appl. Math. Comput., 343 (2019), pp. 1--20, https://doi.org/10.1016/j.amc.
2018.08.006. (Cited on pp. 591, 592, 594, 595, 596, 598, 599, 600, 601, 602, 603, 605)

[21] E. C\u atina\c s, How Many Steps Still Left to x*? Part II. Newton Iterates without f and f \prime ,
manuscript, 2020. (Cited on pp. 603, 609, 619)

[22] A. Cauchy, Sur la determination approximative des racines d'une equation algebrique
ou transcendante, Oeuvres Complete (II) 4, Gauthier-Villars, Paris, 1899, 23 (1829),
pp. 573--609, http://iris.univ-lille.fr/pdfpreview/bitstream/handle/1908/4026/41077-2-
4.pdf?sequence=1 (accessed 2021/04/07). (Cited on pp. 606, 608)

[23] J.-L. Chabert, ed., A History of Algorithms. From the Pebble to the Microchip, Springer-
Verlag, Berlin, 1999. (Cited on pp. 606, 607, 608, 612, 614, 618)

[24] J. Chen and I. K. Argyros, Improved results on estimating and extending the radius of an
attraction ball, Appl. Math. Lett., 23 (2010), pp. 404--408, https://doi.org/10.1016/j.aml.
2009.11.007. (Cited on p. 619)

[25] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
PA, 2000, https://doi.org/10.1137/1.9780898719857. (Cited on pp. 598, 601)

[26] G. Dahlquist and \r A. Bj\"ork, Numerical Methods, Dover, Mineola, NY, 1974. (Cited on
p. 617)

[27] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400--408, https://doi.org/10.1137/0719025. (Cited on p. 614)

[28] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997, https:
//doi.org/10.1137/1.9781611971446. (Cited on pp. 587, 613)

[29] J. E. Dennis, On Newton-like methods, Numer. Math., 11 (1968), pp. 324--330, https://doi.
org/10.1007/bf02166685. (Cited on p. 602)

[30] J. E. Dennis, Jr., and J. J. Mor\'e, A characterization of superlinear convergence and its
application to quasi-Newton methods, Math. Comp., 28 (1974), pp. 549--560, https://doi.
org/10.1090/s0025-5718-1974-0343581-1. (Cited on pp. 604, 614)

[31] J. E. Dennis, Jr., and J. J. Mor\'e, Quasi-Newton methods, motivation and theory, SIAM
Rev., 19 (1977), pp. 46--89, https://doi.org/10.1137/1019005. (Cited on pp. 611, 614)

[32] J. E. Dennis, Jr., and R. B. Schnabel, Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, SIAM, Philadelphia, PA, 1996, https://doi.org/10.1137/
1.9781611971200. (Cited on pp. 599, 613)

[33] G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon H\'eron, Elem. Math.,
51 (1996), pp. 28--34, http://eudml.org/doc/141587 (accessed 2020/02/18). (Cited on
p. 614)

[34] P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive
Algorithms, Springer-Verlag, Heidelberg, 2004. (Cited on p. 608)

[35] P. Deuflhard and F. A. Potra, Asymptotic mesh independence of Newton--Galerkin meth-
ods via a refined Mysovskii theorem, SIAM J. Numer. Anal., 29 (1992), pp. 1395--1412,
https://doi.org/10.1137/0729080. (Cited on p. 613)

[36] P. D\'{\i}ez, A note on the convergence of the secant method for simple and multiple roots, Appl.
Math. Lett., 16 (2003), pp. 1211--1215, https://doi.org/10.1016/s0893-9659(03)90119-4.
(Cited on pp. 612, 617)

[37] F. Dubeau and C. Gnang, Fixed point and Newton's methods for solving a nonlinear
equation: From linear to high-order convergence, SIAM Rev., 56 (2014), pp. 691--708,
https://doi.org/10.1137/130934799. (Cited on pp. 609, 618)

[38] J. Fourier, Question d'analyse alg\'ebrique, Bull. Sci. Soc. Philo., 67 (1818), pp. 61--67, http://
gallica.bnf.fr/ark:/12148/bpt6k33707/f248.item (accessed 2021-04-07). (Cited on pp. 591,
612)

[39] W. Gautschi, Numerical Analysis, 2nd ed., Birkh\"auser/Springer, New York, 2011, https:
//doi.org/10.1007/978-0-8176-8259-0. (Cited on p. 608)

[40] M. Grau-S\'anchez, M. Noguera, and J. M. Guti\'errez, On some computational orders of
convergence, Appl. Math. Lett., 23 (2010), pp. 472--478, https://doi.org/10.1016/j.aml.
2009.12.006. (Cited on p. 604)

[41] A. Greenbaum and T. P. Chartier, Numerical Methods. Design, Analysis, and Computer
Implementation of Algorithms, Princeton University Press, Princeton, NJ, 2012. (Cited
on pp. 608, 612, 617)

D
ow

nl
oa

de
d 

08
/2

9/
21

 to
 1

88
.2

7.
12

9.
10

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1016/j.aml.2008.08.007
https://doi.org/10.1016/j.amc.2018.08.006
https://doi.org/10.1016/j.amc.2018.08.006
http://iris.univ-lille.fr/pdfpreview/bitstream/handle/1908/4026/41077-2-4.pdf?sequence=1
http://iris.univ-lille.fr/pdfpreview/bitstream/handle/1908/4026/41077-2-4.pdf?sequence=1
https://doi.org/10.1016/j.aml.2009.11.007
https://doi.org/10.1016/j.aml.2009.11.007
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/0719025
https://doi.org/10.1137/1.9781611971446
https://doi.org/10.1137/1.9781611971446
https://doi.org/10.1007/bf02166685
https://doi.org/10.1007/bf02166685
https://doi.org/10.1090/s0025-5718-1974-0343581-1
https://doi.org/10.1090/s0025-5718-1974-0343581-1
https://doi.org/10.1137/1019005
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1137/1.9781611971200
http://eudml.org/doc/141587
https://doi.org/10.1137/0729080
https://doi.org/10.1016/s0893-9659(03)90119-4
https://doi.org/10.1137/130934799
http://gallica.bnf.fr/ark:/12148/bpt6k33707/f248.item
http://gallica.bnf.fr/ark:/12148/bpt6k33707/f248.item
https://doi.org/10.1007/978-0-8176-8259-0
https://doi.org/10.1007/978-0-8176-8259-0
https://doi.org/10.1016/j.aml.2009.12.006
https://doi.org/10.1016/j.aml.2009.12.006


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

622 EMIL CĂTINAŞ
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