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 Bul. §tiin{. Univ. Baia Marc, Ser. B,
 Matematica-Informatica, Vol. XY(1999), Nr. 1-2, 103-110

 )edicated to Professor loh PÄVÄLOIU on his 60th anniversary

 Monotone sequences for approximating the
 solutions of equations

 Ion Päväloiu

 1 Introduction.

 We shall consider in the following the Aitken-Steffensen-like methods and
 some conditions under which they generate bilateral sequences for the approx-
 imation of the solutions of the scalar equations.

 Let I = [a, b] G M., a < b, be an interval of the real axis and consider the
 equation
 (1.1) f(x) = 0,
 where / : I - ► R. Let moreover,

 /, * - 9' (s) = 0
 X - g2 (x) = 0,

 with g2,9i : / - > R be other two equations.
 We shall assume that if x is a root of (1.1), then it also satisfies both

 equations from (1.2).
 The Aitken-Steffensen method consists in the construction of the sequences

 (xn)n>0 » (gi (Zn))n>0 > (02 (^n))„>0 generated by the following iterative process:

 (1.3) xn+1 = 0i (xn) - f IgiM - -, - ,92(9l{Xn))-J] n = 0, 1, ... , xq e /, f IgiM ,92(9l{Xn))-J]

 where [u, v; f] denotes the first order divided difference of / on the points u
 and v.

 The second order divided differences of / will be denoted by [u, v, w] f] .
 In this paper we shall show that in the study of the convergence of the

 sequences generated by (1.3), an important role is played by the hypothesis of
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 convexity on the function /. We bring some completions and specifications to
 the results obtained in [5] -[7].

 Concerning the convexity and the monotonicity of the functions we shall
 consider the following definitions (see, for example, [3, p. 288-299 and p. 327]).

 Definition 1.1 The function g : I - »• R ¿s called increasing (nondecreasing,
 decreasing, resp. nonincreasing ) on the interval I if for all x, y e I, it follows
 that [x ,y,g' > 0 (> 0, < 0, resp: < 0) .

 Definition 1.2 The function g : I - » R is called convex (nonconcave, con-
 cave, resp. nonconvex) if for all x,y,z € I it follows that [x, y, z'g ] >0
 (> 0, < 0, resp. < 0) .

 Some of the usual properties of the convex functions will be used in the
 following, and we remind them without proof (see, e.g. [3, pp. 288-299]).

 Denote sgXo (x) = [xq, x,g],xEl '{xo} , the slope of the function g at xq.
 The following results hold:

 Proposition 1.1 Let g : I - » R bç an arbitrary function and Xq £ I.
 1. If g is convex on I then sgxo is increasing on I '{x0} .
 2. If g is nonconcave on I, then sgxo is nondecreasing on I'{x o} .

 Proposition 1.2 If g : ]a, 6[ - »• R is nonconcave, then g admits the left deri-
 vative g[ (x) and the right derivative g'r (x) at any point x 6 ]a, b[ . Moreover,
 the functions g' (x) and g'T (x) are nondecreasing on ]a, b[ and g' (x) < g'r (x)
 for all x G ]a, b[ .

 Proposition 1.3 If g : I - ► R is a convex function on I then
 1. the function g is continuous at any point x E int (I) ;
 2. the function g satisfies the Lipschitz condition on any compact interval

 contained by I ;
 3. the function g is derivable on I excepting a subset of I at most countable.

 Proposition 1.4 Let g : int (I) - »• R. The following statements are equiva-
 lent:

 1. the function g is convex on int (I);
 2. for any x € int (I) there exists the left derivative of g at x, g' (x) , which

 is finite and is increasing as a function on int (I);
 3. for any x € int (/) , there exists the right derivative of g at x, g'r (x) ,

 which is finite and is increasing as a function on int (I) .
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 Taking into account the properties expressed in propositions 1.1-1.4, we
 are interested in the present note to simplify the hypotheses requested in [5]-
 [7]. As we shall see, the convexity properties of the function / from equation
 (1.1) play an essential role in the construction of the functions g' and g<¿ from
 (1.2).

 2 The monotonicity of the sequences gener-
 ated by the Aitken-Steffensen method.

 We shall consider the following hypotheses concerning the functions /, g' and
 9i '■

 (а) the function f is convex on /;
 (б) the functions gi and g2 are continuous on /;
 (c) the function g' is increasing on I ;
 (d) the function g2 is decreasing on I ;
 (e) equation (1.1) has a unique solution x 6 /;
 (/) f0T anV xiV £ I it follows that 0 < [x,y'g'] < 1.
 Concerning the convergence of the sequences (xn)n>0 , {(j' (xrl))n>[) and

 (.92 (gi (xn)))n> o » following result holds.

 Theorem 2.1 If the functions f,g',g2 satisfy conditions (a) - (/) and, more-
 over,

 i'. the function f is increasing on /;
 Mi. there exists Xq € I such that f (xq) < 0 and gi {g' {xq)) €E I ,
 then the sequences (xn)n>0 , (xn))n>0 , (g2 (pi (®n)))„>0 generated by (1.3),

 with thè initial approximation Xo considered above, have the following proper-
 ties:

 j'. the sequences (xn) and (g' (xn)) are increasing and bounded;
 jji. the sequence (g2 (g' (xn)))n>0 is decreasing and bounded;
 jjjļ. limxn = lim^i (xn) = lim #2 (»«) = x
 jvļ. the following relations hold:

 xn < gi M <x<g2 (ft (®n)) , n = 0, 1, . . .
 max {ž - xn+i,g2 (gi (xn)) ~ x} < g2 (gi (xn)) - xn+u n = 0,1,...
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 Proof. Since / is increasing on /, / ( xQ ) < 0, and x is the unique solution
 of / (x) = 0 on /, it follows that Xq < x. By c) and f), for x < y we get
 9i ( U ) - 9i (x) < V ~ x- Now, for y = x one obtains x - gx (x) < 0 when x < x
 and x - gi (x) > 0 when x > x. By c) and Xo < x it follows gx (xo) < g' (x) ,
 i.e. g' (x0) < x. Since x0 < x , one gets x0 < gx (^o) • By d) and gx (x0) < x
 it results g2 (gx (x„)) > g2 (x) , i.e. g2 (gx (x0)) > x. By i,) and gx (x0) < x it
 results / (gx (x)) < 0. Hypothesis ix) also implies 'gx (x0) ,g2 (g' (x0)) ; /] > 0,
 whence, by (1.3), one obtains X' > gx (xo)

 It can be easily verified that the following identities hold for all x,y, z E I :

 <2 i> * w - , , (x) !{s'(x))n g2 (gi (x)) ; /] f1 - * <* w» - 1 [gx (x) g2 (gx (x)) ; f ,, } , W , (x) , g2 (gi (x)) ; /] f1 1 [gx (x) , g2 (gx (x)) ; f ,, }

 (2.2) f(z) = f (x) + [®, y' /] (z - x) + [x, y, z' f) ( z - x) ( z-y ) .

 Since g2 (gx (x0)) > x, it follows / (g2 (<7i Cxo))) > Ô and using (2.1) one
 obtains x' < g2 (gx ( xo )) . Now, if in (2.2) we set z = xi, x = g' (xo) , y =
 g2 (gx (xo)) and we take into account (1.3) we get

 / (®i) = 'g' (®o) ,92 (pi (®o)) ,®i ; /] (®i - 9' (®o)) (®i - 92 (gi (®o))) •

 But / is a convex function, so / ( X' ) < 0 and consequently X' < x.
 Summarizing, we have obtained the following relations

 Zo < 9' (x0) <Xi<x<g2 ( 9i (xo)) .

 It remains to prove that xi satisfies hypothesis ii'., and the above reasoning
 may be repeated.

 Since g2 is decreasing, g' is increasing and x0 < X', the following inequalities
 are true: gi (x0) < g' (®i) , g2 (91 (zo)) > gì (g' (®i)) .

 Prom xx < x =» g2 (gx (xj)) > g2 (gx (x)) , i.e. g2 (gx (xx)) > x , which shows
 that g2 (<7i (xi)) € I. '*
 Consider now xn € / with / (xn) < 0 and g2(gi (xn)) € I. If in the above

 reasoning we take Xo = xn we obtain

 (2.3) xn < gi (xn) < xn+1 < x < g2 (gi (xn)) , n = 0,1,...,

 and so the affirmations j', jj' and jv' of the theorem are proved. In order to
 prove jjj' we denote U = lim xn, l2 = lim gx (xn) and ¿3 = lim g2 ( gx (xn)) and
 we shall prove that l¡ = l2 = Z3 = x. Indeed, by (2.3) and (b) we get

 h < gi (h) < h < x < g2 (gx (h)) ,
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 i.e. <7i (Zi) = li and so Zi < x < g2 (Zi) . Since / is convex on I , Proposition
 1.3 assures that / is continuous in li, and by (1.3), passing to limit it' follows
 /(Zi) =0, i.e. Zi = x.

 The inequality g' {l') = x implies Z2 = x.
 Finally, Z3 = g2 (h) > x =ï f (g2 (h)) > 0, and since Zx < g2 (h) and, at the

 same time, (2.1) implies Zi > g2 ( l' ) , we obtain Zi = g2 (Zļ) = l3. □
 Analogous results hold in the case when / is decreasing and convex, or

 increasing, resp. decreasing and concave (see [7]).

 3 The Steffensen method.

 This method is obtained from (1.3) for g' (x) = x for all x 6 /. For the sake
 of simplicity we shall denote in this section g2 = g. So, the Steffensen method
 reads as

 f ( % n )
 (3.1) xn+1 =xn-

 [%nt9 '%n) ' J '

 We observe that the hypotheses (b), (c) and (f) from the previous section
 are automatically satisfied for the function g' we have considered here.
 Concerning the functions / and g it remains here to make the following

 assumptions:
 (ai) the function f is convex on /;
 (bļ) the function g is decreasing and continuous on /;
 (ci) equations (1.1) and x - g (x) = 0 have each a unique solution x G

 int I, which is the same.
 We obtain the following consequences concerning the converge of the method

 (3.1):

 Corollary 3.1 If the functions f and g obey (ai)-(ci) and, moreover, f is
 increasing on 1, there exists f (x) and the point Xo in (3.1) may be chosen
 such that f (xo) < 0 and <7(1:0) £ I, then the sequences (xn)n>0 and (g ( xn))n>0
 verify the following properties:

 j2. the sequence (xn)n>0 is increasing and bounded;
 jj2. the sequence (g (Xn))n>0 is decreasing and bounded;
 jjj2 . lim xn = lim g (xn) = x;
 jvi. xn < x < g (xn) , n = 0,l,v.V;
 v2. max{ž - xn,g(xn) - x} < g{xn) - xn, n=f0,l,...
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 We shall assume in the following that the function / from equation (1.1)
 has the form / (x) = x - g ( x ) . In this case (3.1) becomes

 (3.2) (*')+*„• n = °' 1
 Concerning the convergence of these iterates we obtain from Corollary 3.1

 the following result

 Corollary 3.2 If g is increasing and concave on I, equation x - g (x) = 0 has
 a unique solution x E int (I) , there exists g' (x) and the initial approximation
 is chosen such that xq < g (x 0) , with g (x0) E /, then the sequences (xn)n>0
 and (g (x n))n>0 generated by (3.2) verify the conclusions of Corollary 3.1.

 Proof. Since g is decreasing on /, it follows that for any x,y E I we have
 [x,y,g' < 0 and so 1 - [x,y,g] > 0, i.e. [x,y,f] > 0 for all x,y E I, which
 implies that / is increasing. On the other hand, for all x,y,z E I we have that
 [x,y,z',f] = - [x, y, 2; g', and since g is concave we obtain that / is convex.
 One can see that the hypotheses of Corollary 3.1 are satisfied. □

 4 Applications.

 In this section we shall show that the functions (ft, <72 (resp. g) from the
 auxiliary equations (1.2) (resp. x - g (x) = 0) may be determined in different
 ways, under convexity and monotonicity assumptions on the function / from
 (1.1), such that the essential hypotheses of Theorem 2.1, resp. Corollaries 3.1
 and 3.2 are automatically satisfied.

 We shall assume that / is increasing and convex on I, i.e. for all x,y,z E I
 we have [x, y' /] > 0. Let [et, ß ] C int (I) . Choose

 gi (x) = x - and g2 (if) 5= x -

 (the existence of the lateral derivatives f[ (ß) and /' (cc) is assumed by Propo-
 sition 1.4.). ©bviously, f's ( ß ) > 0 and f'T (a) > 0, since we have assumed that
 / is increasing on I. From the assumption of convexity <jn / it follows that
 / is continuous on [a,ß] , and hence g^ and g-i are both continuous on [a, ß] ,
 therefore satisfying hypothesis (6) . On the other hand, for all x,y E [a, /5] we
 have

 [x,y,9i] = 1- jTģņ [x,V,f],
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 and since / is convex we get that 'x, y' /] < f's ( ß ) , i.e. [x, y,g'] > 0 (in other
 words, gi is an increasing function on [a,ß]).

 A similar reasoning lead to the conclusion that <72 is a decreasing function
 on [a,/?].

 Resuming, one can see that hypotheses (c) and (d) an both satisfied. The
 function / is assumed to be increasing and so hypothesis (e') is verified. Hy-
 pothesis (f) is obviously satisfied from relation

 0 u < ^ 1 1 - [x'yJi
 0 u < ^ 1 1 - /,'(/?) '

 and from the fact that

 0 u < ^ 'x,rJ' < < 1
 0 u < ^ f¡(0 ) < <

 We choose now in (1.3) xq - a and we assume that <72 (<7i (oc)) < ß, in which
 case the functions /, gi and g<i satisfy in an obvious manner the hypotheses of
 Theorem 2.1.

 Remarks. 1. From the above reasoning it follows that in order to ob-
 tain bilateral approximation sequences for the solution x of (1.1), there suf-
 fice monotonicity and convexity assumptions on /, followed by the condition
 gi G 9i (xo)) 6 I.

 2. If we choose 0 < Ai < f'r (a) < f{ ( ß ) < A2, then the functions

 gl{x) = x-m
 «■(•) =

 obey conditions of Theorem 2.1.
 3. If we choose the functions g',g<2 given by

 g' W = x

 g2(x) = x - ^ = g (x) ,

 then the hypotheses of Corollary 3.1 are fulfilled.
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