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1 Introduction

It is well known that the most usual methods for approximating a solution of a nonlin-
ear equation in R (Newton’s method, Chebyshev’s method, chord method and different
generalizations of these) are obtained in an unitarily manner by Lagrange-Hermite-type
inverse interpolation.

The inverse interpolatory polynomials, by a proper choice of the nodes, also lead to
Aitken-Steffensen-type methods.

In this paper we approach two aspects concerning the optimality problems arising from
the consideration of the iterative methods for approximating the solutions of equations by
inverse interpolation. The first aspect concerns with the construction of some algorithms
having optimal convergence orders, while the second addresses the optimal complexity
of calculus concerning the inverse interpolation iterative methods.

We adopt the efficiency index (see [6]) as a measure of the complexity of the iterative
methods.

This paper represents a synthesis of the results obtained by us in the papers [3], [4),
[7], [0}, [11].

We shall begin by presenting some definitions and results (some of them are known)
concerning the convergence order and the efficiency index of an iterative method. We
briefly present then the inverse interpolatory methods and the iterative methods gener-
ated by them. We consider different classes of interpolatory methods determining for
each class the methods having the optimal convergence order. Finally, we determine the
methods having the optimal efficiency indexes.
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2 Convergence orders and efficiency indexes

Denote I = [a,b],a,bER, a < b, and consider the equation
(2.1) f@)=0

where. f: IR i_s given. We shall assume for simplicity in the following that the above

cqnlxatmn has a unique solution T € I. Let g : I = I be a function having a unique fixed
point and let that point be .

For approximating the solution T we shall consider the elements of the sequence ()

P

generated by the iterations En

(2.2) Tot1 =g(zms), To€I, 3=01,...

Niore general, if G : I* — I is a function of k variables whose restriction to the diagonal
of I'* coincides with g, i.e.

G(z,z,..,z)=g(z), Vrel,
then we may consider the iterations

(2.3) Tapk = G (Ts, Tat1, ey Tatk—1), B0y oy Tk € Ly 850,150 .

The convergence orders of the sequences (.-.v:;,,)p21 generated by (2.2) and (2.3) depend
on some properties of the functions f, g, resp. G.

The amount of time needed by a computer to obtain a convenient approximation
dept_:nds both on the convergence order of ("’"P)pzo and on the number of elementary op-
erations that must be performed at each iteration step in (2.2) or (2.3). The convergence
o?rder of the methods of the form (2.2) and (2.3) may be determined exactly under some
circumstances, but the number of elementary operations needed at each iteration step
may.be hard or even impossible to evaluate. A simplification of this problem may be
obtained (see [6]) by taking into account the number of function evaluations needed at
each iteration step.

. It is obvious that this criterion may be, at the first sight, contested, since some func-
tions may be simpler and others may be more complicated from the calculus viewpoint.

This incon\fenient does not affect our viewpoint on optimal efficiency, because it refers
on clz.!sses of iterative methods which are applied for solving an equation in which the
functions are well determined by the form of equation (2.1), and by g, resp. G.

Let (:1:,,}1320 be an arbitrary sequence which together with f and g satisfies
i. zs €I and g(z,) €I for s =0,1,...

il. the sequence (mp)pzn converges and limz, = lim g (z,) = T;

iii. f is derivable at T,

iv. for anyz,y € I it follows 0 < |[z,y; f]| < m, for somem € R, m > 0, where [z,y; f]
denotes the first order divided difference of f on the nodes © and y.

Definition 2.1 The sequence (‘”P)pgo has the convergence order w, w > 1, with respect
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to g, if there exists the limait

(2.4) a = lim

and o = w.
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In|g (zp)— 7|

p—oo  In|z, — T

For a unitary treatment of the convergence orders of the studied methods we shall

prove the following lemmas,

Lemma 2.1 If the sequence (mp)p>0 and the functions f and g satisfy properties 1-1: then
the necessary and sufficient condition for this sequence to have the convergence order w,

w 2 1, i3 that there ezists
(2.5)

and f = w.

B =lim

In|f (g (zp))l
In|f (z5)|

Proof. Assuming true one of the relations (2.4) and (2.5) and taking into account

hypotheses i-iv, we get
. In|g(zp) =7
R e

In |z, — T

o I8 (o )] = [ (), 53 11| _
T =0 17 Cap)| =T [l 2 1]

1- Inflg(zp ). Z:f
lim In ff (g (xp))l o ]“J fégziviji.‘ =
In |f (zp)] i ’fll[ T’P‘I;I[

In |f (zp)|

Lemma 2.2 Assume that (up),5, is a sequence of real positive numbers satisfying the

Jollowing properties:

i. the sequence (up),5, i convergent and limu, = 0;

ii. there exist the real nonnegative numbers ay, @, ..., dnt1 ond sequence (_.c,,)p20 with
& > 0,5=0,1,.. and 0 < inf {cp} < sup {cp} < m, which together with the elements of
a ] e e e =

the sequence (up),5q satisfy

(2.6) Uspntl = Catlg ugd) - ug it 5= 0,1,..
i T

iii. there erists lim n!—:f‘—:i =w>0.

Then w is the positive oot of the equation
(2 7) tn‘H —an+1tn—'ﬂ‘nin_l —---—Cmt—r]]_ =1},
Proof.

By (2.6) we obtain

ud Inu +i
In Un i1 Inc, " . =
o M Ungagy Ines &

(2'8) 8 ali)nt:a In#nits s—:ngo Inun4y g Y a0 In g

e e lON PAvXLow = 995
—_—

The hypotheses imply

Vo T Ine,
lim —= . ¢
s—teo In Unta

and

o Ina,y 1
llm—‘—"“:_._. izﬁn_
lnu,+,, wn—i? 1Ty

whence, by (2.8) we get
z" 1
= i=0 T g

ie.,
n
(2.9) W™ _ Eai-uw'. _—
i=0 .

We turn now our attention to equation of the form (2.9).
Let @1,02).y8041 ER ,@; >0, i = I,n+1.
We shall assume that the numbers ai,i=1,...,n+1 are ordered:

(2.10) Unil 2 an > > 05> g
and satisfy
(2.11) artaz+--+anyy >1,

Consider the equations

(2.12) R L R R = —agl—g; =0
(2.13) Qt) =™ — gyt — gpyn-t _ o= apt—angy =0
(2.14) R(t) =" —g; 4" — g gm' — ... _ Gint—ai,, =0

where (i, 43, ..., in41) is an arbitrary permutation of (1,2,..,n+ 1).
Lemma 2.3 Ifai, i=Tn+1 satisfy condition (2.11) then any equation of form (2.14)
has a unique root larger then 1. Moreover, if relations (2.10) are satisfled and if we
denote by a,b,c the positive roots of (2.12), (2.18) resp. (2.14), then

(2.15) . 1<b<e<a,

i.e., equation (2.12) has the largest root,

Proof. Consider the (n+ 1)! equations of the form (2.14) and denote by s the largest
natural number for which ai, #£0.
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We have ai,,, = @i,y = . = @i ,, = 0. Consider the function ¥ (t) = R(t) /t“"‘” :
It can be seen by (2.11) that ¥ (1) =1 —ai; —ai; — - —ai, <0, and !Exgo\y(t) = +00.

It follows that equation (2.14) has a unique positive root. The first part of the lemma
ts proved. In order to prove inequality (2.15) it suffices to show that R(b) < 0 and

R(a) > 0. Indeed,
R()=REO) - Q) = (a1 ~ i) 0"+ (0 = a5 1" oo
+(an —@iy) b+ ant1 — iy =
= (b~ 1) [(a]_ —ﬂ;l)b"_l +(a1+ag — aq, —a,‘-z)bn_2+...+
+(m+az+---+anvl — Qi — iy —"‘_“'in-l)b+
Ja1 a4+ an =i — @iy —---—ai, <0],

since from (2.15) follow the inequalities
a1+aez+---+as—aiy —Gi, —-—ai, <0, s=12,..,n,
and b > 1. The fact that R (a) = 0 is shown in an analogous manner.
Lemma 2.4 Let p1,p2,...,Pnt1 and @1,@2, .., Gnt1, where pi > 1, a5 2 1, i =1,n+1,
be two sets of real numbers satisfying

(2.16) T o piEpaZ o Zpety a1 S0z <cSan

Then, among all the numbers of the form
(217) o = Oy Pky + Qjp Pk Py et a.‘in+1pk1pkn Yt Phnga

where (j1, 72,y jn+1) and (k1, k2, ..., kny1) are arbitrory permutations of (1,2,..,n + 1),
the largest such number is given by

(2.18) Omax = @1p1 +@zp1pz + -+ + Gn1P1P2° Pt

Proof. From the first set of inequalities (2.16) it follows that the inequality:

(2.19) Oy Py + Qg Pl Py + 0 O PRy Phy o Phagn S
< apptappipe -t G PP Prtl

holds for any two permutations (j1, j2, .., jnt1) and (kr, kz, ..., kat1) of (1,2, ...,n 4 1).

Let us denote
(2.20) bi =pip2 ... ' Diy i=1,72,...,n+ 1.
In order to prove the inequality
(2.21) aj b1 + ajpba + - 4 @ bt S @by +azby -+ angibopr

" for every permutation (f1,j2,..., jn+1), we shall proceed by induction. For n = 0 the
inequality (2.21) is obvious, since n 4 1 = 1 and hence aj, = a1. Suppose now that the
inequality is true for 7 pairs of numbers (a1,b1), (a2,b2) , ..., (@n, bn) , namely

(2.22) aj b +ajbr 4+ aj,ba S a0+ anbs,
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;vh::ebal < a; < (S an and by < by < -+- < by, Using the inequalities by < by < ... <
n = Ontr and ay S @z £... < o € apyp, as well as the induction hy}-)othesis (‘2.22_}

and assuming that j; = i, 1 £i<n, we have
bt + ajyba + ot ay, by =

= b (aj, +ay too ) + (B2 = b1) g, + (bs —bi)agy + -
+ (bat1 ~bi)ay,,, <

< bl(m+cr2+v--+ﬂ'n+1)+(bn--b1)a]+(63_bl)az+,,,
+ (b =b1) oy + (bit1 =b1) Qi1 + oo (Bugr —by) asan <
< bl(al+a2+"'+an+1)+(bz—b1)a3+---

F (0 = b)) i+ (Bgr — br) @igs + -+ (bogy — bi) anyr =
= b +bras by, :

We turn back our attention to the equation

(2.23) e TR Y S N S

i 84 73 ) +1
and we assume that a; > 1, a;EN,i=1n+1 and bm:m-}»l,mEN Denote by

dn41 the positive root of the above equation. The fo]]:;v]ing result holds

Lemma 2.5 [7] The positive solution Ont1 of equation (2.28) verifies the relations:

—_— mil

3 (n+l}(m+ll*'_‘}:_t,1(-'—1)..‘-
(224) (m + 1) i=1 S 6n+1 r<_ 14 max {C.I:,‘} .
1<i<nt1

n=12,..,

Proof. Let

m41
niil
(2.25) a=(m+1) (ndDmt1)= B (=1 .

It is sufficient to prove that Pryi (@) <0, where Py, (t) = ¢! —Gn 1t —. . —ast—a,

nge shall use for this the inequality between the arithmetic mean and the geometric mean
- ?

n+41 1
Qi p; L
:;1 ik At i 2. i
S— 2 (I )&,

Epi i=1

n+41
@ > 0,p20,i=Tn+1, Zp,- > 0.

i=1
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Using this inequality we obtain
n+1

SR
¥ aia’ n+1
n+41 X
el gttt =L a; <
— Pupi(e) = o ;ma “il a; E
1
n+1
n+1 (ri-_i-[l i ) a;
n+1 . o L i) =1 =
< a = ai
1 (; ) i=1
n+1 ) m+1
i—1)aj =
= a""' —(m+1) (Ha‘ ) -
J i=1
n+1 ;l'rf
- e (S ene) -
ai:l
n+1l
S -1 g
SN Pl S R | IS
= m+1
Bp cesred
ie. Pnoyi(a) <0.

iven & d
Remark 2.1 [t can be easily seen thaot the number a given by (2.25) can be g;prfﬁ
using Py (1)

m+1
o=(m+ 1)m(n+|)+P“_Hm )
i i i 0
The second part of relations (2.24) follows easily from the inequality P41 (a) > 0,
wherea =1+ max {a;}.
1<i<n+1 :
Some more specific results concerning the bounds for the root d.41 of equation (2.23)

can be obtained in the case

{226) e =a=:"+=an41=¢q, q=>1

More precisely, denoting by «,, (g) the positive root of equation

n+l Lo e S t— =D;
(2.27) =l ol L

then the following relations hold (see [15]):
a) Yo (@) <Ynta (@), n=1,2,..;
b) max {Q!E%(Q+1)} < Yt (@<g+1, n=12
c) lim v,(q) =q+1.
n—+oo ;
For g = 1, from relations a) - c) we get (see [6]):
a',) Ta (1) <_: 7n+l (1): = 1) 21 ve )
) B < <2 n=12,.;

n+2
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¢) limy, (1) = 2,
In the following we shall denote by m,

be performed when passing from step p to step p+ 1 in the iterative methods (2.2),
(2.3), for p= 5300 [

Concerning the efficiency index of methods (2.2) and (2.3),
2.1 and the definition given in [6], we get

Definition 2.2 The reql number F
(2.2) and (2.3) if there ezists

=l [ 10U (Bp11)] 75
L”m(mumu )

and L = |,

Remark 2.2 If for the methods (2.2) and (2.3) there exists ¢ natural number s such

that m, = r for all s > sy and w s the convergence order of these methods, then the
efficiency indez E is given by the following expression:

(2.28) B=u*

3 Iterative methods of intE'i'polatory ﬁype

For the sake of simplicity we prefer to treat separately the Hermite polynomial and
the Lagrange polynomial, though the last is a particular case of the first,

As we shall see, a suitable choice of the nodes enables us to improve the convergence

orders of Lagrange-Hermite—type methods. We shall call such methods Steffensen-type
methods.

3.1 Lagrange-type inverse interpolation

(3.1) L1220y oy By, @ # xj, for i, F=Ln¥1 i
In the above hypotheses it follows that the solution T of equation (2.1) is given by
(0],

Using the Lagrange interpolatory polynomial for the function F7' at the nodes

Flo1) e, f(zn41) we shall determine an approximation for f~! (0), i.e. for z.

the number of function evaluations that must
resp.

taking into account Lemma

is called the efficiency indez of the iterative method
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2=

] tioned
Denote yi = f(zi), ¢t = 1,n+1 and let L (y1,y2,...,yn+;,f |y) be the mentio
polynomial, which is known to have the form
Zﬂ ziwi (y)
-1 =
L(yhy2|-.-,yn+l;f Iy) = (y_y‘)w_ul (yi)ﬁ

§=m]

n+41
where w1 (y) = l:[1 (y—w).
The following equality holds

(3.2) F7H ) = L (y,y20 s ynass F 0 y) + R (£ )

where

[EOY) i

R(f_lay) = 1) w1 (y)

min (g, / 01 <max {y, £ (1), £ (Ent1)}
and min {y, f{z1),.., f (Tn41)} < . Bckod

I is also known that under the mentioned hypotheses concerning tliefden;;]rabl El ; (;n g
on I, the function f~! admits derivatives of any order k, 1 < k < n+1 for Y
the f:ollowing equality holds [12], [16]:

; Y -1 i
Ly ® (f=d o ) T (f’ (Im)) s

5 ™ itil..dx! [ (=) M

(m)‘“x...x (m)ih_k=1,n+1

2 kl
B B
where Yy T aﬂd the above sum extends over all nonne, ai.we integer solutions of th

system

2423+ -+ (k—1)i=k-1
i1 +ia+ - F+ir=k—1.

From (3.2), neglecting R (f™',0) we obtain the following approximation for T
om (3.2),
-1
T > L(y1,¥2, . ynt+1; £0) .
Denoting

=
Ttz =L (y1,y2, -y Yns1; f]0),

we obtain

i7" )"+

|tate — %] = Sl w1 (0},

where min {0, f (z1), ..., f (Tnt1)} < 81 <max {0, f(z1), ..., f (Tns1)}-

. 0 §is -On E
It is clear that if T4, Zs+1,..., Tatn are n + 1 distinct approximations of the soluti
t is clear s Forn

T e oW PAVRTSH SRR e e
-

(3.4) Tstn41 T L.(yasya+ls tany ya+n;f_l]0) iA=L ...
with the error estimate given by

[l e

(3.5) [€s4ns1 — F| = a1 H If (@a1)], s=1,2,...
i=o

where @, belongs to the smallest open interval containing 0, f (zs) )., F (Tatn).

If we replace in (3.5) |Tatnsr — T = fl;,'(f;:*)" » We obtain for the sequence (f (z)),50
the relations: .

“’f—l (31)] (n+41)
(36) 1 aaminl = 1 @l 2 g
5 i=0

where a,, belongs to the open interval determined by # and Tspntl.

’ AL | :
Suppose that ¢, = |7 (as)]| nF T » 8 € N, satisfies the hypotheses of Lemma
2.2 and that the sequence (f (zp))}eo » Converges to zero, where (.1:,,),,)0 is generated by

(3.4). Then the convergence order of this sequence is equal to the positive solution of the
equation: i

R e e Rl T

3.2 Hermite-type inverse interpolation

Consider in the following, besides the interpolation nodes (3.1), n+1 natural numbers
@1,@2,...,8, 41, where 221, i=1Tn+1 and ]

“ertard o dany =ml.

We shall suppose here too, for simplicity, that fis m+1 times differentiable on I. From
this and from f' (z) £ 0 for all ¢ € I, it follows, by (3-8), that £~ is also m + 1 times
differentiable on F Denoting y; = flz:),i=Tn+ 1, then the Hermite polynomial for

the nodes 3, i = 1,72 +1, has the following form:

3.7 H (1,019, 097 .. g, en1i f7y) =

ntlai—1ai_j_4 . — Yy (K) f

i—I—F
i=l j=0 k—p ws (y) v=: (¥ —w)*
where

n+1

wi (y) = H (v=m)™.

K2y, Zatr, ., Toyn are n + 1 distinct approximations of the solution T of the equation
(2.1), then the next approximation #,4,4, can be obtained as before in the following
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way:

(3.8) Topnir = H (ys, 0155 Yotni @at1i F10), 8 =1,2;...

where, as in (3.7),
s+n

wa (@) =[] y—w)™.

i=a
It can be easily seen that the following equality holds:

) i I
(39) If (37.;+n+1)| = l‘f' (ﬁu)l L{TP]I)—'J H |f (ma+i)1ai+1 [

=0
8y =7 1200

where 8" belongs to the smallest open interval containing 0, Ys, Ya+1, ) Yat+n and G,

belongs to the open interval determined by T and Taqnt1.
-1 (ﬂsn)('ﬁ'l")
If we the suppose that ¢, = |f' (8,)] CERY , 5 € N, verify the hypotheses of
Lemma 2.2 and, moreover, lim f(z,) =0, then it is clear that the convergence order of
4= 00

the method (3.8) is given by the positive solution of the equation

(3.10) "t g™ —ant™ " — - —aat —a; = 0.
In the following we shall consider a particular case of (3.8).
For a1 = @z = ... = @n+1 = g, from (3.8) we obtain

(3.11) Topnit = H (Yo, @ Yot1, G5 i Ystns 0 110

method having the convergence order given by the positive solution of the equation

(3.12) gt gt - gt —g=0.

3.3 Aitken-Steffensen type iterative methods

Let ¢, : I =+ R, i=1,..,n+1ben+1 functions having the following properties
@) ¢, (B) =F, i = 1,n + 1, where T is the solution of (2.1);

8) there ezistin + 1 continuous functions gi : I 5 R, gi(z) > 0Vz € I, and the real
numbers p: > 1, i = 1,n + 1 such that the following equalities hold:

(3.13) If (s @) = g @ f @), i=TaFL.

Denote ug € I an initial approximation of the root T of (2.1). We construct the n+1
interpolation nodes z},i=T1,n+1 in the following way:

(3:14) =g (w), ah = (&), i=Tm

Next, we compute yi = f (z‘l) ,i=1,n+1 and we consider the natural numbers a;,

S -

t=1,n+1 such tiu;t

Taking as interpolation nodes the n
Jatory polynomial determined by thes

—— Ion PAviLow

S STTT e T3

et tonp =m+1.

N

I e

:rnb:rs Yi [ t=1,n+1 and the Hermite interpo-
nodes with the corresponding multiplicities a;

1

i=1,n+ 1, we obtain for T the following approximation:

(3.15)

= 1 o |
W= H (g @ivs, a0 oy, ~0).

The error is given by

(3.16)

(3.17)

Taking into account hypothesis f) for the functions w;
B

| (a1)]
|1 (22)]

and in general

(3.18)

Denote

and
(3.19)

where

11’."111| = l{

e ) e
(m+1)!

?vhere £, is a point belonging to the smallest
t=1,n+1, while w; has the following form:

[w1 (0]

interval determined by the points 0, and Yi
] L]

ks O = |£ @)]™" - [£ @) .- | (k) [+

Il

,f(z:!-i-l)l

we get,

lf(“’i (@)l = g1 (o) | (uo)|”
92 (=1) |£ (1) ™ < g2 (2}) 97 (o) £ (uo) 172

giv1 (ziy,) (o (gt o
(o1 (=2))™7 P00 | f (o) rrra-pien

1,n.

nt1 i

T Za-' [12;
=1 j=j

Ay

7( o )iy =TT los (a1))"
=y

n+1

i

s=at 3o [T

J=itl k=i4l

With these notations, from (3.16)-(3.18) we obtain

(3.20)

]f—ulj =

(m+ 1)!

2 |p (uo)]* .
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e

Let ux1 be an arbitrary approximation of the solution Z, obtained by the continua-
tion. of the process given by (3.15). Then the next approximation is constructed in the

following way.
Consider the interpolation nodes z¥,i=T1,n+ 1 given by the relations

IJ; =19 (uk-l), I‘?_H = Pit1 (zf) ) il"—“T-'f;, kZ 2.
Then uy is given by
(3.21) up = H (v, @595, a5 i g, s 710

where yf = f (z¥) ,i=Tn+1, with the error estimation

—1 (m+1)
(3.22) Iz — ue| = 2= [{m f{‘))!] Jf )™, k=23,

where £, is a point belonging to the smallest interval determined by 0 and yFi=1,n+1,
and p,_, has an analogous form with that given in (3.19) for py.

From (3.22) we get

. ‘ -1 (m+1)
IO B e R T

where = mg?clf' (z)].
xr
1t is obvious now that if limug = T, then the convergence order of the process (3.21)

is «, where
n+1 i 1t
(3.24) a= ai[[ps
i=1 =1

We shall consider in the following the particular case when

=Py =w =@, =y andpi=pz=..=pap1= L.

We assume that f and ¢ satisfy
(3.25) If (¢ (@) = g ()| ()]

where g: I = R, g(z) >0 forallz € I.

Let z; € I be an approximation for the solution T. Denote ua = T, Ust1 =
@ (Us) s ooy Uspn = @ (Uspn—1) and T, = f (%s) 1, Tyyn = f (Usn) . Taking into account
the above assumptions, by (3.4) we get the following Steffensen type method: .

(3.26) Tot1 = L [F0rFogrs e Fagni 7 10) ;21 € L8 = 1,2, ...

Similarly, by (3.8) it follows:

(3.27) Tott = H(Tp013T031002; i Touns 0n+1; ' 10)
s = 1,2,..., =z €l

IoN PXviLow 9
T ey

By (3.25) we obtain the following representations for 7 i=1,n
4+t =14,N

F‘H'i;‘:-f (u"'H) =pa,i—1f(:|!.‘,), i:].,ns
where

afi—1
Paji-1= 9 ().
Jj=s

Taking into account the above considerations, by (3.6) we obtain:

s oy [0 @]
|# ()] —mw—lgm.-‘ﬂ I ()] +!

g = llzv‘“’

(3.28) I (%as1)|

and analogously, by (3.9) we get

iy [ 00

3.2 Ty41 g
(3.29) |f (Zas1)| e Dl:?:.',-_x If (=)™,

s = 1,2,...

mma 2.1, it fD“ s th. . ! Vv
) s (3.28 and 3 avi (&)
Eiol‘ﬂ Le 2 ow. at method ( ) ( 29) h e the NVergence orders

3.4 Some particular cases
In what follows we shall discuss some particular cases. i

TI =0, Fr i ' se
he case n = ‘U.l F&:om (.3'7) one obtains the Taylor inverse interpolating polynomial:

[f' )]

(3.30) TW = s L0l 0

f—l( i (3 —=1)
+[*@y“_ﬂl_)1_(%!“y:)“‘“‘

whil, rom (3. 3) ;Vl obtaln th P! T u v
e, f M e e f(i”owlng expressions fo; f_‘,he CCess; erivallve
( SuCC ive d atives

(3.31) sgrr 1
[F )] = @
(3.32) ) =L (@)
e = -
(3.33) [f-l (y)]m L} _fm (.1-‘) fl (m) = [fl'.l (z)lﬂ
: [f ()] '
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(3.34) [ @) = 3
| — [ @I Y (@) + 101" (2) £ () £ (2) = 151" @))°
([ @)’

From (3.31) and (3.30) for a; = 2 we obtain:
: 1
T(y)=n+ m(y—f(-’ﬂl)?»

which, for y = 0, leads to the approximation zz of T given by the expression

f (z1)
(335) Iz =I1 f" (xl),

i.e. to the Newton’s method.
From (3.31), (3.32) and (3.30) for a) = 3 we obtain Chebyshev’s method, i.e.:

e fE) 1) )
(3.36) = U L U (@)

Finally, from (3.31), (3.32), (3.33) and (3.30) for o1 = 4 we obtain:

flz) 1f"(m) F ()
(3:37) BT BHF@EY TR )] A
L@ f @) =31 @)
6(f (z1))°

From the above methods one obtains by iterations the corresponding sequence of ap-
proximations, which has the convergence orders 2, 3 and respectively 4.

As one may notice from (3.34) and (3.8), for @; > 5 the expressions for the derivatives
[t )] ) , k = 4, have a more complex form. That is why the methods following from
(3.30) in these cases are also complex.

The case n = 1. In this case, from (3.7) it follows:

2 aj—la;j—j-1

1 L [w-w)= "
(3.38) Ph)y = > 2 o0 [F kit w() [,

i=1 j=0 k=0

L w)
(y—y)™ "
where:
(3.39) wy)=(y—y)" - (y—v2)™.

From (3.38) one obtains two iterative methods; namely denoting as above by
H (yl,al;yz,az;f‘l|y) the Hermite inverse interpolating polynomial (3.38), we find:

xl,:!:zEI, 1 =f(3:l)y y2=f(’-’-‘2):

Tn4l =H(yn~11aliyn;ﬂz;fil|0) =304,

z3 = H (1, 1332, 22; f71]0),
(3.40) {

____ Ton PivXrow L 237

or
z3 = H (y1, @2;93,00; £7'10)
(3.41) T, %3 €1, g1 = (o), 2 = f(z2),
En41 =H(yn—1,az;ym01;f_!|0); n=3|4i"' .

The characteristic equations which provide the convergence orders for the two methods
are:

(3.42) $* =gt —a; =0
for method (3.40), and:
(343) ta—(htkafg =0

for the method (3.41).

If we denote by w; and respectively wa, the positive roots of equations (3.42) and
(3.43), then it is clear that as 2> ay implies wy > wy; so, the method with optimal
convergence order is the method (3.40).

Now, we shall briefly discuss some particular cases.

From (3.38), for a; = az = 1, we obtain

(3.44) Pr)=(n—u)™ [ =92 £~ (1) = (w—w1) £ (1))

whence, taking into account the fact that f~! (1) = = and 7! (y2) = 2, we find for
y=0
Tz — &1 f(z1)

" f(z2) —f(-fcl)f(m) I P L

where [, z3; f] stands for ‘the first order divided difference of the function f on the
nodes z; and z2 and in general,

(3.45) T3 =T

f(za-1)

(346) Tnpl = Tp—) — m,

n=34,..,

which is the chord method. In this case, since «; = aa, the above method has the same
convergence order as the other one, which follows from (3.46), i.e.:

J (zn) = T30

(3.47) Ln4l1 =Ty — m,

The convergence order of the method (3.46) is wy = % (1 + \/5_) .

Now we shall discuss the case @; = 1, @z = 2. In this particular case, we obtain from
(3.38) the following iterative methods:

(3.48) Tnpy =Tp — M‘-n—)f(xn)

f($n+1) —f{m
f(@as1) = f(@n) = (@nt1 — Ta) [/ (@ny1) - 1
B @)~ T @ P @) ) f (@nna)s

n=12,.., zza€I
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and
: ZTn = Tn4l
3.49 Tnge = Dol — ——a 21 (g
(3.49) o = B e el

f(@a) = f(@ns1) = (Tn — Tat1) F (Tn) i -
= [ (@n) — f($n+1)]2 7' (n) Fmn) fzas).

Solving the corresponding characteristic equations, we find the convergence orders
wi = 1 + /2 for the method (3.48) and wa = 2 for the method (3.49). -

As we showed above, the Hermite inverse interpolating polynomial leads to a large class
of iterative methods, The convergence order of each method depends on the number
of interpolating nodes, the order of multiplicity of these ones, and essentially, on the
interpolating node replaced at each iteration step by that calculated at the previous one.

As Steffensen noticed, in the case of method (3.46), the convergence order of this
method can be increased if at each iteration step the element z, depends in a certain
manner on Tn_1. More exactly, if we consider a function ¢ : I —+ R having the property
¢ (Z). = &, where T is the root of the equation (2.1), and if we put = = ¢ (zn-1) into
(3.46), then we obtain the sequence (z,),, generated by Steffensen’s method:

-f(x“—l) n=2|3,... )

e PPN R Y |

which has, as it is well known, the convergence order 2.

4 Optimal convergence order

4.1 Optimal convergence order of the iterative methods of Hermite type

As we have seen in the particular cases presented at 3.4, in the case n = 1, the Hermite
inverse interpolation polynomial for a1 # aa, leads to two different iterative methods (see
(3.40) and (3.41)). From these two, methods (3.40) has a convergence order greater than
the other one. In the following we shall use Lemma 2.3 in order to generalize the iterative
methods (3.40) and (3.41). It is clear that the convergence order of method (3.8) depends
on the multiplicity of the interpolation nodes which are replaced at each iteration step
such that we are legd to different configurations of the coefficients in equation. (3.10).
Formula (3.8) generates (n+ 1)! iterative methods, with respect to the algorithm of

changing the interpolation nodes at each iteration step. Among those (n + 1)! methods,

we shall determine in the following the method with the highest convergence order, i.e.
the optimal method. For this purpose we shall do as follows. ;

Consider the permutation iy,42,...,in41 of the numbers 1,2, ...,n + 1 for which the
natural numbers g, @z, ..., @nt1 Satisfying the equality ay + a2 + -+ @np1 = m + 1,
can be increasingly ordered, namely:

(4.1) @iy Sy S0 S, Sy
We renumber, accordingly, the elements of the set E, i.e. we consider:

E= {.:z.-l, Tigyaeey -'5'}.1-1} 8
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For the sake of clearness we shall set:

(4.2) =
B =iy, 8=1,2..,n+1
and
4.3
(4.3) Us = Ti,, $=1,2,.,n+1,

an‘d denote by H (y1,a1;y2,a,;.

mial, corresponding to the nodes ¥i=f(w),i=12

@1,03, ..., Gn41 TEspectively. —
Let uy,uz,...,unt1 be the 7 + 1 initi

al approxi i T
(2.1). We construct the sequence (up) o okl e S

p>1 by means of the following iterative procedure:

(44) oo s Un42 =H(y:,a1;yz,az;...; yn+1,a,,+1;f‘1|0) ey
Untst1 = H (ya:a1;y8+110"3; ey y6+nsan+1;f_l|0)
3 =2, 3

Consider all (n 4+ 1)! i
C - ; * permutations of the set {1,2, ... i
#1522, ..., tn1 1t corresponds an iterative method o{f th; folr:n-'- W PR

(4 e Tnie = H (yil » @iy Yigy Qg onij Ying1) Oy g,y )fIU) i
= ) Intatz = H (yi1+l)ai1;yi2+8 Qi) eeej Yi " 1
; 3=1,2’,.;.=,...I ln+|+a,aln+1:.ﬂo)1
All together we have (n + 1)! iterative methods,

ki g to as u m
I'a) I‘I Into account Le ma 2.3 and lhe results pIOVEd S0 fﬂ.l, we can state the followmg

| & 7 /1
\jiﬂ\/u- - AP ¥ale any :
j ] ¥l = L Ll . ‘I‘l.'f"

i

The ] ] '

o c(;:;:m 4.1 Outj/the (n+ 1)! iterative methods of the form (4.5), with the great
o afe:z:n:::ﬂor)d : (;;‘artm;ly these which provide the best upper limit for the abfalut;

or/' 18 that determined by the permutation 1,.i ]
; ; & 1225 cuagd h'
increasingly the numbers Qiyy Qigy ooy Qi gy RamneEly oy < oy, < ' é::h fa i
= S S Wy,

4.2 Aitken-Steffensen-type optimal methods

In the following we shall solve - ity Bl e
: an optimization problem, analogous with th
at section 4.1, but now for the case of the Aitken-Steﬁ'en‘sen mfthod. <y i

We shall consider the methods of
¢ ] ;
ke e Sk 2.4.0 ype (3.21), and for determining the optimal algo-

Let (ky,ks,..., k +1) and (71, j ] i
vl Al,so,,demte (11,32, wJnt1) be two arbitrary permutations of numbers

‘ [N 1
H(Y) = H (Yo, 0513 Ukgr Qg s Yb 1 @i £10)

the Hermite inverse inter i i
polating polynomial having the i i i
the orders of miultiplicity o, t=12.,n+1. e, K

ey H _l i i
i¥n+1,8n41; f71z) the Hermite interpolating polyno-
17 -+ 1, having the multiplicities
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With the above denotations, let us consider the following class of iterative methods

(4.6) wa = H (4h,, @iy Ui iz i Yhnp 0 @i 10) 8 =12,

where
vi,=f(zh), i=12.,n+1] s=12.,
and

(4.7 ohy = Py (1),
Pry (x‘;:.-ﬁx)v i=23,.,n+1 s=12.,

a
Tk

ug being the given initial approximation.

To each couple of permutations (k1, k2, ..., knt1) and (ji, j2, .. Jn+1) of the numbers
1,2,...,m + 1 there corresponds an iterative method of the form (4.6). All together we
have again (n+ 1)! iterative methods of this form.

We shall attempt to determine, out of the (n+ 1)! iterative methods, that one for
which the number o given by (3.24) is maximum.

Theorem 4.2 Out of all the (n + 1)! iterative methods of the form (4.6)-(4.7), the one
for which the convergence order a given by (3.24) attains the mozimum value, is the
method determined by the order of the numbers pi, ai, i = 1,2,...,n+ 1, given by the

inequalities (2.16).

. The proof of this theorem follows immediately from Lemma 2.4 and (3.24)

5 Optimal efficiency

‘We shall analyse in the following the efficiency index of each of the methods described
and in the hypotheses adopted below we shall determine the optimal methods, i.e. those
having the highest efficiency index.

As we have seen, the formulae for computing the derivatives of f~! have a complicated
form and they depend on the successive derivatives of f. Though, in the case where the
orders of the derivatives of f -1 are low, the values of these derivatives are obtained by
only a few elementary operations. Taking into account the generality of the problem we
shall consider each computation of the values of any derivative of f~* by (3.3) as a single
function evaluation. For similar reasons we shall also consider each computation of the
inverse interpolatory polynomials as a single function evaluation.

As it will follow from our reasonings, the methods having the optimal efficiency index
are generally the simple ones, using one or two interpolation nodes and the derivatives
of f~! up to the second order.

Remark that in our case we can use for the efficiency index relation (2.28).

Ion PAvALoOiu
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5.1 Optimal Chebyshev-type methods

-
/

Taking n = 0 in (3.8) we pbtain again Chebyshev’s method i.e

(5.1) e T F7le)] "L, ot
: Tyt Ts 1 f(za) +'[—2£|9L]"f2($3) + 0
» N ) ¢
+(=1) [——,ﬂ!]—}‘""(m,),' 5% L,

4
where y, = f(z,), the convergence order being m + 1
Observe that for passin i .
g from the s - th iterati i
(must be performed the following evaluations: Lo e L
(@) o f @a)soe £ (24),
i.e. m+ 1 values.

Then, by (3.3), we perform the following m function evaluations:

P @)l I o) e [ )],

= f
whnere i, (@) Y, for the Tig h ex I we perform
h F inall ht and pression of Blat]ﬂn 5.1 P
another funct.lon eVaI“at]Oﬂ, so that 2 (J]‘l + 1) iuﬂctlo.ﬂ eVﬂ.luathﬂS musft bi perf()m:led

By (2.28) the efficiency index of method (5.1) has the form
E(m)=(m+1)T=»F0, E:N <R
Consideri i :
onsidering the function A : (0, +oc0) =+ R, h (t) = til?, we observe that it attains its

maximum at ¢ = e, so that the maxi
mum value i i
proved the following result: 4 ETE PP

Theor 5.1 g EV-LYp } q ’ S,
h eim A?H.OH £ Ch by v € € e [
he ebysh type iterative methods having th orm (5.1 th

methad with the iuglsest E‘mﬂlfﬂﬂy indez 1s the third order method, i.e ( )

(5.2) Tatl = 25~ f(2a) _ 1f"(2a) £ (2s)
F) 2 [f (@)
8 = 0,1,.., mel.

In the following table some approximate values of E are listed:

m 1 2 3 4 5
E(m) | 1.1892 | 1.2009 | 1.1892 | 1.1746 | 1.1610
Table 1.

We note that E (2) ~ 1.2009.
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5.2 The efficiency of Lagrange-type methods

w hall study the methods c,;f t-he form (3.4), for which the convergence order verifies
4 -c:g}sf.rom 2. Taking into account ' Remark 2.1, it can be easily seen thalt \:e CB:;S;
:eiation (2.28) for the efficiency index of thesle mtéthods. ;“:‘ :::}1:: ::, ;-Iu-{;te ds’ i;;l,e dt_he;
i Ofdez tlifs ;?r::cjynz}:;u%z&d‘?n ‘?’Ni hma::en:llso another function evaluat.'fon'
}’ﬂlue-‘i fmn'l (St.hl rie hf—hand side of relation (3.4). So there are needed two func_:t:on
- (I:on::?l:;n;gTaking ignto account that the convergence order —,r"’_,)_, of each method satisfies
:."’;;;, la:’nd.denmting by Fat1 the corresponding efficiency index, we have

Bvn = [an @)}, n=12.
T TR < b s g S e
and
lim B, = /2.

We have proved:

Theorem 5.2 For the .class of ilerative methods of the form (3.4) the efficiency m;i.::n
is increasing with respect to the number of interpolation nodes, and we have the equality
is 1

lim E, = V2.

5.3 Optimal Hermite-type particular methods

We shall study the class of iterative methods of the form (3.11) for ¢ > 1.,
Taking into account Remark 2.2 it is clear that we can use again relation (2.28) for

the efficiency index. . :
If ©ny; is an approximation for the solution T obtained by (3.11) then for passing to
n+j

the following iteration step we need ‘
-1
f @nt) f (@nts) oo SO (),

i.e. g function evaluations. Then, by (3.3) we must compute the deriva;ive: of t::z
i function [f (yn+j)~l](') di=1g-1, when'a Ynti = f.(::,.ﬂ-). Another 11]111(; -
::Ziion is needed for computing the right-hand Sldlli of relation (3.11). \Ze totally ha
2q function evaluations, the other values in (3.11) being already compfxte e S !

By a)-c) from Remark 2.2 and denoting by E (Yn41 (@) ,q) the efficiency of me ;
of the form (3.11), we get:

(5.3) " E(Ya41(@),0) > E(ra.(9),0) n21, ¢>1
1 515 : L
(5:4) (max{q.%(qﬂ)}) < B(fan(@),9) <(@+1)%,

n > 1, g>1.

—

fon PAviLoww  _ S ———— el

For a fixed g, by (5:3) it follows that the efficiency index is an increasing function with
respect to n and { 2

lim B (7n+1 (9) ,Q) =(q-+ 1)515 :

.

In the following we shall study £ (v, (g), q) as a function ofg>1landn>2 gneN,
By (5.4) we have :

0% < (1041 (@),9) < (g + 1%, Bro>asl

and

;
©5) [EH6+0]" < B(nn@.9 <@rnh,

forq < n+1.

For ¢ > n+1 consider the functions & : (0, +00) — R, h (£) = ¢ and (0, +o0) —+ R,
_L_ 43
L) = (t+1)% .

Some elementary considerations show that k and I satisfy k‘n hit)=0, lim h(t) =1,
; - ; 0 t—oo i
h is increasing on (0,¢) and decreasing in (0, +00) and lim [(t) =e?, lim It)=1,1is
TENO - t—oo {
decreasing on (0, cc) . The maximum value of & is h (e) = e,

Let  be the solution of the equation
(5.6) (t+1)% —ed =,

It can be easily seen that I exists and it is the unique solution for equation (5.6).
For t >, I(t) > e%, so it is clear that the maximum value of E (v, (g) 1q) can be
obtained for ¢ < ¥, g € N. It is easy to prove that { € (4,5) and [ ~ 4.76. Taking into
account the properties of h and [ it is clear that in order to determine the greatest valie -
BT‘E‘('y"_',_'f{q] ,@) it will be sufficient to consider only those g € IV verifying 1 < g <4,
andn <g—1. )

Table 2 contains the approximate values of the efficiency indexes corresponding to
these values of ¢ and 7.

g/n |1 2 3
2 1.2856
3 1.2487 | 1.2573
4 1.2175 | 1.2218 | 1.2226

Table 2.

The highest value for the efficiency index is hence obtained for g=2andn=1 We
shall preeise explicitly the method (3.11) for these values. For this purpose it is convenient

Pty
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t0 use the divided differences on multiple nodes. The following table contains the divided
differences for the inverse function f~! on the nodes ys = f (2.), ¥a+1 = f (2s41) having

the multiplicity orders 2.

f(x) T [uau;.f_ll [u,v,w',f_1] [u,v,w,z;f"l}
Ua X, ] . :
=1
Ua Ts s, Ya; [ ] .
Yor1 | Tatt | (Usiyarrif ] YorVai Ustr; S :
=T =gt —2=Y
Yort | Tast | (Watt, Uiz F ] | [¥orVatt, Yok ts £ | [Var Ys, Yat1, yatai

Table 3.

Here [ya,y,;f_l] = -ﬁ, [Yot1,¥ea1; f71] = m' [ﬂasysﬂif_]] = [;m-

and the other divided differences are computed using the well-known recurrence formula.

In this case the method has the following form:

(5.7) Topr = %o — [Yor¥ai £ Us + [Usr Usrverrs £ w2
= [ys:ysyya+layl+lifM1} yfyﬁ-l‘
g = A2, Usiimwel

The following theorem holds:

Theorem 5.3 Among the methods given by relation (3.11) forn > 1 and g 2 n+1,
the method with the highest efficiency indez is given by (5.7) and corresponds to the case

n=1andq=2.

We shall analyze the case ¢ < n + 1. In this case the efficiency index verifies (5.5)-
We also consider, besides the function [ already defined, the functions pn : (0, +o0) =
1
_ [Inst 2t . . = P _
R, pn(t) = ["—:l*_'—z (t+ 1)] , which satisfies the following properties: El\% pn(t) =0,

:l-‘:ga pn () =1 and

i n41l
i) Llmap & 2 —In 2 (t4+1)
pmwzhﬁuuﬂ = .

It can be easily shown that the equation ph (t) = 0 has a unique positive solution,
denoted by Tn. We also have pl, (t) > 0 for t < 7, and py, (£) < 0 for £ > 7a, i.e. Pa
attains its maximum value at ¢ = 7,.

We also have that pa41 (Ta) < 0, showing that 7ny1 < 7o for all n 2 2. But since
1< g < n+1it follows that we must examine only the cases when n > 2. Taking into
account that 7, is the solution of the equation p, (¢) = 0 we get that the maximum of

the function p, is equal to ezir"“j ;
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) 1
L ) . Arnet)

- tstuz:nr. !(10, +oo) — (:0, vn (t) = (t+1)% — g2(rnt1) An elementary reasoning leads

e lotlowing conclusions: v, is decreasin i
. : g on (0, +00); th —

a unique solution p, on the interval (0, 4+-00) and ,u( 4:1 < ;)tl Ty e
Since for £ > p_, we h_av‘éi‘m n) i fol g
SIncE Ot 5 jig Pa(Tn) > pa (L), it follows that the.val

which & attains maximum must be searched i‘n the set o iodmeducih

(5.8) {geN2<qg<min{n+1,p,}}.

able 4 below COrx ms e approxi
: P mate values of the solutlons Th and oy the error

n

2 | 1.3816 | 3.6711
3 | 1.1201 | 2.8679
4 | 0.9566 | 2.3871
5 | 0.8436 | 2.0649
6 | 0.7601 | 1.8327

Table 4.

Since g € N, we shall be interested only in the integer parts of the solutions n
4

y F\'o_mztheTaLI:-ove table and by (5.8) we can see that B (v, (q), q) attains its maximum
b q - Taking _mto account that E (v, (2),2) < E (4 (2),2) for n > 2 then w
observe that E is increasing with respect to n. N )

Hence the following theorem holds:

Th ] 1

£ (eore?’l)SA Taking q < n-i-.l in (3.11), the greatest values of the efficiency indezes
; 'yn.ﬂ q ,q) » 2 2, ere oblained for q = 2. It this case the efficiency index is in

ing with respect to n, and we have: Sedia

lim E (v, (2),2) = V3.

5.4 Bounds for the efficiency index of the general Hermite-type methods

As i :

K :; WﬂstShﬂan in Lema 2.3, the method (3.8) have the highest convergence order
e nalura numbers a1, a2, ..., @n41 verify the inequalities a; <ap <---a M

exactly consider the equations: bl e n+1. More

(5.9) t"+1—-a,,+1t"—a,-,t"_l =i —agt —a; =0;

5.10 Bl n n—
( ) t ait” — ast 1_..._a"t_an+1:0;
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(5.11) P - a " —agt" T = =it = iy, =0,

n+1 A
wherea; > 0,i=T,n+1, 3 ai > 1 and (i1,12, vy ing1) is an arbitrary permutation of
i=1
the numbers 1,2,...,n + 1.
If a, b, ¢ are the corresponding positive solutions for equations (5.9)-(5.11) and if a1 <
a2 < <anyr,thenl <b<c<La.
In the following we shall assume that the multiplicity orders of the interpolation nodes
of the Hermite polynomial which leads to method (3.8) satisfying i

a; <az < L ant1.
From the above assumptions, at each iteration step there must be performed 2an+1

function evaluations. Denoting by E (§n41) the efficiency index of (3.8) and taking into
account Lemma 2.5, we get:

Theorem 5.5 Ifa; < az < +++ < ang1 ond 8y s the positive solution of (8.10) then
the efficiency indez of the method (3.8) satisfies

mf1 h
(5.12) (m+ 1)2[m("+u+P“+‘m]°"“ < E(fn+1) < (14 ana)ntt .

Taking into account the proprieties of the function [ given in (5.3) and that an41 > 1,
1
it follows that the expression (1 + an+1) Tni1 attains its maximum value for an41 = 2.

R
Taking account the inequalities from (5.12) the fact that (1 +an41)?nt! attains its
maximum value at ap41 = 2 do not imply the maximality of E (Fng1)

5.5 Optimal Steffensen-type methods

In the following we shall determine the optimal efficiency index for the class of iterative
methods given by (3.27). First, we observe that at each iteration step s in (3.27), we
must compute n values of the function ¢, wsti = ¢ (2ati-1),i= 1, n, us = z, being an
already computed approximation of the solution Z.

We then compute T, ; = [ (Ui}, i = 0,7, ie. n+1 function evaluations. In order to
compute the successive values of f and f =1 2t the nodes uy4i, i = 0, n we need 2 (m —n)
function evaluations. Finally, there is another function evaluation in computing the
right-hand side of (3.27). Totally there are 2 (m + 1) function evaluations.

If we denote by E (m) the efficiency index of (3.27), Then
E (m) = (m+1)T0

which, taking into account the results from 5.1, attains its maximum at m = 2.

Remark 5.1 If we take a; > 1 in (8.27), then method (5.26) is o particular case of
(3.27), since for ay =0z = .. =an41 =111 (3.27) we get (3.26).

e
Ion PAvALomw
S

By the above remz;.rk, if m

= 2 then fr
Hence we have to analyze the e

. following cases:
i) a1 +az+a3 = 3,ie a1-=a3 =a3 =1

“t+8nyr =3, it follows n <2,

ii) a; +az =3, ie a; =l,a2=20ra; =2 az = 1;
iii).ay = 3. : |
i) For 0y = a3 = a5 =
)For o) = a3 =ay = 1, by (3.26) we get the following method:

Thtl = Tp — f(xk)

[mk;‘P(Ik) i f]

_ =k, 0 (2k) , 0 (@ (24)) s £1 F (20) £ (0 (@
[k, (k) ; FTLwn, @, (i (24)) ; £ T (’;k)',zgwk()m)k));fl i

(5.13)

k=0,1}..., zo €T

ii) For a; =2, a2 =1 we get the method

(5.14) e f;(xk) _ leeze (i) £ 12 (24)
F'@e) 1 (k) [zn, o (o) T
k=0,1,.., mpel

and for a; = 1., az = 2 we get

(5.15) hpr = my— I (Z4)

lzk, o (ze) 5 £
(@) o (30); £ £ (26) £ (0 (1))
[ek, 0 (z2) 5 1° £ (0 (1)) :

k=0,1,., zpel
iii) For a; = 3 we get method (5 i
1), i.e. the Chebyshev's m
: th i
‘We have proved the following theorem: e
Theorem 5.6 Amon .
3 g Steffensen-type it j ;
e S ype i eral%:ve methods given by methods (5.18)-(5.14)

Remark 5.2 Irll the particular case when a = a3 =
:mposee% to obtain an optimal method leads us
n =0, i.e. method (5.2) or

=Fe s .-;; an+1 = q the condition
5 o possibilities, namely: ¢ = 3
g=1andn =2, i.e. method (5.18). : - i
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