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ABSTRACT. Consider the problem: y"(z) + f(z,y) = 0, z € [0,1], y(a) = «a,
y(b) = B, a,b € (0,1). This is not a two-point boundary value problem since
a,b € (0,1). It is possible to solve this problem by dividing it into the three
problems: a two-point boundary value problem (BVP) on [a,b] and two initial-
value problems (IVP), on [0,a] and [b,1]. The aim of this work is to present a
solution procedure based on pseudospectral collocation with Chebyshev extreme
points combined with a Runge Kutta method. Finally, some numerical examples

are given.
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o4 SOLUTION OF A POLYLOCAL PROBLEM

1 Introduction

Consider the problem (PVP):

(1'1) y”("l:) + f(ﬂ“y) =0, z € [0, 1]
y(a) =a
(1.3) y(b) = 3, a,be (0,1),a <b.

where a,b, a, 8 € R. This is not a two-point boundary value problem, since
a, b€ (0,1).

We try to solve the problem using a pseudospectral collocation method
with Chebyshev extrema combined with a Runge Kutta method.

Then, we compare them in terms of error and cost.

Our choice to use this method is based on the following reasons :

1. We write the code using the functions in MATLAB dmsuite [1].

2. The accuracy of spectral method is superior to finite elements methods
(FEM) and finite difference methods (FDM) (the rate of convergence
associated with problems with smooth solutions are O(exp(—cN)) or
O(exp(cV'N)), where N is the number of degrees of freedom in the
expansion).

3. There exists elegant theoretical results on the convergence of collocation
method (see, for example, [2]).

As drawbacks, we mention:

L. the matrices involved are full, not sparse;
2. the condition number is larger than those of FEM and FDM:

3. symmetric matrices are replaced by nonsymmetric matrices.
We also consider the BVP :

(1.4) y'(z) + f(z,y) =0, z€led]
yle) =
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To apply the collocation theory we need to have an isolated solution y(z)
of the problem (1.4)4(1.5)+(1.6), and this occurs if the above linearized
problem for y(z) is uniquely solvable. R.D Russel and L.F.Shampine [3]
study the existence and the uniqueness of the isolated solution.

Theorem 1.1 /3] Suppose that y(z) is a solution of the boundary value
problem (1.4)+(1.5)+(1.6), that the functions :

(@) and 22D

are defined and continuous for a < z < b, and |y, — y(*) (z)| <6, k=0,1;
¢ > 0, and the homogeneous equations y"(z) = 0 subject to the homogeneous
boundary conditions (1.5)+(1.6) has only the trivial solution, If the linear
homogeneous equations:

1

Y (z) + Z %@y(l«)(@ =0
k=0

has only trivial solution, then this is sufficient to guarantee that there exists
a o >0 such y(z) is the unique solution of problem BVP in the sphere:

—r
For the existence and uniqueness of an IVP, we recall the following:

Theorem 1.2 [{, pp. 112-113] Suppose that D = {a < z < b—c0 <y <
oo} and f(z,y) is continuous on D. If f satisfies a Lipschitz condition on
D in the variable y, then the initial value problem (I VP)

17 y =z,
( . ) z’:—f(:c,y), G‘.S.‘L‘Sb? y(a):a, y’((l):g
has a unique solution y(z) fora <z <b.

If the problem BVP has the unique solution, the requirement y(z) €
C?[0,1] ensure the existence and the uniqueness of the solution of PVP.
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2 The description of the method

Our second method consists into decomposition of the the problem
(1.1)4(1.2)+(1.3) into three problems:

1. A BVP on [a,b]

2. Two IVPs on [0, a] and [b, 1].

Also we suppose that the problem (1.4)+(1.5)+(1.6) satisfy Theorem
1.1, which assures a sufficient condition to guarantee that there exists a
a > 0 such y(z) is the unique solution of problem BVP in the sphere:

fo-] <o

For 0 <z <aand b <z <1 we have two initial value problems.

Due to conditions in Theorems 1.1 and 1.2, the problem (1.1)+
(1.2)+(1.3) has a unique solution.

Consider the grid

(2.1) Awa=z_4< - <z 1<c=m<21< - <zy=d<
$N+l<"'<$N+p:bv

We shall use a pseudospectral method for the solution of (1.4) + (1.5) +
(1.6) and a Runge-Kutta method for the two IVPs.

The solution of the two-point boundary value problems follow the ideas in
[6] Let y(z) be the solution of (1.4)+(1.5)+(1.6). Considering the Lagrange
basis (£x), we have

N
(g y(z) = > b(x)y(zi) + (Rwy)(z), z€le,d),
k=0
where y(N+l) (f)
(Bny) (2) = S—( —z0) - (z — z)

(N+1)!
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is the remainder of Lagrange interpolation and

n
T — T
Ekf.’ﬂ) = H % _;_.
j=0 vk T i
J#k

Since y(z) fulfills the differential equation (1.4), we obtain

N

(23) D Op(zy(an) + (Rwy)"(z:) = —flai,y(zi)),  i=1,...,N 1,
k=0

Setting y(zx) = yx and ignoring the rest, one obtains the nonlinear system

N
(2.4) ng(l’i)yk =—f(zi,y(zs)), i=1,...,N—1,
=0

with unknowns y;, k¥ = 1,...,N — 1; here 35 = y(zp) = @ and yy =
y(zn) = B. The approximate solution (that is the collocation polynomial
for (1.4)4-(1.5)+(1.6)) is the Lagrange interpolation polynomial at nodes
{2k}

N
(2.5) yn(2) =) (@)
k=0

The nonlinear system (2.4) can be rewritten as
AYy = F(YN) + by,
where
Az[“ik}: G-zk:ﬂ;;(%): kyi::l:"'sN"']-:
—flzLm) ] —aly(e1) — By (21)
F(YN) = , by = :

—flzn-1,yn-1) —aly(zn-1) — B (zN-1)
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If the nodes (z4), k = 0,..., N, are symmetric with respect of (c+d)/2,
then A is centrosymmetric (see [6] for the proof), so nonsingular. We recall
the definition [7]: an m x m matrix 4 is centrosymmetric if

ai:j = am‘i‘f‘l,ﬁi—j-i-l) 'L',J - 1, S 8
Examples of such nodes are given by

d—=g, (d—c)eos T+ d + ¢
7 or T = 5

Le. the equispaced and the Chebyshev-Lobatto nodes.
We introduce

(2.6) G(Y)=A"'F(Y) + A tby.

To solve numerically (1.1)+ (1.2)4(1.3) on A given by (2.1), we apply pseo-
dospectral collocation at points in le, d] and then a Runge-Kutta to the other
points. To apply the Runge-Kutta method for the solution of two IVP on
[a, ¢] and [d, b] we need the derivatives Y'(c) and y'(d). This can be computed
by deriving the formula (2.5).

In [5] the authors prove the following theorems.

Theorem 2.1 If f verifies a Lipschitz condition with respect to the second

variable
IF(IE,U1) = F(Z‘,Ug)' S LI'U,] - ‘Li.gl

and ”A"1“ L <1, then the system (2.4) has a unique solution which can be
calculated by the successive approzimation method

(2.7) y(+) - g (Y(“)) , nmeN,

with Y fized and G given by (2.6).

Theorem 2.2 If ¥ = (1), ..., y(zn_1)]" where y(z) is the solu-
tion of problem (1.4)+(1.5)+(1.6); Yy = [vi,...,yn—1]" where y; are
the values of approzimated solution at T; compuled by (2.4) and R =
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[(Bny)"(@1),. .., —(Bny)"(xn-1)]" then for the error |Y — Yu| it holds
A7H||IR)
2 Y—-Yy| < L——

Combining the results of Theorems 2.1 and 2.2 with the stability and
convergence of Runge-Kutta methods we have:

Theorem 2.3 If H “
AR _ ok
1-fatz - %)

and

luv(e) =/ (c)| = O(h*)
lyw (d) — y'(d)| = O(R¥),

then for each point z; in A, i = —q,...,N +p, |y(z:) — 5| = O(h*).

Proof. The condition A‘lf | L < 1 assures us that G is a contraction. From

Banach’s fixpoint theorem it follows that (V") given by (2.7) is convergent
to the exact solution Y of (2.4) and the following estimation holds

< daoe

i B

y _ y(m” _

If the accuracy of the collocation method for the BVP is O(h*) (that is,
the approximate solution y and its derivative 3’ at ¢ and d are within this
accuracy limit), and if the Runge-Kutta method is stable and has the order k,
then the final solution has the same accuracy. The stability and convergence
of Runge-Kutta method are guaranteed by Theorems 5.3.1, page 285 and
5.3.2, page 288 in [8]. m

3 Numerical examples

Our combined method was implemented in MATLAB, using the func-
tions cebdif, cebint and cebdifft contained in dmsuite and described
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in [1]. We chose {z,k = 0, N} as extreme Chebysev points and the other
of A were computed using the MATLAB solver ode45. Since the succes-
sive approximation method is slow, we solve the nonlinear system (2.4) by
Newton’s method. The MATLAB function solvepolylocalceb solve the
nonlinear system and call the Runge-Kutta solver. The derivatives at ¢ and
d were computed by calling cebdifft.

Let us consider two nonlinear examples.

Example 3.1 [9, page 491]Bratu’s equation for \ = 1:

y'+e¥=0, ze(0,1)
y(0.2) = y(0.8) = 0.08918993462883.

We took N = 128 and the tolerance ¢ = 10710, The starting value is
yO(z) = g%i:x_J. The solution of nonlinear system is obtained after / iter-
ations. The graph of the solution is given in Figure 1.

Example 3.2 Consider the problem

(3.1) u" + uP = 0; 0<z<l;
u(0) =0, u(1) = 0.

The positive solution of this problem represents the average temperature in
a reaction-diffusion process. In [10], the authors proved that, for p = 3, the
problem (3.1) has a unique positive solution. We consider here the “variant”

u” + 4 = 0; 0<z<l;
u(0.2) = u(0.8) = 1.929990320692795.

In this example, N = 128, ¢ = 1078, y(0 = %a‘(l —z). The desired
tolerance was obtained after 8 iterations. Figure 2 shows the graph of the
solution.
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Figure 1: The solution to Bratu’s problem for \
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Figure 2: The positive solution to average temperature in a reaction-
diffusion process.
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