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On an Aitken-Steffensen-Newton type method

ION PĂVĂLOIU

ABSTRACT. We consider an Aitken-Steffensen type method in which the nodes are controlled by Newton
and two-step Newton iterations. We prove a local convergence result showing the q-convergence order 7 of
the iterations. Under certain supplementary conditions, we obtain monotone convergence of the iterations,
providing an alternative to the usual ball attraction theorems.

Numerical examples show that this method may, in some cases, have larger (possibly sided) convergence
domains than other methods with similar convergence orders.

1. INTRODUCTION

We are interested in solving the nonlinear equation

(1.1) f(x) = 0

where f : [a, b] → R is given. We consider two auxiliary functions g1, g2 : [a, b] → [a, b]
such that the above equation is equivalent to the following ones

(1.2) x− gi(x) = 0, i = 1, 2.

We assume
A) equation (1.1) has a solution x∗ ∈]a, b[.

Obviously, x∗ is a fixed point of g1 and g2.
A well-known method for approximating x∗ is the chord method:

xn+1 = xn −
f(xn)

[xn−1, xn; f ]
, n = 0, 1, ..., x0, x1 ∈ [a, b],

where [x, y; f ] denotes the first order divided difference of f at the nodes x, y.
If one of the nodes in the above formula is controlled by g1, one obtains the Steffensen

method, given by (see [1], [2], [4], [5], [8], [10], [11], [18], [22], [24], [25])

xn+1 = xn −
f(xn)

[xn, g1(xn); f ]
, n = 0, 1, ..., x0 ∈ [a, b].

The Aitken method is obtained if in the above relation f(x) is replaced by h(x)=x− g2(x)
(see [1], [14], [16]).

A more general Aitken-type method was studied in [16], [17], [21]:

xn+1 = g1(xn)−
f(g1(xn))

[g1(xn), g2(xn); f ]
, n = 0, 1, ..., x0 ∈ [a, b].

Some even more general methods, called Aitken-Steffensen, have been studied in [17],
[20]:

xn+1 = g1(xn)−
f(g1(xn))

[g1(xn), g2(g1(xn)); f ]
, n = 0, 1, ..., x0 ∈ [a, b].
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86 Ion Păvăloiu

Considering the inverse interpolatory polynomial of degree 2, one can obtain methods
similar to the above ones, studied in [19]–[20]. In this paper we consider again this po-
lynomial. We assume that J = f([a, b]) and that f : [a, b] → J is bijective, so there exists
the inverse of f, f−1 : J → [a, b]. Obviously, x∗ = f−1(0). Let ai ∈ [a, b] and bi = f(ai),
i = 1, 2, 3.

Denote by P the interpolation polynomial for f−1, determined by the nodes b1, b2, b3
and values a1, a2, a3 (see, e.g., [19]–[20]):

(1.3) P (y) = a1 + [b1, b2; f
−1](y − b1) + [b1, b2, b3; f

−1](y − b1)(y − b2).

The solution x∗ can be approximated by

(1.4) P (0) = a1 − [b1, b2; f
−1]b1 + [b1, b2, b3; f

−1]b1b2,

and taking into account that the divided differences of order 1 and 2 satisfy respectively
the following relations:[

bi, bj ; f
−1] = 1

[ai, aj ; f ]
, i, j = 1, 3, i 6= j,

[b1, b2, b3; f
−1] = − [a1, a2, a3; f ]

[a1, a2; f ][a2, a3; f ][a1, a3; f ]
,

relation (1.4) becomes

P (0) = a1 −
f(a1)

[a1, a2; f ]
− [a1, a2, a3; f ]f(a1)f(a2)

[a1, a2; f ][a1, a3; f ][a2, a3; f ]
.

Given an approximation xn ∈ [a, b] for x∗, we take a1 = xn, a2 = g1(xn), a3 = g2(xn), and
we obtain the next approximation by

(1.5) xn+1 = xn −
f(xn)

[xn, g1(xn); f ]
− [xn, g1(xn), g2(xn); f ]f(xn)f(g1(xn))

[xn, g1(xn); f ][xn, g2(xn); f ][g1(xn), g2(xn); f ]
.

In [19] we have studied the case when in (1.5) is taken g1(x) = x − λf(x), λ ∈ R a fixed
parameter, and g2(x) = g1(g1(x)). We have obtained conditions assuring the monotone
convergence of the sequences (xn)n≥0 and (g1 (xn))n≥0.

In this paper we consider the case when g1 is given by the the Newton iteration

g1(x) = x− f(x)

f ′(x)
,

while g2 is given by the two-step Newton iteration: g2(x) = g1(g1(x)).
From (1.5) we therefore obtain the following iterations:

yn = xn −
f(xn)

f ′(xn)
,(1.6)

zn = yn −
f(yn)

f ′(yn)
,

xn+1 = xn −
f(xn)

[xn, yn; f ]
− [xn, yn, zn; f ]f(xn)f(yn)

[xn, yn; f ][xn, zn; f ][yn, zn; f ]
, n = 0, 1, ..., x0 ∈ [a, b]

which we call Aitken-Steffensen-Newton iterations.
At this point we notice that the above formula has six equivalent writings, since the

interpolation polynomial P is the same, no matter the order of the three interpolation
nodes. We shall use this fact in the proof of Theorem 3.2.

In Section 2 we provide a local convergence result for these iterates, while in Section 3
we obtain monotone convergence of the iterates under certain supplementary conditions
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On an Aitken-Steffensen-Newton type method 87

(Fourier type, convexity) on f. The last section contains some numerical examples, which
confirm the theory.

2. LOCAL CONVERGENCE OF THE ITERATIONS

We shall denote by Ia1,a2,a3
the smallest open interval determined by the numbers

a1, a2, a3 ∈ [a, b] and by Ef the following expression

Ef (x) := 3f ′′(x)2 − f ′(x)f ′′′(x).
We obtain the following local convergence result.

Theorem 2.1. Assume that hypotheses A) and
B) f ∈ C3[a, b], and f ′(x) 6= 0,∀x ∈ [a, b],

hold. Then the Aitken-Steffensen-Newton method converges locally to x∗, i.e., for any x0 suf-
ficiently close to x∗, the iterations (xn)n≥0 given by (1.6) are well defined and converge to x∗.
Moreover, the following estimates hold:

(2.7) x∗ − xn+1 =
Ef (ξn)f

′′(θn)
3f ′′(µn)f

′(αn)f
′(βn)f

′(γn)

96f ′(ξn)5f ′(xn)3f ′(yn)
(x∗ − xn)7,

with some ξn ∈ Ix∗,xn,yn,zn , θn, αn ∈ Ix∗,xn , µn, βn ∈ Ix∗,yn , γn ∈ Ix∗,zn ; this shows that the
method attains convergence with q-order at least 7, with asymptotic constant given by

C = Ef (x
∗)f ′′(x∗)4

96f ′(x∗)6
.

Proof. We suppose for the moment that the elements of the sequences (xn)n≥0, (yn)n≥0
and (zn)n≥0 remain in [a, b].

The remainder of the interpolation polynomial P in (1.3) is known that satisfies

f−1(y)− P (y) = [y, b1, b2, b3; f
−1](y − b1)(y − b2)(y − b3),

so we obtain

(2.8) x∗ − xn+1 = −[0, f(xn), f(yn), f(zn); f−1]f(xn)f(yn)f(zn), n = 0, 1, ...

The mean value formula for divided differences yields:

[0, f(xn), f(yn), f(zn); f
−1] =

(
f−1(ηn)

)′′′
6

,

where ηn ∈ I0,f(xn),f(yn),f(zn). Since f has derivatives up to order 3 on [a, b] and f ′(x) 6= 0,

∀x ∈ [a, b], then f−1 is three times derivable and (see, e.g., [19])

(f−1(ηn))
′′′ =

3f ′′(ξn)
2 − f ′(ξn)f ′′′(ξn)
f ′(ξn)5

=
Ef (ξn)

f ′(ξn)5
,(2.9)

where ξn = f−1(ηn) ∈ [a, b]. One can show that in fact ξn ∈ Ix∗,xn,yn,zn .
Combining the above relations, (2.8) leads to

(2.10) x∗ − xn+1 = − Ef (ξn)

6f ′(ξn)5
f(xn)f(yn)f(zn), n = 0, 1, ...

The Lagrange Theorem ensures the existence of αn ∈ Ix∗,xn
, βn ∈ Ix∗,yn

, γn ∈ Ix∗,zn

such that

f(xn) = f ′(αn)(xn − x∗), f(yn) = f ′(βn)(yn − x∗), f(zn) = f ′(γn)(zn − x∗),
and therefore the error (2.10) becomes

(2.11) x∗ − xn+1 =
Ef (ξn)

6f ′(ξn)5
f ′(αn)f

′(βn)f
′(γn)(x

∗ − xn)(x∗ − yn)(x∗ − zn).
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88 Ion Păvăloiu

From the first and second relation in (1.6) it follows that there exists θn ∈ Ix∗,xn
and

µn ∈ Ix∗,yn
such that

x∗ − yn = − f ′′(θn)

2f ′(xn)
(x∗ − xn)2, x∗ − zn = − f

′′(µn)

2f ′(yn)
(x∗ − yn)2, n = 0, 1, . . .

These relations imply (2.7), as well as the rest of the statements.
It can be easily proved that the elements of all sequences (xn)n≥0 , (yn)n≥0 , (zn)n≥0 ,

(µn)n≥0 , (ξn)n≥0 , (θn)n≥0 are well defined if x0 is chosen sufficiently close to x∗. �

The q-convergence order p of the method (see, e.g., [14] for definitions and properties)
is at least 7, and since at each iteration step one computes d = 5 function evaluations
(f(xn), f

′(xn), f(yn), f
′(yn), f(zn)), the efficiency index of the method (see, e.g., [15] for

definitions) is E = p
1
d = 7

1
5 ≈ 1.47. This value is greater than 2

1
2 ≈ 1.41 and 3

1
3 ≈ 1.44

which correspond to the Newton method, resp. the generalized Steffensen method (see
[19]).

3. MONOTONE CONVERGENCE

In order to study the monotone convergence of the method, we consider the Fourier
condition:

C) the initial approximation x0 ∈ [a, b] verifies f(x0) · f ′′(x0) > 0.

We obtain the following results.

Theorem 3.2. If f satisfies assumptions A)–C) and, moreover
i1. f ′(x) > 0, ∀x ∈ [a, b];

ii1. f ′′(x) ≥ 0, ∀x ∈ [a, b];
iii1. Ef (x) ≥ 0, ∀x ∈ [a, b],
(1) then the elements of the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 generated by (1.6)

remain in [a, b] and satisfy:
j1. xn > yn > zn > xn+1 > x∗, n = 0, 1, ...,

jj1. limxn = lim yn = lim zn = x∗.

Moreover, as soon as the iterates (xn)n≥0 become sufficiently close to the solution, they obey
also the conclusions of Theorem 2.1.

Proof. By i1) and B) it follows that the solution x∗ is unique in ]a, b[. Let xn ∈ [a, b] be
an approximation for x∗, which satisfies C). From ii1) we have f(xn) > 0 and, by i1),
xn > x∗. Relations A), i1), ii1) attract, by first relation in (1.6), that yn < xn and yn > x∗.
A similar reasoning leads to x∗ < zn < yn and f(zn) > 0. The last relation in (1.6), together
with (2.8), (2.9), i1) and iii1) imply that xn+1 > x∗. The inequality xn+1 < zn is obtained
from the equivalent writing of the interpolation polynomial, i.e.

xn+1 = zn −
f (zn)

[zn, yn; f ]
− [zn, yn, xn; f ]f(zn)f(yn)

[zn, yn; f ][zn, xn; f ][yn, xn; f ]
.

By induction, we show j1). It remains to show jj1), which follows by passing to limit
in the first relation in (1.6), and taking into account j1). �

Remark 3.1. We notice that the above result allows a possibly larger convergence domain
of the iterates, compared to conditions required by Theorem 2.1 (as is the case when we
consider the Newton method and the Fourier condition). The same observation applies
to the subsequent results.

Theorem 3.3. If f obeys assumptions A)–C), iii1) and, moreover,
i2. f ′(x) < 0, ∀x ∈ [a, b];
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On an Aitken-Steffensen-Newton type method 89

ii2. f ′′(x) ≤ 0, ∀x ∈ [a, b],
(1) then the same conclusions hold as in Theorem 3.2.

Proof. Instead of (1.1) we consider h(x) = 0, with h = −f, and we take into account that
Ef = E−f . �

In the case when f ′ and f ′′ have different signs, we obtain the following results.

Theorem 3.4. If f satisfies A)–C), iii1) and, moreover,
i3. f ′(x) < 0, ∀x ∈ [a, b];

ii3. f ′′(x) ≥ 0, ∀x ∈ [a, b],
(1) then the elements of (xn)n≥0 , (yn)n≥0, (zn)n≥0 remain in [a, b] and obey
j3. xn < yn < zn < xn+1 < x∗, n = 0, 1, ...;

jj3. limxn = lim yn = lim zn = x∗.

Moreover, as soon as the iterates (xn)n≥0 become sufficiently close to the solution, they obey
also the conclusions of Theorem 2.1.

The proof is similar to the proof of Theorem 3.2.

Theorem 3.5. If f satisfies A)–C), iii1) and
i4. f ′(x) > 0, ∀x ∈ [a, b];

ii4. f ′′(x) ≤ 0, ∀x ∈ [a, b],
(1) then the same conclusions hold as in Theorem 3.4.

The proof is obtained as in the proof of Theorem 3.3.

4. NUMERICAL EXAMPLES

We present some examples, solved using Matlab in double precision, and we compare
the studied method to other methods. In order to obtain smaller tables, we used the
format short command in Matlab, and for better legibility we used the \numprint
LaTeX command and package. It is worth mentioning that such choice may lead to results
that appear integers, while they are not (e.g., the value of y4 in Table 4 is shown to be 2,
while f(y4) should be 0); the explanation resides in the rounding made in the conversion
process.

We shall consider the Aitken-Newton method introduced in [16]:

yn = xn −
f (xn)

f ′ (xn)
(4.12)

zn = yn −
f (yn)

f ′ (yn)

xn+1 = zn −
f (zn)

[zn, yn; f ]
− [zn, yn, yn; f ]f (zn) f (yn)

[yn, zn; f ]2f ′ (yn)
, n = 0, 1, . . .

It has the q-convergence order 8, the efficiency index 5
√
8 ≈ 1.51, and similar monotone

convergence of the iterates as obtained in Theorems 3.2–3.5. However, the numerical
examples performed in double precision arithmetic show a slight better convergence of
this method over the Aitken-Steffensen-Newton method studied in this paper.

Example 4.1. Consider the following equation (see, e.g., [6])

f (x) = ex sinx+ ln(x2 + 1), x∗ = 0.

The largest interval to study the monotone convergence of our method by Theorems
3.2–3.5 is [a, b] := [x∗, 1.54 . . .], since f ′′ vanishes at b (being positive on [a, b]). The Fourier
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90 Ion Păvăloiu

condition D) holds on [a, b] (and does not hold for x < a), Ef (x) > 0 on [a, b], while the
derivatives f ′, f ′′ are positive on this interval. The conclusions of Theorem 3.2 apply.

The Aitken-Newton-Steffensen method leads to the following results, presented in Ta-
ble 1.

n xn f (xn) yn f (yn) zn f (zn)

0 1.54 5.877 8 0.512 33 1.051 3 0.171 52 0.231 6
1 0.066 475 0.075 401 0.007 091 5 0.007 192 2 9.802 8 · 10−05 9.804 7 · 10−05

2 2.934 8 · 10−07 2.934 8 · 10−07 1.722 4 · 10−13 1.722 4 · 10−13 8.898 4 · 10−26 8.898 4 · 10−26

TABLE 1. Aitken-Newton-Steffensen iterates, f(x) = ex sinx+ ln(x2 + 1).

The Aitken-Newton method 4.12 leads to the results presented in Table 2.

n xn f (xn) yn f (yn) zn f (zn)

0 1.54 5.877 8 0.512 33 1.051 3 0.171 52 0.231 6
1 0.048 016 0.052 662 0.003 916 6 0.003 947 3 3.024 5 · 10−05 3.024 6 · 10−05

2 3.482 1 · 10−09 3.482 1 · 10−09 3.637 5 · 10−17 3.637 5 · 10−17 0 0
TABLE 2. Aitken-Newton iterates, f(x) = ex sinx+ ln(x2 + 1).

The convergence may be not very fast for initial approximations away from the solu-
tion.

It is worth noting that the method converges for−0.3 ≤ x0 < x∗1 too (local convergence
near x∗ = 0 assured by Theorem 2.1), despite the Fourier condition does not hold. For
x0 = −0.3 one obtains y0 = −2.4 . . . < 0, then z0 = −0.14 . . . < 0, x1 = 0.37 . . . and the
rest of the iterates remain positive, converging monotonically to x∗1. For x0 = −0.4, the
method converges to another solution of the equation, x∗2 = −0.603 . . .

The optimal method introduced by Cordero, Torregrosa and Vassileva in [9] has a
smaller convergence domain to the right of x∗1, since the iterates converge for x0 = 1.48
(x4 = 1.374 1 · 10−32), while for x0 = 1.49 the iterates jump over x∗1 and converge to x∗2; in
fact, the initial approximation 1.442 does not lead to convergence (see [16]).

The Kou-Wang method (formula (25) in [12]) converges for x0 = 1.48 (x4 = 0) and
diverges for x0 = 1.49 (see [16]).

Example 4.2. Consider the following equation (see, e.g., [23])

f (x) = (x− 2)(x10 + x+ 1)e−x−1, x∗ = 2.

The largest interval to study the monotone convergence of our method by Theorems
3.2–3.5 is [a, b] := [x∗, 7.9 . . .], since f ′′ vanishes at b (being positive on [a, b]).

The Fourier condition C) holds on [a, b] (and does not hold for x < a), Ef (x) > 0 on
[a, b], while both the derivatives f ′, f ′′ are positive on this interval. The conclusions of
Theorem 3.2 apply.

It is interesting to note that in [23, Rem. 6] Petković observed that the methods studied
there have a small convergence domain to the left of the solution: the choice of x0 = 1.8
caused a bad convergence behavior of those iterates. We believe that this behavior may
be explained by the fact that the derivative of f vanishes at x = 1.78 . . .

The Aitken-Newton method leads to the results presented in Table 3. The iterates con-
verge even for x0 > 7.9 (and to the left of the solution as well, but for x0 higher than 1.81).
Of course the convergence may be not very fast when the initial approximations are away
from the solution.

In Table 4 we present the iterates generated by the Aitken-Newton method 4.12.
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On an Aitken-Steffensen-Newton type method 91

n xn f (xn) yn f (yn) zn f (zn)

0 7.9 761 907.133 4 5.602 8 148 982.786 4.661 5 44 837.664 1
1 4.207 20 996.709 9 3.660 6 6 787.212 6 3.232 1 2 226.165 8
2 2.978 3 1 005.759 1 2.682 4 331.268 7 2.443 9 107.821 4
3 2.303 8 47.056 6 2.153 14.005 4 2.054 7 3.465 5
4 2.017 1 0.934 7 2.0011 0.055 388 2 0.000 235 97
5 2 1.022 3 · 10−07 2 0

TABLE 3. Aitken-Newton iterates, f(x) = (x− 2)(x10 + x+ 1)e−x−1.

n xn f (xn) yn f (yn) zn f (zn)

0 7.9 761 907.133 4 5.602 8 148 982.786 4.661 5 44 837.664 1
1 4.081 8 16 594.415 5 3.563 7 5 385.369 6 3.154 8 1 769.547 3
2 2.856 8 655.665 2.584 1 215.334 2 2.365 8 69.424 9
3 2.212 5 24.072 7 2.090 9 6.608 7 2.023 2 1.300 4
4 2.002 6 0.132 54 2 0.001 326 4 2 1.371 2 · 10−07

5 2 −1.135 3 · 10−14 2 0
TABLE 4. Aitken-Newton iterates, f(x) = (x− 2)(x10 + x+ 1)e−x−1.

The optimal method introduced by Cordero, Torregrosa and Vassileva in [9] converges
to x∗ for x0 = 6.46 and it does not for x0 = 6.47, as shown in [16] .

The optimal method introduced by Liu and Wang (formula (18) in [13]) converges to
x∗ = 2 for x0 = 2.359 (it needs 5 iterates) but for x0 = 2.36 it converges to another solution,
x∗1 = 1512.626 . . .. The results are presented in [16].

Among the optimal methods in [23] (the methods with convergence orders higher than
8 were corrected in a subsequent Corrigendum paper), the modified Ostrowski and Ma-
heshwari methods behave very well for this example (we have studied the convergence
only to the right of the solution). The modified Euler-like method has a small domain of
convergence (in R), since it converges to x∗ for x0 = 2.15, while for x0 = 2.16 it genera-
tes square roots of negative numbers. Matlab has the feature of implicitly dealing with
complex numbers, and the iterates finally converge (in C) to the solution (see [16]).

Conclusions. The sufficient conditions for guaranteed convergence of the method stu-
died by us may theoretically lead to larger convergence domains (especially sided con-
vergence intervals) than from estimates of attraction balls, while a few examples shown
that these domains are larger than those corresponding to some optimal methods of or-
der 8. The performances of the studied method are comparable to those of the Aitken-
Steffensen-Newton method studied in [16].
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