ON THE MONOTONICITY OF THE SEQUENCES OF APPROXIMATIONS OBTAINED BY STEFFENSEN'S METHOD

ION PĂVĂLOIII

In a recent paper [1], M. Bálazs studied the conditions in which the sequence $(x_n)_{n\geqslant 0}$ generated by Steffensen's method is monotonic and converges to the solution of equation

$$f(x) = 0$$

where $f: I \to \mathbb{R}$ is a given function, and $I \subset \mathbb{R}$ is an interval of the real axix. Paper [1] considers the simple case of the sequence generated by the recurrence relation

(2)
$$x_{n+1} = x_n - \frac{f(x_n)}{[x_n, g(x_n); f]}, x_0 \in I, n = 0, 1, \ldots,$$

in which $g: I \to \mathbb{R}$ is given by g(x) = x - f(x), and [u, v; f] is the first order divided difference of the function f. The following theorem is proved in [1]:

THEOREM 1, [1]. Let $f: I \to \mathbb{R}$ be a continuous function on I, and define g(x) = x - f(x). If the following conditions:

- (i) The function $g: I \to \mathbb{R}$ is strictly decreasing and convex on I:
- (ii) there exists a point $x_0 \in I$ such that $f(x_0) < 0$;
- (iii) $I_0 = [x_0 d, x_0 + d] \subset I$, where $d = \max\{|f(x_0)|, |f(g(x_0))|\}$ hold, then all elements of the sequence $(x_n)_{n \geq 0}$ generated by (2) belong to I_0 ; in addition, the following properties hold:
 - (j) the sequence $(x_n)_n \ge 1$ is decreasing and convergent; (jj) the sequence $(g(x_n))_n \ge 1$ is increasing and convergent;
- (jjj) $\lim x_n = \lim g(x_n) = x^*$, where x^* is the unique solution of equation (1) in I.

We shall show further down that the properties resulting from Theorem 1 hold for more general Steffensen-type methods, while for the

method (2), if hypothesis (ii) is replaced by:

(ii₁) there exists $x_0 \in I$ for which $f(x_0) > 0$ and $g(x_0) \in I$, then hypothesis (iii) can be dropped, and the conclusions of the theorem remain valid putting $I_0 = [g(x_0), x_0].$

Consider an arbitrary function $g: I \to \mathbb{R}$ whose fixed points coincide with the real roots of equation (1), and reciprocally.

The following theorem holds:

THEOREM 2. If the functions $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are continuous on I, and if the following conditions:

(i₂) the function g is strictly decreasing on I;

(ii2) the function f is strictly increasing and concave on I;

(iii₂) there exists $x_0 \in I$ such that $f(x_0) > 0$, $g(x_0) \in I$ and $x_0 - g(x_0) > 0$

(iv₂) the equations f(x) = 0 and g(x) = x are equivalent, are fulfilled. then equation (1) has a unique solution $x^* \in [g(x_0), x_0]$ and the following properties hold:

 (j_2) the sequence $(x_n)_{n\geqslant 0}$ is decreasing and convergent;

(jj₂) the sequence $(g(x_n))_{n\geq 0}$ is increasing and convergent;

(jjj₂) $\lim_{n\to\infty} x_n = \lim_{n\to\infty} g(x_n) = x^*$, where x^* is the unique solution of equation (1), therefore fixed point of g in the interval I.

Proof. From (2), for n = 1, we get

$$x_1 - x_0 = -\frac{f(x_0)}{[x_0, g(x_0); f]} < 0,$$

that is, $x_1 < x_0$.

Writing h(x) = x - g(x), we have $h(x_0) > 0$ by hypothesis; moreover:

$$h(g(x_0)) = g(x_0) - g(g(x_0)) = [g(x_0), x_0; g](x_0 - g(x_0)) < 0$$

hence the equation $h(x) \leq 0$ has unique solution in the interval $[g(x_0), x_0]$, i.e. g has a unique fixed point x* in this interval. Since the fixed points of g coincide with the roots of equation (1) and reciprocally, there follows that x* is unique solution for equation (1) within the same interval, and $f(g(x_0)) < 0$. Now we shall show that $x_1 > x^*$. First show that $x_1 > g(x_0)$.

It is easy to verify that the terms of the sequence $(y_n)_{n\geq 0}$ provided

by the relations

$$y_{n+1} = g(y_n) - \frac{f(g(y_n))}{[y_n, g(y_n); f]} \cdot y_0 = x_0, \quad n = 0, 1, \dots$$

coincide with those of the sequence $(x_n)_{n\geq 0}$ generated by (2). In other words the equalities

$$x_n - \frac{f(x_n)}{[x_n, g(x_n); f]} = g(x_n) - \frac{f(g(x_n))}{[x_n, g(x_n); f]} \cdot n = 0, 1, \dots$$
hold; for $n = 0$, it follows that:

$$x_1 - g(x_0) = -\frac{f(g(x_0))}{[x_0, g(x_0; f]]} > 0$$

from which it results that $x_1 \in [g(x_0), x_0]$.

From Lagrange's interpolating polynomial we get

$$\langle \! \langle x_1 \rangle \! \rangle = f(x_0) + [x_0, g(x_0); f] (x_1 - x_0) + [x_1, x_0, g(x_0); f] (x_1 - x_0) (x_1 - g(x_0))$$

and, since $[x_1, x_0, g(x_0); f] < 0$, taking into account (2), it follows that $f(x_1) > 0$, that is, $x_1 > x^*$. Since the function h is increasing, it results that $h(x_1) > 0$, i.e. $x_1 - g(x_1) > 0$. Let us show that $g(x_1) \in [g(x_0), x_0]$. We have $g(x_1) - g(x_0) = [x_0, x_1; g](x_1 - x_0) > 0$ that is, $g(x_0) < g(x_1) < x^* < x_1 < x_0$.

Repeating the above argument, putting $x_k = x_0$, $k \in \mathbb{N}$, and supposing that the hypotheses of Theorem 2 are fulfilled for x_k , we obtain:

$$g(x_k) < g(x_{k+1}) < x^* < x_{k+1} < x_k$$
.

It results subsequently that the sequences $(x_n)_{n\geqslant 0}$ and $(g(x_n))_{n\geqslant 0}$ fulfil the properties (j_2) and (jj_2) of Theorem 2 and, in addition, are bounded.

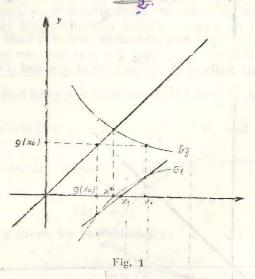
Write
$$\bar{u} = \lim_{n \to \infty} g(x_n)$$
 and $\bar{v} = \lim_{n \to \infty} x_n$; we obtain $\bar{u} = g(\bar{v})$ and

 $\bar{u} \leqslant x^* \leqslant \bar{v}$. Suppose that $\bar{u} < \bar{v}$, therefore $\bar{u} - \bar{v} < 0$. But $\bar{u} - \bar{v} = g(\bar{v}) - \bar{v} = -h(\bar{v}) \geqslant 0$, since $\bar{v} \geqslant x^*$; this shows that $\bar{u} = \bar{v} = x^*$

At limit (for $n \to \infty$), equalities (2) yield $f(x^*) = 0$, where the conti-

nousness of f was also taken into account.

Remark 1. If we put in Theorem 2, g(x) = x - f(x), since g is decreasing, it follows that f(x) = x - g(x) is increasing; since g is convex, it follows that [x, y, z; g] > 0 for every $x, y, z \in I$, hence [x, y, z; f] = -[x, y, z; g] < 0, that is, f is concave. From $f(x_0) > 0$ it follows $x_0 - g(x_0) > 0$, e.i. $x_0 > g(x_0)$. In this case, Theorem 1 in which hypotheses (ii) and (iii) are replaced by (iii) is a consequence of Theorem 2.



The results of Theorem 2 are graphically illustrated in Figure 1. In what follows we shall present, without proof, other cases in which properties of monotonicity analogous to those given by Theorem 2 hold.

THEOREM 3. If the functions $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are continuous on I, and if the following conditions are fulfilled:

(i3) the function g is strictly decreasing on I;

(ii3) the function f is strictly increasing and convex on I;

(iii₃) there exists $x_0 \in I$ for which $f(x_0) < 0$, $g(x_0) \in I$ and $x_0 - g(x_0) < 0$;

(iv₃) the equations f(x) = 0 and x = g(x) are equivalent, then the sequence $(x_n)_n \ge 0$ generated by (2) is increasing and convergent, the sequence $(g(x_n))_n \ge 0$ is decreasing and convergent, and $x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} g(x_n)$ is the solution of equation (1).

Figure 2 plots the results of Theorem 3.

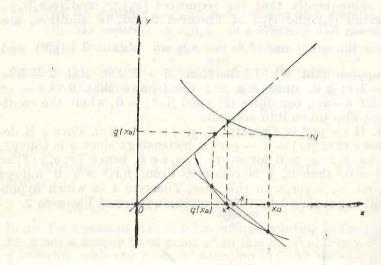


Fig. 2

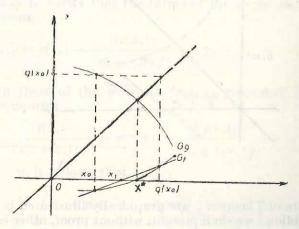


Fig. 3

THEOREM 4. If the functions $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are continuous on I, and if the following conditions are fulfilled:

 (i_4) the function g is strictly decreasing on I;

(ii4) the function f is strictly decreasing and convex on I;

(iii₄) there exists $x_0 \in I$ for which $f(x_0) < 0$, $g(x_0) \in I$ and $x_0 - g(x_0) > 0$; (iv₄) the equations f(x) = 0 and x = g(x) are equivalent,—then the sequence $(x_n)_{n \geq 0}$ generated by (2) is decreasing and convergent, the sequence $g(x_n)_{n \geq 0}$ is increasing and convergent, and $x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} g(x_n)$, $f(x^*) = 0$.

The results of this theorem are illustrated by Figure 3. THEOREM 5 If the familiary formation of the f

THEOREM 5. If the functions $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are continuous on I, and if the following conditions are fulfilled:

 (i_5) the function g is strictly decreasing on I;

(ii₅) the function f is strictly decreasing and concave on I;

(iii₅) there exists $x_0 \in I$ such that $f(x_0) > 0$, $g(x_0) \in I$ and $x_0 - g(x_0) < 0$;

(iv₅) the equations f(x) = 0 and x = g(x) are equivalent, then the sequence $(x_n)_n \ge 0$ generated by (2) is increasing and convergent, the sequence $(g(x_n))_n \ge 0$ is decreasing and convergent, and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} g(x_n) = x^*$, $f(x^*) = 0$.

Remark 2. The fact that the functions f and g from the above theorems are related only by the equivalence of equations f(x) = 0 and x = g(x) offers large possibilities to choose these functions (i.e. to choose

g when f is known, and conversely).

It is clear that if f keeps the same monotonicity and convexity on I, then we can most the question of determining a real number λ such that $g(x) = x - \lambda f(x)$ be a decreasing function. Under certain conditions

λ can be determined, as it results from the following example:

If f is strictly increasing and strictly convex on I = [a, b], and if f is differentiable, then f' is also derivable, and f'(x) > f'(a) > 0 for every $x \in [a, b]$. Then we can put g(x) = x - f(x)/f'(a), and we have $g'(x) \le 0$ for every $x \in [a, b]$, hence g is decreasing. It is clear that the equations

$$f(x) = 0$$
 and $x = g(x)$ have the same roots. If $f(a) < 0$ and $a - \frac{f(a)}{f'(a)} < 0$

< b, then it is obvious that $a - g(a) = \frac{f(a)}{f'(a)} < 0$, and Theorem 3 can be applied for $x_0 = a$.

Numerical example. Consider the equation:

$$f(x) = x - \arcsin \frac{x-1}{\sqrt{2(x^2+1)}} = 0, \quad x \in (-\infty, -1]$$

and the function g given by the relation:

$$g(x) = \arcsin \frac{x-1}{\sqrt{2(x^2+1)}}$$

Since
$$g'(x) = -\frac{1}{x^2 + 1}$$
 and $g''(x) = \frac{2x}{(x^2 + 1)^2}$ it follows that g is

decreasing on $(-\infty, -1]$, and f is increasing and convex. One shows by direct calculation that $f(-2) \simeq -0.75 < 0$ and $g(-2) \simeq -1.25$, hence f fulfils the hypotheses of Theorem 3. The table below lists the results of the calculations for $x_0 = -2$.

'n	x_n	$g(x_n)$
0, 1 2 3 4	$\begin{array}{l} -2.0000000000000000000\\ -1.414047729532868260\\ -1.404227441155695550\\ -1.404223602392559510\\ -1.404223602391969620 \end{array}$	$\begin{array}{l} -1.249045772398254430 \\ -1.400933154002817630 \\ -1.404222310683232820 \\ -1.404223602391771120 \\ -1.404223602391969620 \end{array}$

 $f(x_n)$

The numerical results agree with the conclusions of Theorem 3; as one can see, after four iteration steps a solution approximation with 18 decimals is obtained (obviously, if troncation and rounding errors are neglected).

don't deducted by a sufficient REFERENCES Dull form the ownered

- Balázs, M., A Bilateral Approximating Method for Finding the Real Roats of Real Equations. Revue d'Analyse Numérique et de Théorie de l'Approximation, tome 21, Nº 2, 111-117, (1992).
- Păvăloiu, I., Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires, Revue Roumaine des Mathématiques pures et appliquées, 1, XIII, 149 – 158 (1968).
- 3. Păvăloiu, I., Rezolvarea ecuațiilor prin interpolare, Ed. Dacia, Cluj-Napoca (1981).
- 4. Ul'm, S., Ob obobschenie metoda Steffensena dlya reshenia nelineinyh operatornyh uravnenii, Jurnal Vicisl, mat. i mat-fiz. 4, 6, (1964).

Received 18.VI.1992

Institutul de Calcul al Academiei Filiala Cluj 3400-Cluj-Napoca Romania