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ON THE MONQTONICITY OF THE SEQUENCES OF
APPROXIMATIONS OBTAINED BY STEFFENSEN'’S
METHOD

10N PAVALOIU

In a recent paper [1], M. Balazs studied the conditions in which the
gequence (a,),=, generated by Steffensen’s method is monotonic and con-

verges to the solution of equation
1) flw) =0

where f: I — [R i a given function, and T < [R is an inlerval of the real
axix. Paper [1] considers the simple case of the sequence generated by
the recurrence relation

J(@a)

~——ppeel.n=0,1,%..
T R VR

(2) Tpyq — Tp —

in which g: 7 — R is given by ¢(x) = @ — f(x), and [u, v; f] is the first
order divided difference of the function f.
The following theorem is proved in [1]:

TrreoreM 1, [1]. Let f: I — R be a continuwous funciion on I, and
define g(x) = @ — f(a). If the following conditions :

(1) T'he function g : I — R s striclly decreasing and convex on I ;

(i) there exists a point wy€ I such that f(z,) < 0;

(ifi) To = [@y — d, @, -+ d] < I, where d — max {|f(z,)], |flg(xe)]}
hold, then all elements of the sequence (wa)uz, generated by (2) belong to I,;
in addition, the following properties hold :

(1) the sequence (z.)az, 15 detrpasing and convergent;

(ji) the sequence (g(xa))uz1 18 yncrmsm_q and convergent;

(jij) Hm @, = lim g(z,) = %, where a* s the unique solulion of

.

equation (1) in 1.

We shall show further down that the properties resulting from
Theorem 1 hold for more general Steffensen-type methods, while for the
method (2), if hypothesis (ii) is replaced by :

(ii;) there exists x,e I for which f(z,) > 0 and g(x,) € I, then hy-
pothesis (iii) can be dropped, and the conclusions of the theorem remain

valid putting I, = [g(zy), 2,].
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Consider an arbitrary function g:I — [R whose fixed points coin-
cide with the real roots of equation (1), and reciprocally.

The following theorem holds :

Tarorem 2. If the functions f: I — R and g:1— R are continuous
on I, and if the following conditions:

(i,) the function g is strictly decreasing on I:

(i1,) the function f is strictly inereasing and concave on T ;

(iil,) there ewists xy € I such that f(z,) > 0, g(z,) € I and x, — g{xy)>0

(ivy) the equations f(z) = 0 and g(a) = x are equualmt aie fulfilled,
then equation (1) has a unigue solulion x* € [g(»y), 2] end the ;ngzowmg
properties hold : :

(i2) the sequence (2,)azq 18 decreasing and convergent

{ijs) the sequence (g(@))uz, 18 increasing and convergent:

(jilz) m @, = lim g(w.) = @™, where z* is the wunique solufion of

N—00 N —00

equation (1), therefore fived point of g in the interval I.
Proof. From (2), for n = 1, we get

a
s g e oom BT o012 W
[, §(wo) 5 11
that IS Ty < @p-
Writing k(@) = @ — g(x). we have JI{x,) > 0 by hypothesis; mo-

reover :
hlg(ao)) = glwo) — g(gly)) = [9(@0); o5 91 (25 — glag)) < O

hence the equation I(») = 0 has unique solution in the interval [g{w),a,].
i.e. ¢ has a unique fixed point #* in this interval. Since the fixeid points of
g coincide with the roots of equation (1) and reciprocally, there follows
that o* is unique solution for equation (1) within the same interval, and
f(g(xe)) < 0. Now we shall show that o > 2% First show that ;> g(@,).

It is easy to verify that the terms of the sequence (y,).z , provided
by the relations

i) g ) 3 =D

Hn = e e e g — Ty
o ks [#us 90 a) 5 1l . -

coincide with those of the sequence (&.).z, generated by (2). Tn other
words the equalities

F— ﬂ-— = g{&n) — M, v = Qs
(@ g(a e [, gla,) ;.f,l

hold ; for n = 0, it follows that :

Jg(2ze)) -0
[@q, 92295 f]

from which it results that x, € [g(z,), %ol

@y — glag) = —
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From Lagrange’s interpolating polynomial we get
X)) = f(wo) + [y 9l) F1 (@ — 0) - [y, @y ¢ ()5 £1 (2 — o) — g(w))

and, since [x,, Zoy () ;’] < 0, taking into account (2), it follows that
f@ ) > 0, that I8, @ > 1* &mce the function % is increasing, it results
tlmt ]’z(a']) >0, le. x;,— g(x;) > 0. Let us show that g(x,)e [g(x,), zo]-
We have g(a;) — g(a 0) = fﬂ'u: 75 g) (@, — a) > 0 that is, U(i’o) < g(#) <
RN e

Bepeﬂmﬂ the above e argument, putting x. = x,, &k € [N, and suppo-
sing that the hypotheses of Theoren 2 are fulfilled for a,, we obtain :

#2e) < g(@yy) < 2% < wpyy < @

It resulls subsequently that the sequences ( Ta)azo ANA5(g(@0))uz
fnlfil the properties (j,) and (jj,) of Theorem 2 and, in addition, are
hounded.

Wiite @ =1m g(»,) and ¢ =1lim ,; we obtain & = g(F) and

H—00 N=o0
it € a* £ 8. Suppose that # < ¢, therefore & — 5 < 0. But @ — 7 —
= g(?) — &t = — I(T) =2 0, since ¥ =z g%; this shows that # = 7 — g%

At limit (for n —oeo), equalities (2) yield f(a*) = 0, where the conti-
nousnegs of f was also taken into account.

Remark 1. 1f we put in Theorem 2, (,v( 0 = a — f(x), since ¢ is de-|
creaging, it follows that f(z) = a0 — g(a) is 111(1(3-“.\111;1; since g is com'ez.,/

it follows that [#,y,7;¢]> 0 for every x,y,z€I, hence [a,y,z;f] =
= — (&, 4,23 9] < (} that is, f is concave. From f(z,) > 0 it fullo“f,
a2y — glag) = 0, o > g(xq). In this case, Theorem 1 in which hypott
reses (ii) and {111) are 101)1'1(9(1 bv (ii éflk a. consequence of Theorem 2.
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The results of Theorem 2 are graphically ]]hl\’ll’le‘d in Figure 1.
In what follows we shall present, without proof, other cases in which
properties of monotonicity analogous to those given by Theorem 2 hold.
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THEOREM 3. If the functions f: I — Rand g:I — R are conti-
nuous on I, and if the following conditions are fulfilled :

(i3) the function g is strictly decreasing on I ;

(iig) the function f is strictly tnereasing and convex on I ;

(ilig) there ewists o € I for which f(xy) << 0, g(a,) € I and 2, — 9(#0)<<0;

(ivs) the equations f(x) = 0 and x = g(@) are equivalent, then the
sequence (Za)azo generated by (2) is increasing and convergent, the sequence
(9(n))uzo 1s decreasing and convergent, and a* = lim @, = lim g(x.) s

n—00 n-00

the solution of equation (1).
Figure 2 plots the results of Theorem 3.
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ToworEM 4. If the functions f:I — Rand g:I — IR are conti-
nwous on I, and if the following conditions are fulfilled :

(i) the function g s stricily decreasing on I ;

(iiy) the function [ is strictly decreasing and convex on I ;

(iiiy) there exists w, € I for which f (x,)) <0, g(x,) € I and xy3—g(x,) > 0;

(ivy) the equations f(x) =0 and 2 = ¢g(x) are equivalent,—then the
sequence (Tq)nz, generated by (2) is decreasing and convergent, the sequence
g(xa))nz=y 18 Tnereasing and convergent, and ao* = lim x, = lim g(x,),

H— GO N—0
ity =0, ? 0 )
The results of this theorem are illustrated by Figure 3.

THROREM 5. If the functions f: 1 — R and g: I <R are conii-
nuows on I, and if the fo}’la’winq conditions are fulfilled :

(i) t]na function g is strictly decreasing on I ;

(ii;) the funetion f is strictly decr eusmg and concave on I ;

(i )thmeeusts To€ L sudz that flxy) > 0, g(xy) € L and x, — g(x,)<0;

(iv,) the equations f(x) = 0 and « = g(x) are equivalent, then the se-
quence (a:‘,;),,,(J generated b:; (2) 78 inereasing and convergent, the sequence
(g(%a))nz o i8 decreasing and convergent, and lim x, = lim g(x,) = a*,

H—00 n—oo
Jla*) = 0.

Remark 2. The fact that the functions f and ¢ from the above theo-
rems are related only by the equivalence of equations f(#) = 0 and o =
= g(a) offers large possibilities to choose these functions (i.e. to choose
g when f is known, and conversely).

It is clear that if f keeps the same monotonicity and convexity on
I, then we can moot the question of determining a real number A such
that g(x) = @ — Af(x) be a decreasing tunction. Under certain conditions
A can be determined, as it results from the following example :

It f is strictly increasing and strictly (,ouvex on I = [a,b], and if
f is differentiable, then f’ is also derivable, and f ) > ['(a) > 0 for every
@ € [a, b]. Then we can put g(x) =« —f r)[f'(a), and we have g'(z) £ 0
for every a € [a, b], hence g is flecre'winv It is clem' that the equations

flz) = 0 and # = g(x) have the same roots. If f(a) < 0 and e — #))— <
. i “
< b, then it is obvious that ¢ — g(a) = St < 0, and Theorem 3 can

: f(a)
be applied for z, = a.
Numerical example. Consider the equation :

—1
f(ﬂf) = g — arcsin V‘? ’+f- —= i, mE (““ oo, — 1]
and the function g given by the relation :
g( -p) — arc sin __{i.
U Y2(at 1)

— and g''(x) = N it follows that ¢ is

si ot
ince g'(x) RN (w“—}—l)g
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decreasing on (—oo, —1], and fis increasing and convex. Omne shows
by direct calculation that f(—2) ~ —0.75 < 0 and g(—2) ~ —1.25,
hence f fulfils the hypotheses of Theorem 3. The table below lists the re-

sults of the calculations for z, = —2.

n o g(xs)

0, —2.000000000000000000 —1.249045772398254430
1 —1.414047729532868260 —1.400933154002817630
P —1.404227441155695550 —1.404222310683232820
3 —1.404223602392559510 —1.404223602391771120
4 —1.404223602391969620 —1.404223602391969620

f(a)

—0.75095422760174557 4
—0.013114575530050630
—0.000005130472462734
—0.000000000000788388
—0.000000000000000000

The numerical results agree with the conclusions of Theorem 3 ;
as one can see, after four iteration gteps a solution approximation with
18 decimals ig obtained (obviously, if tr¢ncation and rounding errors are
neglected). - 5
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