Families of orbits in planar anisotropic fields
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Abstract. The aim of the planar inverse problem of dynamics is: given a monoparametric family of curves f(z,y) = ¢, find
the potential V' (x, y) under whose action a material point of unit mass can describe the curves of the family. In this study we
look for V in the class of the anisotropic potentials V (z,y) = v(a®z? + y?), (a=constant). These potentials have been used
lately in the search of connections between classical, quantum, and relativistic mechanics. We establish a general condition
which must be satisfied by all the families produced by an anisotropic potential. We treat special cases regarding the families
(e. g. families traced isoenergetically) and we present certain pertinent examples of compatible pairs of families of curves

and anisotropic potentials.
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1. Introduction

The planar inverse problem of dynamics consists in finding
potentials V' (x, y) which can produce as orbits a preassigned
monoparametric family of curves traced in the xy plane by a
material point of unit mass. The partial differential equations
satisfied by the potential, which will be described below, do
not provide uniqueness for V. That is why it is desirable to
look for solutions in specific classes of potentials.

In this paper we shall focus on anisotropic potentials,
which appear in various mathematical models arising in As-
tronomy and Physics. We mention e.g. some of the first
results associated to the anisotropic two-body problem for
the Newtonian potential (Gutzwiller 1971; Will 1971; Vinti
1972), for the Manev potential (Craig et al. 1999) and for
the Schwarzschild one (Mioc, Pérez-Chavela & Stavinschi
2003). The importance of these anisotropic models comes
also from the fact that they were used in the search of connec-
tions between classical, quantum, and relativistic mechanics.

The potential V' (z,y) which can generate the family

f(x,y)=c (1)

traced with energy £ = FE (f) is given by a partial differen-
tial equation due to Szebehely (1974). In terms of the ‘slope
function’ v, introduced by Bozis (1983) and given by
fy
v=7 )
fo
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this equation reads
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Vz-f—’YVy—f—m(E(f)—V):O- 3)

The subscripts denote partial derivatives.

Remark 1. The linearity in V' of Szebehely’s equation im-
plies that if V; are solutions of (3) with the energy E;(f),
i = 1,2, then V = V; + V5 is a solution of (3) with the
energy E(f) = E1(f) + Ea(f); if V1 is a solution of (3)
with the energy E1(f), then ¢,V is also a solution with the
energy ¢1E1(f), and 1V + co is a solution with the energy
a1 By (f) + ca.

We remark that relation (2) provides a one-to-one corre-
spondence between ~ and the family (1).

The function I is proportional to the curvature of the fam-
ily (1) and its value is

I'=9y: — 7. @
The families of straight lines are characterized by I' = 0. The

potentials producing such a family must satisfy the equation
(Bozis & Anisiu 2001)

For the families (1) with I" # 0, Bozis (1984) obtained a
free of energy second order partial differential equation

—Vaz + KV@@/ + ‘/yy =V, + /J‘/yv (6)
where
1 1 3T
k=——9 A= —Ty—7Ty), = v+ —. @)
¥ WP( Y -) v



Real motion on the curves of the family (1) is possible only
in the region (Bozis & Ichtiaroglou 1994) defined by the in-
equality
Ve +7V)y
T ®)
Basic facts on the inverse problem of dynamics are to be
found in Bozis (1995) and Anisiu (2003).

<0.

2. The inverse problem equations for
anisotropic potentials

An anisotropic potential V' is given by
V(z,y) = v (a*a® +y°), ©)

where a is a real number, a ¢ {—1,0,1}. For a®> = 1, the
potential becomes isotropic. We shall exclude the trivial case
of constant potentials. As it was emphasized in Remark 1, if
V' is a solution of the inverse problem, so is c¢; V] + ca; the
constant co will be omitted, but ¢; can be chosen adequately
to obtain simpler expressions, or, in view of (8), a suitable
region of the plane for the orbits to lie.

Having no a priori information on the energy E (f), we
intend to rely on eq. (6). So we shall settle at first the case I' =
0, corresponding to families (1) of straight lines. Substituting
V from (9) into (5) we obtain

(a®> —1)v" =0, (10)

where the prime denotes the derivative of v with respect to
its unique argument w = a%x? + y2. It follows that no
anisotropic potential allows for families of straight lines.

In what follows we shall consider I' # 0. We substitute
V from (9) in eq. (6) and obtain the equation in v

2 (—a*z? 4+ a*zyk + y?) V" =

(a®zA +yp+a® — 1) 0/, an

where k, A\, ;1 are given by (7) in terms of v and its derivatives
up to the second order.

Remark 2. For the two families of orbits v; = y/(a%x)
and v, = —a’z/y the coefficient of v” in (11) becomes
identically zero. For each of them, eq. (11) reduces to
(a2 — 1) v' = 0, hence no nontrivial anisotropic potential
(9) gives rise to such families.

Remark 3. If ~y is a solution of

alzA+ypu+a® —1=0, (12)

eq. (11) becomes v”" = 0 and from (9) we obtain the potential
V (z,y) = 1 (a*2? + y?), which produces the family of
curves corresponding to .

From now on we shall exclude from our study the family
of conics fi(z,y) = a?2? + y? and the family fo(x,y) =
2~1/4"y, corresponding

to 71, 72 in Remark 2.

Equation (11) can be written as

"

=U(z,y;0a)

,U/

13)

where

a’xA+yp+a®—1
2 (—atz? + a2xyk + y2)’
The condition for (13) to admit of a solution of the form (9)
is

yU, — a*zU, = 0.

Ul(x,y;a) =

(14)

15)

It follows that the families of curves which can be gen-
erated under the action of an anisotropic potential are those
determined by the solutions v of the differential relation (15).
For such a y we have U (z,y;a) = u (a2x2 + y2), and from
(13) we get

v:cl/exp</u)+02. (16)
Working on condition (15), we obtain

a:4/\ya8 + s¢a® + sqa + 520 + ytu, =0 (17)

where

s¢ = x (2%y (Aky — KAy + py — Az) + &2 (kX + 1)

+ay (A + Ky) + 26+ 2y)

S4 :JjQyQ (/@)\T—)\/{T—Fulﬁly—/i/iy_)\y_,ux) (18)

+22y (2X — ky) + 2y? (2 — ke) — (22 + %) &
s2 =y (2 (Ko — pika + Ao — 1y) +y° (A = 5p1)
+zy (b + Ka) — 22 + yK.)

The coefficients in (18) are expressed in terms of the func-
tions x, A, 4 from (7) and of their first order partial deriva-
tives. Equation (17) represents the necessary condition to
be fulfilled by a family (1) in order to be produced by an
anisotropic potential.

Remark 4. For a = 1 the condition (17) reduces to

2y (xA + yp) (2hy — yka)

+ (2% —ayr — y?) (x (@Ay — yAa) +y (zpy — ypa)) (19)
+ (/m3 + 322y + y3) A+ (x3 + 3zy? — ny3) w=0.
Equation (19) gives the totality of families (1) produced by
central potentials V. = v(r), r = (2% +y?) 2 and is
in agreement with pertinent findings by Borghero, Bozis &
Melis (1999).

3. The two-dimensional anisotropic harmonic
oscillator

The potential V (z,y) = (a?az? + y?) /2, analyzed in detail
by Iro (2002), is one of the simplest anisotropic potentials. In
this case the equations of motion
i+ a?z =0

y+y=0

are not coupled, and the solutions for the initial values x¢y =
b1, yo = bz, To = abz, Yo = by are

(20)

x(t) = by cosat + be sin at

y(t) = by cost + by sint. 2D

It is known that the motion in the configuration plane consists
of Lissajous’ figures. If a is rational, the orbit is closed; for a
irrational, the orbit fills entirely a region of the plane.



We try to obtain families of orbits by eliminating ¢ be-
tween the two equations (21), hence we shall consider a =
q/s, q, s natural numbers.

From the first equation in (21) and its derivative with re-
spect to ¢ we get cosat = (abix + bo) / (a (b3 + b3)) and
sinat = (abyz — b1&) / (a (b3 + b3)), hence
ang — blx
abiz + bai’

Similarly, from the second equation in (21) and its derivative
we get

t = — arctan
a

(22)

byy — b3y
b3y + bay’
and, eliminating ¢ between the two equations (22) and (23)
we obtain

byy — b3y o

t = arctan

(23)

ang — blx

a arctan - rctan — = 0. 24
bsy + byy abix + box 24

The energy is conserved in each direction, i. e.

i? +a%2% = a® (b} +b2), 9% +y* = bl + bl (25)

The relations (25) allow us to eliminate & and y from (24).
In so doing, we obtain a family of orbits which, except for

a, includes (not independently, of course) the four constants
b1, bo, b3, bs. Indeed, from (2) we find

2 2
ay/ci —x
= -, (26)
Ve —y?
where
G =0 +05, 3 =b5+0, @7
and from (3)
1
E:E@%%m@. (28)

For each a, (26) offers a two-parametric set of slope func-
tions v (i.e. of monoparametric families) compatible with
V = (a2x2 + y2) /2 and, as expected in view of the Re-
mark 3, with eq. (12) as well. For specific values of a, c1, co
the monoparametric (in ¢) family corresponding to (26) is

f(z,y) = qarcsin Y saresin = = (29)

C2 C1

In fact (29) is three-parametric and includes all orbits
produced by the anisotropic harmonic oscillator. Of course,
out of the set (29), one may extract e.g. infinitely many two-
parametric subsets by imposing any relation ¢(c, c1,¢c2) = 0
between the three parameters c, c;, co. However, solving for
either of the remaining two parameters is neither an easy
nor always an accomplishable task. For this reason we may
search directly for particular solutions of (12). In this manner
we found (with b constant) e.g. for a = £2,

drdb <), and

_b74 _ 2 _ b2
v="35 =i E__b,j““?’ it <
b
v=by, f=by 2, B= b+ f, B > 0;

Lo 41
for: a = %3,

(30)

z2—2b < 0.(31)

b — 22 b2 b
y = x Yy E:Ef2+_

Y f = ],‘2 _ b7 4’
Beside the family, we gave the energy dependence E and the
region (8) where real motion is allowed.

2zy

The potential of the harmonic oscillator being homoge-
neous of order two, it is natural to look for compatible ho-
mogeneous families (for which  is homogeneous of order
Zero),

~v = g(z) with 2 = y/x. (32)
In this case, eq. (12) reads
(zg+a?) (zg+ 1)+ (229 + 3a*> — 1) gg (33)

—z (2zg —a?+ 3) g*> =0,
where the dot denotes the derivative with respect to z.
From the solutions of the form g(z) = bz™ the only ones

which verify (33) (with a®> # 1) are obtained for m = —1
and are given by g = +a/z; they correspond to the families

fx,y) = aTy, (34)

traced with zero energy. The inequality (8) becomes y? < 0,
which means that real motion is not allowed on the curves
of the family (34) under the action of the potential of an
anisotropic harmonic oscillator; these curves can be de-
scribed under a potential with opposite sign, namely V =
— (a?z? +y?) /2.

Specifying a, we can obtain further solutions of (33),
which give rise to families f traced with the specified energy,
under the action of the potential of the harmonic oscillator, in
certain regions of the plane (again b denotes a constant):

a==x2:
’7:_§+bzv f: byz—m27 E= b L <0

2 2f 0 x2—by?
a==+3:

_ 3 _ 2z—by _ 4b+b%  6z+by . (35)
'Y—b—z,f— y3 aE__ 6f ’2$—by§07
a= :I:% :

_ b _ 2by—3z _ 944b®  z+2by
7= T30 f==F" E= 8627 > 3a—2by = O-

4. Isoenergetic families

The isoenergetic families have the total energy E(f) = e,
e being a constant which can be considered zero. For the
anisotropic potential V' given by (9), Szebehely’s equation
(3) can be written as

/

r

Z- . (36)
v (yy+aPz) (2 +1)
The condition that the right hand side is a function of a?z? +
y? reads

y<@7+a%qﬁ2+n>

r

iz <(m +a%) (v + T)> 0,

r

or
(yv + a2x) (72 + 1) (anI‘y — yf‘m) +TI (—2a4m2'y'yy
+a? (V2 +1) (y—2v) + 2y (277 — (372 + 1) ) 37
+y% (372 + 1) 72) = 0.
If ~ satisfies the differential condition (37), the
anisotropic potential will be given by v = ciexp ([ F),
where F(a?z? + y?) =T/ ((yy + a®z) (v* +1)).



It can be checked that v = y/x, representing a family of
homocentric circles

(38)

is a solution of eq. (37). Equation (36) becomes v'/v =
—1/w, with w = a?x? + y? and has the solution v = ¢ /w,
corresponding to

C1
V(z,y) = =———.
The circles are traced isoenergetically all over the plane for
c1 < 0. The anisotropic potential V' given by (39) is a
member of the totality of homogeneous potentials, found by
Borghero & Bozis (2002), which produce isoenergetically the
family (38).

1’2+y2:C,

(39)

Remark 5. Tt is known that the Newtonian potential is com-
patible with the family of circles (38); it follows by Remark
1 that the perturbed Newtonian potential

1

+

can give rise to family (38) all over the plane with

V=

1
a2z? + y2’ c1 <0

E=-1/2vx%2+y?).

5. Concluding remarks

We studied real anisotropic potentials V(z,y) =
v (a®z? +y?) in the light of the planar inverse prob-
lem of dynamics and mainly from the viewpoint of the
monoparametric families (1) which they can produce. We
established the general differential condition (17) which must
be satisfied by all the families v = ~(z, y) compatible with
such potentials. Written explicitly the condition (17) would
include the slope function y(z,y) and partial derivatives of
it up to the third order. As such, it is a highly nonlinear PDE
in the unknown function y(x, y).

The (superintegrable case of the) two-dimensional
anisotropic harmonic oscillator V' = (a?z? + y?) /2 was
reviewed from the same viewpoint. The pertinent three-
parametric family of orbits was given by the eq. (29). There
exist, of course, infinitely many ways of extracting out of (29)
families with one or two parameters but this task is not al-
ways possible, depending on the value of the constant a at
hand. For this reason, and for specific values of a, we found
certain examples by direct reference to the PDE (6).

To aid the algebra, we assumed either homogeneity of the
orbits (i. e. families of the form v = g(y/x)) or isoenergetic-
ity of the families (i. e. all the members of each family are
traced with the same total energy, say F' = 0). Sporadic find-
ings are given by (30), (31) and (35), respectively.
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