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Families of orbits in planar anisotropic fields
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Abstract. The aim of the planar inverse problem of dynamics is: given a monoparametric family of curves f(x, y) = c, find
the potential V (x, y) under whose action a material point of unit mass can describe the curves of the family. In this study we
look for V in the class of the anisotropic potentials V (x, y) = v(a2x2 + y2), (a=constant). These potentials have been used
lately in the search of connections between classical, quantum, and relativistic mechanics. We establish a general condition
which must be satisfied by all the families produced by an anisotropic potential. We treat special cases regarding the families
(e. g. families traced isoenergetically) and we present certain pertinent examples of compatible pairs of families of curves
and anisotropic potentials.
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1. Introduction

The planar inverse problem of dynamics consists in finding
potentials V (x, y) which can produce as orbits a preassigned
monoparametric family of curves traced in the xy plane by a
material point of unit mass. The partial differential equations
satisfied by the potential, which will be described below, do
not provide uniqueness for V . That is why it is desirable to
look for solutions in specific classes of potentials.

In this paper we shall focus on anisotropic potentials,
which appear in various mathematical models arising in As-
tronomy and Physics. We mention e.g. some of the first
results associated to the anisotropic two-body problem for
the Newtonian potential (Gutzwiller 1971; Will 1971; Vinti
1972), for the Manev potential (Craig et al. 1999) and for
the Schwarzschild one (Mioc, Pérez-Chavela & Stavinschi
2003). The importance of these anisotropic models comes
also from the fact that they were used in the search of connec-
tions between classical, quantum, and relativistic mechanics.

The potential V (x, y) which can generate the family

f (x, y) = c (1)

traced with energy E = E (f) is given by a partial differen-
tial equation due to Szebehely (1974). In terms of the ‘slope
function’ γ, introduced by Bozis (1983) and given by

γ =
fy

fx
, (2)
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this equation reads

Vx + γVy +
2Γ

1 + γ2
(E (f) − V ) = 0. (3)

The subscripts denote partial derivatives.

Remark 1. The linearity in V of Szebehely’s equation im-
plies that if Vi are solutions of (3) with the energy Ei(f),
i = 1, 2, then V = V1 + V2 is a solution of (3) with the
energy E(f) = E1(f) + E2(f); if V1 is a solution of (3)
with the energy E1(f), then c1V1 is also a solution with the
energy c1E1(f), and c1V1 + c2 is a solution with the energy
c1E1(f) + c2.

We remark that relation (2) provides a one-to-one corre-
spondence between γ and the family (1).

The function Γ is proportional to the curvature of the fam-
ily (1) and its value is

Γ = γγx − γy. (4)

The families of straight lines are characterized by Γ = 0. The
potentials producing such a family must satisfy the equation
(Bozis & Anisiu 2001)

VxVy (Vxx − Vyy) = Vxy

(
V 2

x − V 2
y

)
. (5)

For the families (1) with Γ �= 0, Bozis (1984) obtained a
free of energy second order partial differential equation

−Vxx + κVxy + Vyy = λVx + µVy, (6)

where

κ =
1
γ
− γ, λ =

1
γΓ

(Γy − γΓx) , µ = λγ +
3Γ
γ

. (7)
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Real motion on the curves of the family (1) is possible only
in the region (Bozis & Ichtiaroglou 1994) defined by the in-
equality

Vx + γVy

Γ
≤ 0. (8)

Basic facts on the inverse problem of dynamics are to be
found in Bozis (1995) and Anisiu (2003).

2. The inverse problem equations for
anisotropic potentials

An anisotropic potential V is given by

V (x, y) = v
(
a2x2 + y2

)
, (9)

where a is a real number, a /∈ {−1, 0, 1}. For a2 = 1, the
potential becomes isotropic. We shall exclude the trivial case
of constant potentials. As it was emphasized in Remark 1, if
V is a solution of the inverse problem, so is c1V1 + c2; the
constant c2 will be omitted, but c1 can be chosen adequately
to obtain simpler expressions, or, in view of (8), a suitable
region of the plane for the orbits to lie.

Having no a priori information on the energy E (f), we
intend to rely on eq. (6). So we shall settle at first the case Γ =
0, corresponding to families (1) of straight lines. Substituting
V from (9) into (5) we obtain(
a2 − 1

)
v′ = 0, (10)

where the prime denotes the derivative of v with respect to
its unique argument w = a2x2 + y2. It follows that no
anisotropic potential allows for families of straight lines.

In what follows we shall consider Γ �= 0. We substitute
V from (9) in eq. (6) and obtain the equation in v

2
(−a4x2 + a2xyκ + y2

)
v′′ =(

a2xλ + yµ + a2 − 1
)
v′, (11)

where κ, λ, µ are given by (7) in terms of γ and its derivatives
up to the second order.

Remark 2. For the two families of orbits γ1 = y/(a2x)
and γ2 = −a2x/y the coefficient of v′′ in (11) becomes
identically zero. For each of them, eq. (11) reduces to(
a2 − 1

)
v′ = 0, hence no nontrivial anisotropic potential

(9) gives rise to such families.

Remark 3. If γ is a solution of

a2xλ + yµ + a2 − 1 = 0, (12)

eq. (11) becomes v′′ = 0 and from (9) we obtain the potential
V (x, y) = c1

(
a2x2 + y2

)
, which produces the family of

curves corresponding to γ.

From now on we shall exclude from our study the family
of conics f1(x, y) = a2x2 + y2 and the family f2(x, y) =
x−1/a2

y, corresponding
to γ1, γ2 in Remark 2.
Equation (11) can be written as

v′′

v′
= U (x, y; a) (13)

where

U (x, y; a) =
a2xλ + yµ + a2 − 1

2 (−a4x2 + a2xyκ + y2)
. (14)

The condition for (13) to admit of a solution of the form (9)
is

yUx − a2xUy = 0. (15)

It follows that the families of curves which can be gen-
erated under the action of an anisotropic potential are those
determined by the solutions γ of the differential relation (15).
For such a γ we have U (x, y; a) = u

(
a2x2 + y2

)
, and from

(13) we get

v = c1

∫
exp

(∫
u

)
+ c2. (16)

Working on condition (15), we obtain

x4λya8 + s6a
6 + s4a

4 + s2a
2 + y4µx = 0 (17)

where

s6 = x
(
x2y (λκy − κλy + µy − λx) + x2 (κλ + µ)

+xy (λ + κy) + xκ + 2y)
s4 = x2y2 (κλx − λκx + µκy − κµy − λy − µx)
+x2y (2λ − κy) + xy2 (2µ − κx) − (x2 + y2

)
κ

s2 = y
(
xy2 (κµx − µκx + λx − µy) + y2 (λ − κµ)

+xy (µ + κx) − 2x + yκ.)

(18)

The coefficients in (18) are expressed in terms of the func-
tions κ, λ, µ from (7) and of their first order partial deriva-
tives. Equation (17) represents the necessary condition to
be fulfilled by a family (1) in order to be produced by an
anisotropic potential.

Remark 4. For a = 1 the condition (17) reduces to

xy (xλ + yµ) (xκy − yκx)
+
(
x2 − xyκ − y2

)
(x (xλy − yλx) + y (xµy − yµx))

+
(
κx3 + 3x2y + y3

)
λ +

(
x3 + 3xy2 − κy3

)
µ = 0.

(19)

Equation (19) gives the totality of families (1) produced by

central potentials V = v(r), r =
(
x2 + y2

)1/2
and is

in agreement with pertinent findings by Borghero, Bozis &
Melis (1999).

3. The two-dimensional anisotropic harmonic
oscillator

The potential V (x, y) =
(
a2x2 + y2

)
/2, analyzed in detail

by Iro (2002), is one of the simplest anisotropic potentials. In
this case the equations of motion

ẍ + a2x = 0
ÿ + y = 0 (20)

are not coupled, and the solutions for the initial values x0 =
b1, y0 = b3, ẋ0 = ab2, ẏ0 = b4 are

x(t) = b1 cos at + b2 sin at
y(t) = b3 cos t + b4 sin t.

(21)

It is known that the motion in the configuration plane consists
of Lissajous’ figures. If a is rational, the orbit is closed; for a
irrational, the orbit fills entirely a region of the plane.
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We try to obtain families of orbits by eliminating t be-
tween the two equations (21), hence we shall consider a =
q/s, q, s natural numbers.

From the first equation in (21) and its derivative with re-
spect to t we get cos at = (ab1x + b2ẋ) /

(
a
(
b2
1 + b2

2

))
and

sin at = (ab2x − b1ẋ) /
(
a
(
b2
1 + b2

2

))
, hence

t =
1
a

arctan
ab2x − b1ẋ

ab1x + b2ẋ
. (22)

Similarly, from the second equation in (21) and its derivative
we get

t = arctan
b4y − b3ẏ

b3y + b4ẏ
, (23)

and, eliminating t between the two equations (22) and (23)
we obtain

a arctan
b4y − b3ẏ

b3y + b4ẏ
− arctan

ab2x − b1ẋ

ab1x + b2ẋ
= 0. (24)

The energy is conserved in each direction, i. e.

ẋ2 + a2x2 = a2
(
b2
1 + b2

2

)
, ẏ2 + y2 = b2

3 + b2
4. (25)

The relations (25) allow us to eliminate ẋ and ẏ from (24).
In so doing, we obtain a family of orbits which, except for

a, includes (not independently, of course) the four constants
b1, b2, b3, b4. Indeed, from (2) we find

γ = −a
√

c2
1 − x2√

c2
2 − y2

, (26)

where

c2
1 = b2

1 + b2
2, c2

2 = b2
3 + b2

4, (27)

and from (3)

E =
1
2
(
a2c2

1 + c2
2

)
. (28)

For each a, (26) offers a two-parametric set of slope func-
tions γ (i.e. of monoparametric families) compatible with
V =

(
a2x2 + y2

)
/2 and, as expected in view of the Re-

mark 3, with eq. (12) as well. For specific values of a, c1, c2

the monoparametric (in c) family corresponding to (26) is

f(x, y) = q arcsin
y

c2
− s arcsin

x

c1
= c. (29)

In fact (29) is three-parametric and includes all orbits
produced by the anisotropic harmonic oscillator. Of course,
out of the set (29), one may extract e.g. infinitely many two-
parametric subsets by imposing any relation ϕ(c, c1, c2) = 0
between the three parameters c, c1, c2. However, solving for
either of the remaining two parameters is neither an easy
nor always an accomplishable task. For this reason we may
search directly for particular solutions of (12). In this manner
we found (with b constant) e.g. for a = ±2,

γ = b−4x
2y , f = y2

4x−b , E = −bf + b2

8 , 4x+b
4x−b ≤ 0, and

γ = by, f = by2 + 2x, E = f2

2 + f
b , 4x+by2

b ≥ 0;
(30)

for: a = ± 1
2 ,

γ =
b − x2

2xy
, f =

y

x2 − b
, E =

b2

2
f2+

b

4
, x2−2b ≤ 0.(31)

Beside the family, we gave the energy dependence E and the
region (8) where real motion is allowed.

The potential of the harmonic oscillator being homoge-
neous of order two, it is natural to look for compatible ho-
mogeneous families (for which γ is homogeneous of order
zero),

γ = g(z) with z = y/x. (32)

In this case, eq. (12) reads(
zg + a2

)
(zg + 1) g̈ +

(
2zg + 3a2 − 1

)
gġ

−z
(
2zg − a2 + 3

)
ġ2 = 0,

(33)

where the dot denotes the derivative with respect to z.
From the solutions of the form g(z) = bzm the only ones

which verify (33) (with a2 �= 1) are obtained for m = −1
and are given by g = ±a/z; they correspond to the families

f(x, y) = x∓1/ay, (34)

traced with zero energy. The inequality (8) becomes y2 ≤ 0,
which means that real motion is not allowed on the curves
of the family (34) under the action of the potential of an
anisotropic harmonic oscillator; these curves can be de-
scribed under a potential with opposite sign, namely V =
− (a2x2 + y2

)
/2.

Specifying a, we can obtain further solutions of (33),
which give rise to families f traced with the specified energy,
under the action of the potential of the harmonic oscillator, in
certain regions of the plane (again b denotes a constant):

a = ±2 :
γ = − 2

z + bz, f = by2−x2

y4 , E = b+b2

2f , 1
x2−by2 ≤ 0;

a = ±3 :
γ = b − 3

z , f = 2x−by
y3 , E = − 4b+b3

6f , 6x+by
2x−by ≤ 0;

a = ± 1
3 :

γ = − b
3(bz−1) , f = 2by−3x

x3 , E = − 9+4b2

18b2f , x+2by
3x−2by ≥ 0.

(35)

4. Isoenergetic families

The isoenergetic families have the total energy E(f) = e,
e being a constant which can be considered zero. For the
anisotropic potential V given by (9), Szebehely’s equation
(3) can be written as

v′

v
=

Γ
(yγ + a2x) (γ2 + 1)

. (36)

The condition that the right hand side is a function of a2x2 +
y2 reads

y

((
yγ + a2x

) (
γ2 + 1

)
Γ

)
x

−a2x

((
yγ + a2x

) (
γ2 + 1

)
Γ

)
y

= 0,

or(
yγ + a2x

) (
γ2 + 1

) (
a2xΓy − yΓx

)
+ Γ

(−2a4x2γγy

+a2
((

γ2 + 1
)
(y − xγ) + xy

(
2γγx − (3γ2 + 1

)
γy

))
+y2

(
3γ2 + 1

)
γx

)
= 0.

(37)

If γ satisfies the differential condition (37), the
anisotropic potential will be given by v = c1 exp

(∫
F
)
,

where F (a2x2 + y2) = Γ/
((

yγ + a2x
) (

γ2 + 1
))

.
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It can be checked that γ = y/x, representing a family of
homocentric circles

x2 + y2 = c, (38)

is a solution of eq. (37). Equation (36) becomes v′/v =
−1/w, with w = a2x2 + y2 and has the solution v = c1/w,
corresponding to

V (x, y) =
c1

a2x2 + y2
. (39)

The circles are traced isoenergetically all over the plane for
c1 < 0. The anisotropic potential V given by (39) is a
member of the totality of homogeneous potentials, found by
Borghero & Bozis (2002), which produce isoenergetically the
family (38).

Remark 5. It is known that the Newtonian potential is com-
patible with the family of circles (38); it follows by Remark
1 that the perturbed Newtonian potential

V = − 1√
x2 + y2

+
c1

a2x2 + y2
, c1 < 0

can give rise to family (38) all over the plane with

E = −1/(2
√

x2 + y2).

5. Concluding remarks

We studied real anisotropic potentials V (x, y) =
v
(
a2x2 + y2

)
in the light of the planar inverse prob-

lem of dynamics and mainly from the viewpoint of the
monoparametric families (1) which they can produce. We
established the general differential condition (17) which must
be satisfied by all the families γ = γ(x, y) compatible with
such potentials. Written explicitly the condition (17) would
include the slope function γ(x, y) and partial derivatives of
it up to the third order. As such, it is a highly nonlinear PDE
in the unknown function γ(x, y).

The (superintegrable case of the) two-dimensional
anisotropic harmonic oscillator V =

(
a2x2 + y2

)
/2 was

reviewed from the same viewpoint. The pertinent three-
parametric family of orbits was given by the eq. (29). There
exist, of course, infinitely many ways of extracting out of (29)
families with one or two parameters but this task is not al-
ways possible, depending on the value of the constant a at
hand. For this reason, and for specific values of a, we found
certain examples by direct reference to the PDE (6).

To aid the algebra, we assumed either homogeneity of the
orbits (i. e. families of the form γ = g(y/x)) or isoenergetic-
ity of the families (i. e. all the members of each family are
traced with the same total energy, say E = 0). Sporadic find-
ings are given by (30), (31) and (35), respectively.
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