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Abstract: In this paper, we present a control problem related to a semilinear differential
equation with a moving singularity, i.e., the singular point depends on a parameter. The
particularity of the controllability condition resides in the fact that it depends on the singular
point, which in turn depends on the control variable. We provide sufficient conditions to
ensure that the functional determining the control is continuous over the entire domain of
the parameter. Lower and upper solutions techniques combined with a bisection algorithm
is used to prove the controllability of the equation and to approximate the control. An
example is given together with some numerical simulations. The results naturally extend
to fractional differential equations.

Keywords: control problem; moving singularity; differential equation; lower and upper
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1. Introduction and Preliminaries
Differential equations are crucial in solving practical problems in many scientific fields,

such as physics, chemistry, biology, economics, engineering, etc., modeling many real-
world processes. However, the complexity of these phenomena often introduces various
parameters that can significantly influence the outcome. A particularly intriguing problem
in this context is identifying the parameters that ensure a specific quantity (e.g., density,
energy) related to the solution of the differential equation reaches a desired value. This
challenge naturally leads to a control problem.

Our study has two strong motivations.

(a) The first motivation concerns differential equations with moving singularities, which
frequently appear in nonlinear models from applied sciences, such as physics and
mathematical biology [1].

(b) The second one relates to the control of such models, aiming to reach a desired state
of the process. For example, if the state variable represents a density, one might be
interested in controlling its cumulative value or average. This corresponds precisely
to our control problem in Section 2.

Mathematical models expressed through equations with singularities include the Briot–
Bouquet equation, which has applications in complex analysis, specifically in the theory
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of univalent functions; equations arising in Michaelis–Menten kinetics, modeling oxygen
diffusion in cells; the Thomas–Fermi equation in atomic physics; and the Emden–Fowler
equation, in the study of phenomena in non-Newtonian fluid mechanics [1–3].

Inspired by the investigation in [4–6], this paper will explore the following problem:u′(t) = f (t, u(t), λ), t ∈ [0, θ(λ))

u(0) = u0(λ).
(1)

Here, f : [0, ∞) × R × (0, ∞) → R̄(:= R∪ {±∞}) is a function that possesses a
singularity in the first variable, influenced by the third one, that is, for each λ > 0, there
exists θ(λ) > 0, such that

lim
t→ θ(λ)
t< θ(λ)

f (t, x, λ) = ±∞ for almost all x ∈ R.

Throughout this paper, we use uλ to denote the unique solution to problem (1) for a
given λ > 0. Since the singularity point θ(λ) varies with λ, the differential Equation (1) is
said to have a moving singularity.

For each λ > 0, we consider the functional ψλ : C[0, θ(λ)) → R̄,

ψλ(u) =
∫ θ(λ)

0
u(s) ds, (2)

where the integration over the noncompact interval [0, θ(λ)) is understood in the usual
sense (see, e.g., [7]), ∫ θ(λ)

0
u(s) ds = lim

t→θ(λ)
t<θ(λ)

∫ t

0
u(s) ds.

Our goal in this paper is the following control problem :

Problem 1 (Control problem). Find λ∗ > 0 such that

ψλ∗(uλ∗) = p, (3)

where p ∈ R is a given value.

The particularity of the controllability condition resides in the fact that it depends on
the singular point, which in turn depends on the control variable. To establish sufficient
conditions for the existence of a solution to this control problem, we first guarantee that the
mapping φ : (0, ∞) → R,

φ(λ) = ψλ(uλ), (4)

is well-defined and continuous on (0, ∞). Then, we are able to use a lower and upper solu-
tion argument to guarantee the existence of a λ∗ with the desired property (3). Moreover,
by the bisection algorithm, we have a method of approximation of the value λ∗.

Control problems on a fixed interval that require one to find a parameter in order
to achieve a specific controllability condition are well-documented in the literature (see,
e.g., [8–10]). The novelty of this paper lies in determining such a parameter where each
solution is defined on a different interval. This approach requires a more refined analysis
and leads to more complex problems.

The main assumptions we use in our analysis are as follows:
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(h1) For each λ > 0 and 0 < ε < θ(λ), there exists a constant L = L(λ, ε), such that for all
x, x ∈ R and for all t ∈ [0, θ(λ)− ε], we have

| f (t, x, λ)− f (t, x, λ)| ≤ L(λ, ε) |x − x|.

(h2) The mappings

λ 7→ θ(λ), λ 7→ u0(λ), λ 7→ L(λ, ε) (for each ε > 0),

are continuous. Additionally, the map (t, x, λ) 7→ f (t, x, λ) is continuous for t ∈
[0, θ(λ)), x ∈ R, and λ ∈ (0, ∞).

In the next lemma, we show that assumptions (h1) and (h2) are sufficient to guarantee
the existence of a unique solution of problem (1).

Lemma 1. Under assumptions (h1) and (h2) , for each λ > 0 there exists a unique solution
uλ ∈ C[0, θ(λ)) of problem (1). Moreover, this solution satisfies the integral equation

uλ(t) = u0(λ) +
∫ t

0
f (s, uλ(s), λ) ds, (5)

for all t ∈ [0, θ(λ)).

Proof. Let λ > 0. For each 0 < ε < θ(λ), we consider the initial value problem on the
cut-off domain, u′(t) = f (t, u(t), λ), t ∈ [0, θ(λ)− ε]

u(0) = u0(λ).
(6)

From assumption (h1), the mapping x 7→ f (t, x, λ) is Lipschitz continuous with the
Lipschitz constant Lλ,ε. Therefore, problem (6) has a unique solution (see, e.g., [11,12]).
The conclusion follows immediately by letting ε → 0 and using the uniqueness of the
solution on each interval [0, θ(λ)− ε]. Relation (5) can be easily deduced by taking the
integral in (1) from 0 to t.

Example 1. The model for f (t, x, λ) is given by

f (t, x, λ) =
x

λ − t
.

Clearly, there is a singularity at θ(λ) = λ. However, when the first variable is restricted
to a compact interval [0, λ − ε] with 0 < ε < θ(λ), the function f is Lipschitz continuous with
L(λ, ε) = 1

ε the Lipschitz constant. If we set u0(λ) =
1
λ > 0, the unique solution of the problem (1)

is
uλ(t) =

1
λ − t

, for all t ∈ [0, λ).

Remark 1. Without imposing further assumptions beyond (h1) and (h2), we cannot generally
expect φ to be well-defined and continuous on (0, ∞). For instance, consider the case where

f (t, x, λ) =
1

λ(λ − t)
1
λ +1

and u0(λ) =
1

λ1/λ
.

Clearly, both assumptions (h1) and (h2) are satisfied. Straightforward calculations yield

uλ(t) = (λ − t)−
1
λ ,
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for each λ > 1. Consequently,

φ(λ) =
1

λ − 1
λ

2λ−1
λ .

This implies that φ(λ) ∈ R for λ > 1, but

lim
λ→1
λ>1

φ(λ) = ∞.

The paper is structured as follows: Section 2 presents the original results on the
controllability of equations with moving singularities. Before establishing the main result
(Theorem 6), we derive several auxiliary results concerning the continuous dependence
of solutions on the control parameter and the continuity of the control functional with
respect to the control variable. In Section 3, we provide a theoretical algorithm for obtaining
the solution of the control problem using the method of lower and upper solutions. We
also provide an example that illustrates the applicability of the obtained results. Finally,
in Section 4 we suggest a possible extension of our approach to fractional differential
equations with moving singularities.

In the following, we present some well-known results from the literature that will be
used throughout this paper. The first result is the Arzelà–Ascoli theorem (see, e.g., [13,14]).

Theorem 1 (Arzelà–Ascoli theorem). A subset F ⊂ (C[a, b], | · |∞), where | · |∞ is the supremum
norm, is relatively compact if and only if it is uniformly bounded and equicontinuous, that is, there
exists M > 0 with

|u|∞ ≤ M, for all u ∈ F,

and for every ε > 0, there exists δ(ε) > 0 such that

|u(x)− u(y)| ≤ ε, for x, y ∈ [a, b] with |x − y| ≤ δ(ε) and all u ∈ F.

The next lemma provides an alternative condition to ensure the convergence of a
sequence based on the behavior of its sub-sequences (see, e.g., [15] (Lemma 1.1)).

Theorem 2. Let X be a topological space, and let (xn) be a sequence in X with the following
property: there exists x ∈ X, such that, from any sub-sequences of (xn), a further sub-sequences
can be extracted that converges to x. Then, the entire sequence (xn) converges to x.

Finally, we have the well-known Grönwall’s lemma (see, [16,17]).

Theorem 3 (Grönwall inequality). Let u, v ∈ C[a, b]. If there exists a constant c > 0 such that

|u(t)| ≤ c +
∫ t

a
|u(s)| |v(s)| ds for t ∈ [a, b],

then

|u(t)| ≤ c exp
(∫ t

a
|v(s)| ds

)
for t ∈ [a, b].

2. Auxiliary Lemmas and New Controllability Result

2.1. Proprieties of the Solutions uλ

In this section, we present some properties of the solutions to problem (1), which will
be used later in our analysis.
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Lemma 2. Assume that assumptions (h1) and (h2) hold. Then, given any sequence of positive real
numbers (λk) converging to some λ∗ > 0, the sequence of solutions

(
uλk

)
converges uniformly to

uλ∗ on any interval [0, θ(λ∗)− ε], with 0 < ε < min{infk∈N θ(λk), θ(λ∗)}.

Proof. Let (λk) be a sequence of positive real numbers with λk → λ∗ > 0 as k → ∞, and let

0 < ε < min
{

inf
k∈N

θ(λk), θ(λ∗)

}
. (7)

Since the mapping λ 7→ θ(λ) is continuous, there exists k0 ∈ N, such that

θ(λ∗)− ε ≤ θ(λk)−
ε

2
,

for all k ≥ k0. Clearly, the choise of ε given in (7) guarantees that both θ(λ∗) − ε and
θ(λk)− ε

2 are strictly positive, for all k ≥ k0.
Using condition (h1), for each k ≥ k0, there exists L

(
λk, ε

2
)
> 0, such that

| f (t, x, λk)− f (t, x, λk)| ≤ L
(

λk,
ε

2

)
|x − x|

for all t ∈ [0, θ(λk)− ε] and all x, x ∈ R. Moreover, from the continuity of the mapping
λ 7→ L

(
λ, ε

2
)
, there exists a positive real number L̄ > 0, such that

L
(

λk,
ε

2

)
≤ L̄ for all k ≥ k0.

Furthermore, using the Arzelà–Ascoli theorem, we show that the set

A :=
{

uλk : [0, θ(λ∗)− ε] → R, k ≥ k0
}

is relatively compact in C[0, θ(λ∗)− ε]. First, we establish the uniform boundedness of the
set A. Let k ≥ k0 and let t ∈ [0, θ(λ∗)− ε]. Using the integral form (5) of uλk , we obtain

∣∣uλk (t)
∣∣ ≤ |u0(λk)|+

∫ t

0

∣∣ f (s, uλk (s), λk)− f (s, 0, λk)
∣∣ds +

∫ t

0
| f (s, 0, λk)|ds (8)

≤ |u0(λk)|+
∫ t

0
esρe−sρ L̄

∣∣uλk (s)
∣∣ds +

∫ t

0
| f (s, 0, λk)|ds

≤
∣∣uλk

∣∣
ρ

L̄
ρ

etρ + M,

where
|u|ρ = sup

t∈[0, θ(λ∗)−ε]

e−tρ|u(t)|,

is the Bielecki norm on C[0, θ(λ∗)− ε], and

M = sup
k≥k0

(
|u0(λk)|+

∫ θ(λ∗)−ε

0
| f (s, 0, λk)|ds

)
.

Note that M < ∞. Indeed, the continuity of the mapping (t, λ) 7→ f (t, 0, λ) guarantees
that it is uniformly bounded on the compact set

(t, λ) ∈ [0, θ(λ∗)− ε]×
[

inf
k≥k0

λk, sup
k≥k0

λk

]
,
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since infk≥k0 λk > 0 and supk≥k0
λk < ∞. Dividing (8) by etρ and taking the supremum

over [0, θ(λ∗)− ε], we obtain

∣∣uλk

∣∣
ρ
≤ L̄

ρ

∣∣uλk

∣∣
ρ
+ M. (9)

Thus, if we choose ρ > L̄, relation (9) ensures the uniform boundedness of the sequence(
uλk

)
k≥k0

. Let D be an upper bound for this sequence, that is,

D = sup
t∈[0, θ(λ∗)−ε]

k≥k0

∣∣uλk (t)
∣∣.

For any t, t ∈ [0, θ(λ∗)− ε] and k ≥ k0, one has

∣∣uλk (t)− uλk (t)
∣∣ ≤ ∣∣∣∣∫ t

t

∣∣ f (s, uλk (s), λk)
∣∣ds

∣∣∣∣ ≤ M̄
∣∣t − t

∣∣,
where

M̄ = sup
t∈[0, θ(λ∗)−ε]
|x|≤D, k≥k0

| f (t, x, λk)|.

Consequently, the set A is equicontinuous. By the Arzelà–Ascoli theorem, there exists
a sub-sequences

(
uλkn

)
of

(
uλk

)
that converges uniformly to u∗ on [0, θ(λ∗)− ε].

We now show that

u∗(t) = uλ∗(t) for all t ∈ [0, θ(λ∗)− ε].

Let t ∈ [0, θ(λ∗)− ε]. Then

|u∗(t)− uλ∗(t)| ≤
∣∣∣uλkn

(t)− uλ∗(t)
∣∣∣+ ∣∣∣uλkn

(t)− u∗(t)
∣∣∣ (10)

≤
∣∣u0(λkn)− u0(λ

∗)
∣∣+ ∫ t

0

∣∣∣ f
(

s, uλkn
(s), λkn

)
− f (s, uλ∗(s), λ∗)

∣∣∣ ds

+
∣∣∣uλkn

(t)− u∗(t)
∣∣∣

≤
∫ t

0

∣∣∣ f
(

s, uλkn
(s), λkn

)
− f (s, uλ∗(s), λkn)

∣∣∣ ds

+
∫ t

0

∣∣ f (s, uλ∗(s), λkn)− f (s, uλ∗(s), λ∗)
∣∣ ds

+
∣∣∣uλkn

(t)− u∗(t)
∣∣∣+ ∣∣u0(λkn)− u0(λ

∗)
∣∣

≤ eρt

ρ
L̄
∣∣∣uλkn

− uλ∗

∣∣∣
ρ
+

∫ t

0

∣∣ f (s, uλ∗(s), λkn)− f (s, uλ∗(s), λ∗)
∣∣ ds

+
∣∣∣uλkn

(t)− u∗(t)
∣∣∣+ ∣∣u0(λkn)− u0(λ

∗)
∣∣.

Multiplying (10) by e−ρt and taking the supremum over [0, θ(λ∗)− ε], we find

|u∗ − uλ∗ |ρ ≤ L̄
ρ

∣∣∣uλkn
− uλ∗

∣∣∣
ρ
+

∫ t

0

∣∣ f (s, uλ∗(s), λkn)− f (s, uλ∗(s), λ∗)
∣∣ds (11)

+
∣∣∣uλkn

− u∗
∣∣∣
∞
+

∣∣u0(λkn)− u0(λ
∗)
∣∣.
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Since the last three terms from the right hand side of (11) tends to zero and∣∣∣uλkn
− uλ∗

∣∣∣
ρ
→ |u∗ − uλ∗ |ρ,

choosing ρ > L̄, we find that |u∗ − uλ∗ |ρ = 0, which means that

uλ∗(t) = u∗(t) for all t ∈ [0, θ(λ∗)− ε].

The conclusion of our theorem now follows directly from Theorem 2. Indeed, for any
sub-sequences

(
uλk

)
, using the same procedure described above, we can extract a further

sub-sequences that converges to uλ∗ on the interval [0, θ(λ∗)− ε]. Therefore, Theorem 2
applies and guarantees that, on [0, θ(λ∗) − ε], the entire sequence

(
uλk

)
converges to

uλ∗ .

For any ε > 0, we denote

Bε := θ−1([2ε, ∞)) = {λ > 0 : θ(λ) ≥ 2ε}.

In the following two results, for some ε > 0 and λ ∈ Bε, we establish certain properties
of the solutions uλ over the interval [0, θ(λ) − ε]. Since λ belongs to Bε, it follows that
θ(λ)− ε ≥ ε > 0.

Lemma 3. Assume that conditions (h1) and (h2) hold. Then, for each ε > 0, there is a continuous
function

τε : Bε → (0, ∞),

such that
|uλ(t)| ≤ τε(λ) for all t ∈ [0, θ(λ)− ε],

and every λ ∈ Bε.

Proof. Let ε > 0 be fixed with Bε nonempty, λ ∈ Bε and t ∈ [0, θ(λ)− ε]. Using the integral
form (5) of uλ, straightforward computations yield,

|uλ(t)| ≤ M1 +
∫ t

0
| f (s, uλ(s), λ)− f (s, 0, λ)|,

where

M1 = |u0(λ)|+
∫ θ(λ)−ε

0
| f (s, 0, λ)| ds.

From (h2), there exists L(λ, ε) > 0, such that

| f (s, x, λ)− f (s, 0, λ)| ≤ L(λ, ε)|x|,

for all s ∈ [0, θ(λ)− ε] and all x ∈ R. Thus,

|uλ(t)| ≤ M1 + L(λ, ε)
∫ t

0
|uλ(s)| ds. (12)

Using Grönwall’s lemma in (12) gives

|uλ(t)| ≤ M1e(θ(λ)−ε)L(λ,ε) := τε(λ) for all t ∈ [0, θ(λ)− ε],

while the continuity of λ 7→ θ(λ), L(λ, ε) ensures that τε is continuous.
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In the next result, we prove an important relation between the solutions uλ and
the integral.

Theorem 4. For every ε > 0, the mapping ξ : Bε → R,

ξ(λ) :=
∫ θ(λ)−ε

0
uλ(s) ds,

is continuous.

Proof. Let ε > 0 such that Bε is nonempty, and let (λk) ⊂ Bε be a sequence with λk → λ

as k → ∞. Clearly, λ ∈ Bε as the set Bε is closed. Lemma 2 guarantees that uλk converges
uniformly to uλ on the interval [0, θ(λ)− ε]. Therefore, using Lemma 3, we have

|ξ(λk)− ξ(λ)| ≤
∫ θ(λ)−ε

0

∣∣uλk (s)− uλ(s)
∣∣ds +

∣∣∣∣∫ θ(λk)−ε

θ(λ)−ε

∣∣uλk (s)
∣∣ds

∣∣∣∣ (13)

≤
∫ θ(λ)−ε

0

∣∣uλk (s)− uλ(s)
∣∣ds + τε(λk)|θ(λk)− θ(λ)|.

Since the continuity of τε ensures that the sequence (τε(λk)) is uniformly bounded, we
deduce that the right-hand side of inequality (13) converges to zero, implying that ξ(λk)

converges to ξ(λ). Finally, since the above result holds for any sequence within Bε, we
conclude our proof.

2.2. The Continuity of φ.

In this subsection, we prove that the mapping φ defined in (4) is well defined and
continuous. As noted in Remark 1, assumptions (h1) and (h2) alone are insufficient to
guarantee that φ is well-defined on (0, ∞). Thus, we introduce the next growth condition
on the function f , aligning it with the typical model described in Example 2 from below.

(h3) There exists a constant a > 1 such that, for all λ > 0, one has

| f (t, x, λ)| ≤ |x|
a(θ(λ)− t)

+ Cλ

for all t ∈ [0, θ(λ)) and all x ∈ R, where Cλ ≥ 0 and the map λ 7→ Cλ is continuous.

Lemma 4. Under assumptions (h1)–(h3) , for any sequence of positive real numbers (λk) converg-
ing to some λ > 0, and for every ε > 0, there exists δ = δ(ε) > 0 and k0 = k(ε), such that∣∣∣∣∫ θ(λk)

θ(λk)−δ
uλk (s) ds

∣∣∣∣ < ε for all k ≥ k(ε).

Proof. Assume the contrary. Then, we may find a sequence (λk) with λk > 0 for all k,
λk → λ > 0 as k → ∞, and ε > 0, such that, for any δ, let it be δn = 1

n and any k0, say
k0 = n (n ∈ N), there is kn ≥ n, such that∣∣∣∣∣

∫ θ(λkn)

θ(λkn)−δn
uλkn

(s) ds

∣∣∣∣∣ ≥ ε. (14)

From (5) and (h3), one has

∣∣∣uλkn
(t)

∣∣∣ ≤ C +
∫ t

0

|uλkn
(s)|

a(θ(λkn)− s)
ds, (15)
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for all n and all t ∈ [0, θ(λkn)), where

C = sup
n∈N

{
|u0(λkn)|+ θ(λkn)Cλkn

}
< ∞.

Applying Grönwall’s lemma to (15) yields∣∣∣uλkn
(t)

∣∣∣ ≤ C exp
(∫ t

0

1
a(θ(λkn)− s)

ds
)

= C
θ(λkn)

1/a

(θ(λkn)− t)1/a ,

for all t ∈ [0, θ(λk)). Consequently,∣∣∣∣∣
∫ θ(λkn)

θ(λkn)−δn
uλkn

(s) ds

∣∣∣∣∣ ≤ C̃δ
a−1

a
n , (16)

where
C̃ = C a

a − 1
sup
n∈N

{
θ(λkn)

1/a
}

.

The conclusion follows immediately passing to limit in (16) with n → ∞, which leads
to a contradiction with (14). The required proof is thus completed.

Theorem 5. Assume that conditions (h1)–(h3) are satisfied. Then, the mapping φ : (0, ∞) → R,

φ : (0, ∞) → R, φ(λ) =
∫ θ(λ)

0
uλ(s) ds

is well-defined and continuous.

Proof. Note that, for each λ > 0, the integral

∫ θ(λ)

0
uλ(s)ds

is convergent. Indeed, following the same steps as in the proof of Lemma 4, we conclude
that, for each λ > 0, there are positive real numbers c1, c2, such that

|uλ(t)| ≤
c1

(θ(λ)− t)1/a + c2, (17)

for all t ∈ [0, θ(λ)). Consequently, integrating relation (17) from 0 to θ(λ) gives

∫ θ(λ)

0
|uλ(s)|ds ≤ c3θ(λ)

a−1
a + c4 < ∞,

where c3, c4 are constants dependent on λ. Thus, φ is well-defined.
To prove its continuity, consider any sequence (λk) with λk > 0 for all k, λk → λ > 0

as k → ∞, and any ε > 0. Then, from Lemma 4, there exists δ′ > 0 and k0, such that∣∣∣∣∫ θ(λk)

θ(λk)−δ′
uλk (s)ds

∣∣∣∣ < ε for all k ≥ k0. (18)
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Additionally, since the integral given φ(λ) is convergent, we can find δ′′ > 0, such
that [7] (p. 51) ∣∣∣∣∫ θ(λ)

θ(λ)−δ′′
uλ(s)ds

∣∣∣∣ < ε. (19)

Denote δ := min{δ′, δ′′}. Based on Lemma 3, the mapping

λ 7→
∫ θ(λ)−δ

0
uλ(s)ds

is continuous. Consequently, we find k1, such that∣∣∣∣∫ θ(λk)−δ

0
uλk (s)ds −

∫ θ(λ)−δ

0
uλ(s)ds

∣∣∣∣ ≤ ε for all k ≥ k1. (20)

Thus, from (18)–(20), one has∣∣∣∣∫ θ(λk)

0
uλk (s)ds −

∫ θ(λ)

0
uλ(s)ds

∣∣∣∣ ≤ ε +

∣∣∣∣∫ θ(λk)

θ(λk)−δ
uλk (s)ds

∣∣∣∣+ ∣∣∣∣∫ θ(λ)

θ(λ)−δ
uλ(s)ds

∣∣∣∣
≤ 3ε,

for all k ≥ max{k0, k1}. This proves that φ(λk) → φ(λ). The conclusion is now immediate
since the convergent sequence (λk) was arbitrarily chosen.

Theorem 5 leads immediately to the following controllability result when a lower
solution and an upper one are known.

Theorem 6. Assume that conditions (h1)–(h3) hold and that there exist λ, λ > 0, such that

φ(λ) < p and φ
(
λ
)
> p.

Then, there is λ∗, intermediate between λ and λ, such that ψλ∗(uλ∗) = p.

Proof. The conclusion follows directly by applying Darboux’s intermediate value theorem
to the continuous function φ (see, e.g., [18] (Theorem 4.23)).

3. Approximate Solving of the Control Problem
Starting from the lower and upper solutions λ, λ, one can approximate λ∗ by using

the following algorithm (Algorithm 1). For a similar use of this method, we refer the reader
to [19].

Algorithm 1: Bisection algorithm

Step 0 (initialization): k := 0, λ0 := λ, λ0 := λ.

Step k (k ≥ 1) : compute λ := λk−1+λk−1
2 ;

• If φ(λ) = p, then λ∗ = λ and we are finished;
• If φ(λ) < p, then set λk := λ and λk := λk−1 and repeat Step k with k := k + 1;
• If φ(λ) > p, then set λk := λk−1 and λk := λ and repeat Step k with k := k + 1;

Stop criterion: if |φ(λ)− p| ≤ ε, then λ ≃ λ∗ (with error ε).

We note that this step-by-step algorithm iteratively approximates the control solution.
At each step, based on the obtained feedback, either the subsolution or the supersolution
is improved.
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Theorem 7. Under assumptions (h1)–(h3), the bisection algorithm is convergent to a solution λ∗

of the control problem.

Proof. If the algorithm does not stop after a finite number of steps, then it generates two
bounded and monotone (so convergent) sequences, (λk) and

(
λk

)
, which in addition satisfy

∣∣λk − λk
∣∣ = ∣∣λ − λ

∣∣
2k (k ≥ 0), (21)

φ(λk) < p, φ
(
λk

)
> p. (22)

From (21), the two sequences have the same limit denoted λ∗, while from (22), in virtue
of the continuity Theorem 5, we obtain

φ(λ∗) ≤ p and φ(λ∗) ≥ p.

Hence, φ(λ∗) = p as desired.

Example 2. A typical example of function f satisfying conditions (h1)–(h3) is

f (t, x, λ) =
x

a(λ − t)
, (23)

where a > 1. Clearly, θ(λ) = λ. If in addition we take u0(λ) = λ− 1
a , we obtain the unique

solution of problem (1),

uλ(t) =
1

(λ − t)
1
a

.

Therefore,

φ(λ) =
∫ λ

0
uλ(s) ds =

a
a − 1

λ
a−1

a ,

which is well-defined and continuous on (0, ∞).

We conclude this example with some numerical simulations for the function f defined
in (23), with a = 3. Our aim is to determine λ∗ such that φ(λ∗) = 3. The exact value is
known to be λexact = 2

3
2 . For the lower and upper solutions of the control problem, we

take λ = 1 and λ = 4, respectively, while the tolerance ε is chosen to be ε = 10−6.
In Figure 1, the blue curve represents the error between φ(λ) and p = 3, where λ at

each step k is λ := λk−1+λk−1
2 , while the orange curve represents the difference between the

calculated value of λ and the exact value λexact. After 18 iterations, the approximate value
of the control is found to be

λ∗ = 2.828848838806.

In Figure 2, the graph of uλ is plotted for the last three values of λ obtained from the
bisection algorithm (those corresponding to the lowest error in the previous figure). We see
that, for λ = 2.82, the graph of the function uλ almost overlaps with the graph of uλexact .
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Figure 1. Error decay in the bisection method.

Figure 2. Approximate solution uλ vs. exact solution uλexact .

Remark 2. The conclusion of Theorem 5 clearly remains valid under assumptions (h1)–(h3),
if, instead of the functionals ψλ, we consider the functionals

ψ̄λ(u) =
∫ θ(λ)

0
|u(s)| ds,

and instead of φ we correspondingly take

φ̃(λ) =
∫ θ(λ)

0
|uλ(s)| ds.
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Moreover, we can extend this result to Lp type functionals of the form

ψ̃λ(u) =
(∫ θ(λ)

0
|u(s)|p ds

) 1
p

,

where 1 ≤ p < ∞. In this case, if we replace (h3) by condition

(h3’) , there exists a constant a > p such that, for all λ > 0, one has

| f (t, x, λ)| ≤ |x|
a(θ(λ)− t)

+ Cλ,

for all t ∈ [0, θ(λ)) and all x ∈ R, where Cλ ≥ 0 and the map λ 7→ Cλ is continuous.

4. Extension to Fractional Differential Equations
The above results can be generalized to fractional differential equations with mov-

ing singularities. Such problems more accurately describe various physical, biological,
or medical processes (see, e.g., [20–23]). Therefore, our results related to problem (1) can be
extended to the following problem:cDαu(t) = f (t, u(t), λ), t ∈ [0, θ(λ))

u(0) = u0(λ),

where cDα is the Caputo fractional derivative and 0 < α < 1. As shown in the literature,
the above problem is equivalent to the Voltera integral equation:

uλ(t) = u0(λ) +
1

Γ(α)

∫ t

0
(t − s)α−1 f (s, u(s), λ)ds.

Note that, in our case, the control problem remain unchanged, i.e., find λ such that

∫ θ(λ)

0
uλ(s)ds = p.

Since our entire analysis is grounded in the integral form of the Cauchy problem,
we can easily extend the proof steps to address this more general case. The flexibility
of the integral formulation allows for the adaptation of our methods without significant
modifications. By imposing conditions similar to those outlined in (h1) and (h2), we can
rigorously establish the controllability of the problem.

5. Conclusions
The analyzed control problem in this paper is atypical in several aspects: (a) it refers

to equations with singularity; (b) the singularity itself depends on the control variable;
(c) the controllability condition involves the moving singularity. All these aspects make the
analysis much more complex and adapted to the specifics of the problem. The working
techniques can also be taken into account for the investigation of other types of singular
equations and controllability conditions, including singular partial differential equations
(see, e.g., [6]). We believe and anticipate that the ideas and techniques used in this article
will have the high degree of suitability for the specifics of each individual problem in
future research.
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