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Abstract

In this paper, we determine an exact solution to the governing equations in

spherical coordinates for an inviscid, incompressible fluid. This solution describes

a steady, purely azimuthal equatorial flow with an associated free surface. Using

functional analytic techniques, we demonstrate that if a free surface is known

beforehand, the variations in pressure needed to achieve this surface implicitly

define the shape of the free surface in a unique way.
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1 Introduction

This paper focuses on developing an exact solution for the governing equations of
geophysical fluid dynamics (GFD) governing inviscid, incompressible, and stratified
fluid dynamics in the equatorial region. Specifically, we investigate a steady purely
azimuthal flow. Our approach ensures accuracy by consistently employing spherical
coordinates, thereby avoiding any simplifications to the geometry within the govern-
ing equations. Additionally, within these equations, we incorporate the complexities
of Coriolis and centripetal forces, along with the surface tension resulting in highly
nonlinear dynamics [1–3].
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This study builds upon recent significant advancements in the field. In [1, 4],
the authors shown for the first time that exact solutions to the complete govern-
ing equations of geophysical fluid dynamics (GFD) can be formulated using spherical
coordinates, representing purely azimuthal, depth-varying flows. These solutions are
capable of modeling both the equatorial undercurrent (EUC) and the Antarctic Cir-
cumpolar Current (ACC). Initially, these solutions describe purely homogeneous fluids
without stratification. Subsequently, in works by the authors [7, 8], exact equato-
rial flow solutions allowing for stratification were developed. These solutions, while
relatively simple, feature fluid density varying linearly with depth and remaining inde-
pendent of latitude. Finally, in [9], the authors established the existence of solutions
in the context of general stratification, a paper that the present work aims to build
upon and enhance.

In previous works (see, e.g., [6, 9, 10]), the existence and uniqueness of the free
surface are guaranteed only for pressure variations close to the pressure required to
achieve a flat, undisturbed surface. The novelty of this paper is that if a free surface γ is
known beforehand, a similar conclusion holds: sufficiently small variations in pressure
from the value required to obtain γ lead to a unique free surface. From a physical
point of view, such a result is expected, as small variations in pressure that determine
a smooth enough free surface should also result in a similarly smooth free surface.

2 Preliminaries

Throughout this paper we employ spherical coordinates (r, θ, φ), where r represents
distance to the sphere’s center, θ ranges from 0 to π (with π

2 − θ denoting latitude),
and φ spans from 0 to 2π (longitude). Notably, the North and South poles correspond
to θ = 0 and π, respectively, while the Equator lies at θ = π

2 . Unit vectors in this
system, denoted as er, eθ, and eφ, provide directional references, with eφ from West
to East and eθ from North to South.

The equations describing the motion of an inviscid and incompressible flow are
comprised in the Euler equations and, respectively, mass conservation equation. In
spherical coordinates, they are given by

ut + uur +
v

r
uθ +

w

r sin θ
uφ −

1

r
(v2 + w2) = −

1

ρ
pr + Fr

vt + uvr +
v

r
vθ +

w

r sin θ
vφ +

1

r
(uv − w2 cos θ) = −

1

ρ

1

r
pθ + Fθ

wt + uwr +
v

r
wθ +

w

r sin θ
wφ +

1

r
(uw + vw cot θ) = −

1

ρ

1

r sin θ
pφ + Fφ,

(1)

and
1

r2
∂

∂r
(ρr2u) +

1

r sin θ

∂

∂θ
(ρv sin θ) +

1

r sin θ

∂(ρw)

∂φ
= 0. (2)

Here, u = uer + veθ + weφ is the velocity field, p(r, θ, φ) represents the pressure,
(Fr , Fθ, Fφ) the body-force vector, while ρ = ρ(r, θ) stands for the density distribution.

To ensure an accurate analysis of fluid dynamics in specific locations, it is crucial
to consider the effects of Earth’s rotation. Additional terms must be integrated into
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the Euler equations to account for these effects, namely the Coriolis force 2Ω×u and
the centripetal acceleration Ω× (Ω× r), where

Ω = Ω(er cos θ − eθ sin θ),

Here, Ω ≈ 7.29 × 10−5 rad/s represents the Earth’s constant rate of rotation and
r = rer. These forces are incorporated into the Euler equations. Consequently, with
gravity given by the vector (−g, 0, 0), and the latter two quantities combined,

2Ω× u+Ω× (Ω× r) = 2Ω (−w sin θer − w cos θeθ + (u sin θ + v cos θ)eφ)

− rΩ2
(

sin2 θer + sin θ cos θeφ
)

,

the Euler’s equations become

uur +
v

r
uθ +

w

r sin θ
uφ −

1

r
(v2 + w2)− 2Ωw sin θ − rΩ2 sin2 θ = −

1

ρ
pr − g

uvr +
v

r
vθ +

w

r sin θ
vφ +

1

r
(uv − w2 cos θ)− 2Ωw cos θ − rΩ2 sin θ cos θ = −

1

ρ

1

r
pθ

uwr +
v

r
wθ +

w

r sin θ
wφ +

1

r
(uw + vw cot θ) + 2Ω (u sin θ + v cos θ) = −

1

ρr sin θ
pφ,

(3)

where we considered ut = vt = wt = 0. In addition to the mass conservation and
Euler equations, the movement of water is influenced by boundary conditions. As the
fluid extends infinitely in all horizontal directions, it encounters two boundaries: the
rigid flat bed and the water’s free surface. On the bed where r = d(θ, φ), we apply the
kinematic boundary condition,

u =
v

r
dθ +

w

r sin θ
dφ,

while on the free surface where r = R + h(θ, z), we impose the kinematic boundary
condition

u =
v

r
hθ +

w

r sin θ
hφ.

Additionally, on the free surface, we have the dynamic condition

p = P (θ, φ) + σ∇ · ~n. (4)

Here, σ represents the coefficient of surface tension, and ~n is the outward-pointing unit
normal vector. The function h is currently unknown and will be determined later.

Next, we recall two well known results from literature used in this paper. We start
with the Implicit Function Theorem, which ensures the existence of nontrivial zeros
of a C1 mapping between Banach spaces (see, e.g., [11]).
Theorem 1. Let X,Y, Z be Banach spaces, U ⊂ X × Y an open neighbourhood of a
point (x0, y0) ∈ X × Y and let f : U → Z be a continuous functions. Assume that:
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i) The function f satisfies f(x0, y0) = 0.
ii) The partial derivative fy(x0, y0) exists and is an linear homeomorphism from Y to

Z.

Then, there exists an open neighbourhood U1 of x0 and a unique g : U1 → Y

continuous function such that g(x0) = y0 and f(x, g(x)) = 0 on U1.
The second result concerns the existence and uniqueness of solution for a second

order differential equation (see, e.g., [12, 13]).
Theorem 2. The initial value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y′(t0) = 0, (5)

where p, q, and g are continuous functions on an open interval I that contains the
point t0, has a unique solution. In addition, the solution y(t) is given by

y(t) = yp +

∫ t

t0

g(s) (Φ1(t)W1(s) + Φ2(t)W2(s))

W (Φ1, Φ2)(s)
ds,

where yp is a particular solution of (5), {Φ1, Φ2} is a basis for the solutions of the
homogeneous equation y′′+p(t)y′+q(t)y = 0,W is the Wronskian of the basis {Φ1, Φ2}
and Wi (i=1,2) is the Wronskian obtained by replacing the i−th column of W with
the column vector (0, 1).

3 Main result

In the sequel, we assume an azimuthal flow, i.e., the velocity field u = uer+veθ+weφ
satisfies u = v = 0 and w = w(r, θ). Also, we assume the free surface satisfy h = h(θ)
while the flat bed is a fixed real value d. Consequently, the mass conservation equation
(2) is automatically satisfied, while the Euler’s equations (3) takes the form











−w2

r − 2Ωw sin θ − rΩ2 sin2 θ = − 1
ρpr − g,

−w2

r cot θ − 2Ωw cos θ − rΩ2 sin θ cos θ = − 1
ρrpθ,

0 = − 1
ρ

1
r sin θpφ,

(6)

or equivalently










ρ(r,θ)
r (w +Ωr sin θ)

2
= pr + gρ(r, θ)

ρ(r, θ) cot θ (w +Ωr sin θ)
2
= pθ

0 = pφ.

(7)

From the last relation, we obtain the independence of the pressure with respect to φ,
i.e., p = p(r, θ). If we denote

Z = Z(r, θ) :=
1

r
(w +Ωr sin θ)2 ,
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and differentiate the first equation with respect to θ and the second one with respect
to r, we deduce

(ρZ)θ − (ρr cot θZ)r = gρθ,

which yields
−(r cos θ)Ur + (sin θ)Uθ = (r sin θ)gρθ(r, θ), (8)

where U(r, θ) = ρ(r, θ) (w +Ωr sin θ)
2
.

Employing the method of characteristics and following steps similar to those in
[9, 10], we infer

w(r, θ) = −Ωr sin θ +
1

√

ρ(r, θ)

(

F (r sin θ) + gr sin θ

∫ f(θ)

0

ρθ(r̄(s), θ̄(s))ds

)
1

2

, (9)

where

r̄(s) =
r sin θ

2
(es + e−s), θ̄(s) = arccos

(

1− e2s

1 + e2s

)

, f(θ) =
1

2
ln

1− cos θ

1 + cos θ
,

and F (ξ) := U
(

ξ, π2
)

is an arbitrary smooth function. Note that

θ̄(f(θ)) = θ and r̄(f(θ)) = r.

To proceed with the determination of the pressure, one sees that

pr + gρ(r, θ) =
ρ(r, θ)

r
(w +Ωr sin θ)

2
(10)

=
1

r

(

F (r sin θ) + gr sin θ

∫ f(θ)

0

ρθ(r̄(s), θ̄(s))ds

)

,

and

pθ = cot θU(rθ) = cot θ

(

F (r sin θ) + gr sin θ

∫ f(θ)

0

ρθ(r̄(s), θ̄(s))ds

)

. (11)

After integration from a (an arbitrary constant) to r in (10), we infer

p(r, θ) = C(θ) − g

∫ a

r

ρ(s, θ) ds+

∫ r sin θ

a sin θ

F (s)

s
ds+ F(s, θ) dy, (12)

where C(θ) := p(a, θ) is an arbitrary smooth function and

F(ξ, θ) =

∫ f(θ)

0

gρθ

(

ξ
es + e−s

2
, θ̄(s)

)

ds.
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To determine the function C, we differentiate with respect to θ in (12), which gives

pθ = C′(θ)− g

∫ r

0

ρθ(s, θ)ds + cot θ (F (r sin θ)− F (a sin θ))

+ F(r sin θ)r cos θ − F(a sin θ)a cos θ +

∫ r sin θ

a sin θ

Fθ(s, θ)ds.

Since

Fθ(s, θ) = f ′(θ)gρθ

(

s̄ (f(θ))

sin θ
, θ̄(f(θ))

)

=
g

sin θ
ρθ

( s

sin θ
, θ
)

,

we obtain
∫ r sin θ

a sin θ

Fθ(s, θ)ds =

∫ r

a

gρθ(s, θ)ds.

Hence, the expression of pθ becomes

pθ = C′(θ) + cot θ[F (r sin θ)− F (a sin θ)] + F(r sin θ)r cos θ − F(a sin θ)a cos θ. (13)

Consequently, from (11) and (13), we deduce

C′(θ) = F (a sin θ) cot θ + F (a sin θ)a cos θ. (14)

Finally, relations (12) and (14) yields,

p(r, θ) = b− g

∫ r

a

ρ(s, θ)ds+

∫ r sin θ

a sin θ

(

F (s)

s
+ F(s, θ)ds

)

(15)

+

∫ θ

π
2

(F (a sin s) cot s+ F(a sin s)a cos s) ds, (16)

where a, b are arbitrary real numbers.

3.1 The dynamic condition

In the sequel, we analyze the dynamic boundary condition (4) on the free surface
r = R+h(θ). Since we assumed an azimuthal flow and h is independent of the depth,
relation (4) takes the form

p(R+ h(θ), θ) = P (θ) + σ∇ · ~n, (17)

where P is the known pressure on the surface. Since the implicit equation of the free
surface is H(r, θ, z) := r−R− h(θ) = 0 and the gradient in spherical coordinates has
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the representation (see, e.g., [15, Chapter 1]),

∇ = er∂r + eθ
1

r
∂θ + eφ

1

r sin θ
∂φ,

we obtain the normal derivative to the surface H as

~N = er −
hθ

r
eθ.

Therefore, the pointing unit normal vector is

~n =
~N

‖ ~N‖
=

r
√

r2 + hθ
2
· ~N =

r
√

r2 + hθ
2
er −

hθ
√

r2 + hθ
2
eθ.

Whence, given the the divergence in spherical coordinates (see, e.g., [15, Chapter 1]),

∇ · w =
1

r2
∂r(r

2wr) +
1

r sin θ
∂θ(sin θ wθ) +

1

r sin θ
∂φwφ,

one has,

∇ · ~n =
1

r2
∂r(r

2nr) +
1

r sin θ
∂θ(nθ sin θ) (18)

=
2r2 + 3h2θ
(r2 + h2θ)

3

2

−
rhθθ

(r2 + h2θ)
3

2

−
cot θ hθ

r(r2 + h2θ)
1

2

=
2(R+ h(θ))2 + 3h2θ
((R + h(θ))2 + h2θ)

3

2

−
(R+ h(θ))hθθ

((R+ h(θ))2 + h2θ)
3

2

−
cot θ hθ

(R+ h(θ))((R + h(θ))2 + h2θ)
1

2

.

Finally, from (17) and (18), we find the pressure on the free surface in the form of a
Bernoulli type problem

P (θ) = b− g

∫ R+h(θ)

a

ρ(s, θ)ds+

∫ (R+h(θ)) sin θ

a sin θ

(

F (s)

s
+ F(s, θ)ds

)

(19)

+

∫ θ

π
2

(F (a sin s) cot s+ F(a sin s)a cos s) ds

− σ
2(R+ h(θ))2 + 3h2θ
((R + h(θ))2 + h2θ)

3

2

+ σ
hθθ(R+ h(θ))

((R + h(θ))2 + h2θ)
3

2

+ σ
cot θ hθ

(R+ h(θ))((R + h(θ))2 + h2θ)
1

2

.
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3.2 The existence of solutions for the free surface

To have a meaningful comparison of the physical quantities, we start by non-
dimensionalizing equation (19). For this, we denote with Patm the pressure correspond-
ing to an undisturbed free surface, i.e., the pressure P obtained by setting h ≡ 0 in
(19). Subsequently, we denote

℘ =
P

Patm
and h =

h

R
. (20)

Whence, relation (19) together with (20), leads us to the functional equation

F(h, ℘) = 0, (21)

where

F(h, ℘) = −℘ (θ)−
g

Patm

∫ R(1+h(θ))

a

ρ (s, θ) ds (22)

+
1

Patm

∫ R(1+h(θ)) sin θ

a sin θ

(

F (s)

s
+ F (s, θ)

)

ds

−
σ

RPatm

(

(2 (1 + h)2 + 3 h2θ
((1 + h)2 + h

2
θ)

3

2

−
hθθ(1 + h)

((1 + h)2 + h
2
θ)

3

2

−
cot θ hθ

(1 + h) ((1 + h)2 + h
2
θ)

1

2

)

+ ϕ (θ) ,

and

ϕ (θ) =
b

Patm
+

1

Patm

∫ θ

π/2

(F (a sin s) cot s+ F (a sin s) a cos s) ds.

Our goal is to establish a relationship between the pressure variations at the free
surface and the shape of the surface, which corresponds to finding a nontrivial solu-
tion to the functional equation (21). To achieve this, we assume the existence of a
smooth enough ”trivial” free surface, denoted by γ̄, which is derived from specific
measurements. The non-dimensionalized pressure ℘γ required to maintain this shape
is obtained by substituting h with γ = γ̄

R in (22).
Remark 1. If γ̄ = 0, then ℘γ represents the pressure required to maintain a flat,
undisturbed free surface.

Let

Cγ =
{

u ∈ C2
[

π
2 − ε, π2 + ε

]

: u
(

π
2

)

= γ
(

π
2

)

, u′
(

π
2

)

= γ′
(

π
2

)}

,

where ε = 0.016 corresponds to a strip approximately 100 km wide around the Equator
[5]. Clearly, F defines a continuously differentiable map

F : Cγ × C
[

π
2 − ε, π2 + ε

]

→ C
[

π
2 − ε, π2 + ε

]

.
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In the subsequent, we analyze the Fréchet derivative of F with respect to the first
argument. To this aim, we have

F(th+ γ, ℘γ)− F(γ, ℘γ) = −
g

Patm

∫ R(1+th+γ)

R(1+γ)

ρ(s, θ)ds

+
1

Patm

∫ R(1+th+γ) sin θ

R(1+γ) sin θ

(

F (s)

s
+ F (s, θ)

)

ds

− (J (th+ γ)− J (γ)) ,

where

J(v) :=
σ

RPatm

(

2(1 + v)2 + 3v2θ
((1 + v)2 + v2θ)

3

2

−
vθθ(1 + v)

((1 + v)2 + v2θ)
3

2

−
cot θ vθ

(1 + v)((1 + v)2 + v2θ)
1

2

)

.

Using the mean value theorem, we easily derive

lim
t→0

1

t

(

−
g

Patm

∫ R(1+th+γ)

R(1+γ)

ρ(s, θ)ds

)

+
1

Patm

∫ R(1+th+γ) sin θ

R(1+γ) sin θ

(

F (s)

s
+ F (s, θ)

)

ds

= ψ(θ)h,

where

ψ(θ) = −
Rg

Patm
ρ (R (1 + γ) , θ) +

R sin θ

Patm

(

F (R (1 + γ) sin θ)

R (1 + γ) sin θ
+ F (R (1 + γ) sin θ, θ)

)

=
ρ(R(1 + γ), θ)

Patm

(

−gR+ (w(R(1 + γ), θ) + ΩR(1 + γ) sin θ)2
)

.

To compute the derivative of J in γ, we denote

a (t) =
2(1 + th+ γ)2 + 3 (thθ + γθ)

2

(

(1 + th+ γ)2 + (thθ + γθ)
2
)

3

2

,

b (t) =
(thθθ + γθθ) (1 + th+ γ)

(

(1 + th+ γ)2 + (thθ + γθ)
2
)

3

2

,

c (t) =
cot θ ( thθ + γθ)

(1 + th+ γ)
(

(1 + th+ γ)2 + (thθ + γθ)
2
)

1

2

.

Since a, b, c are smooth functions around 0, one has

lim
t→0

1

t
(J (th+ γ)− J (γ)) =

σ

RPatm
(a′ (0)− b′ (0)− c′ (0)) .
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Simple computations yield

a′ (0) =
4h(1 + γ) + 6hθγθ

((1 + γ)2 + γ2θ )
3

2

− 3
(

2 (1 + γ)
2
+ 3γ2θ

) (h (1 + γ) + hθγθ)

((1 + γ)2 + γ2θ )
5

2

,

b′ (0) =
hθθ(1 + γ) + γθθh

((1 + γ)2 + γ2θ)
3

2

− 3γθθ(1 + γ)
(h (1 + γ) + hθγθ)

((1 + γ)2 + γ2θ )
5

2

,

c′ (0) = cot θ
hθ

(1 + γ)
(

(1 + γ)
2
+ γ2θ

)
1

2

− cot θ
hγθ

(1 + γ)
2
(

(1 + γ)
2
+ γ2θ

)
1

2

− cot θ
2γθ (h (1 + γ) + hθγθ)

(1 + γ)
(

(1 + γ)2 + γ2θ

)
3

2

Finally,
DhF (γ, ℘γ) (h) = τ1hθθ + τ2hθ + τ3h, (23)

where

τ1 =
σ

RPatm

1 + γ

((1 + γ)2 + γ2θ )
3

2

,

τ2 =
σ

RPatm

−3γ3θ + 3γθγθθ(1 + γ)

((1 + γ)2 + γ2θ )
3

2

+
σ

RPatm

cot θ
(

(1 + γ)
2
− γ2θ

)

(1 + γ)
(

(1 + γ)
2
+ γ2θ

)
3

2

,

τ3 =
σ

RPatm

−2(1 + γ)3 − 8γ2θ (1 + γ)

((1 + γ)2 + γ2θ )
5

2

−
σ

RPatm

γθθγ
2
θ − 2γθθ(1 + γ)2

((1 + γ)2 + γ2θ )
5

2

,

+
σ

RPatm
cot θ

−γ3θ + γθ (1 + γ)
2

(1 + γ)
2
(

(1 + γ)
2
+ γ2θ

)
3

2

+ ψ.

Theorem 3. The Fréchet derivative of F with respect to h, given in (23), is a linear
homeomorphism.

Proof. Clearly DhF (γ, ℘γ) is linear and continuous. Thus, if one can prove that it is
a bijection, the Inverse Theorem guarantees that its inverse is also continuous (see,
e.g., [16], [17]). The bijectivity of DhF (γ, ℘γ) is equivalent with proving that for any
g ∈ C

[

π
2 − ε, π2 + ε

]

, the initial value problem











τ1uθθ + τ2uθ + τ3u = 0,

u
(

π
2

)

= γ
(

π
2

)

,

u′
(

π
2

)

= γ′
(

π
2

)

(24)

has a unique solution. Since τ1 6= 0 and τ2, τ2 are continuous functions on
[

π
2 − ε, π2 + ε

]

, we employ Theorem 2 to obtain the conclusion.
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Our main result of this paper follows from Theorem 1 and Theorem 3, that is,
Theorem 4. For any sufficiently small perturbation of ℘ from ℘γ, there exists a
unique h ∈ Cγ such that (21) holds.
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