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1. INTRODUCTION

In the sequel, X will always denote a metric space with the metric d, x, a
fixed point from X, and Y a subset of X such that x, € Y. If fis a real-valued
function defined on X, denote

I ly = sup{l f(x) — fF(I/d(x, y): x, ye ¥, x # p}. (1.1

A Lipschitz function on X is a function f: X — R such that || /]|, < oo.
Denote by Lip, X the Banach space of all Lipschitz functions on X which
vanish at x, , with the norm || f|| = || flx . Put also

Y' = {fifeLip, X, /|y = Ol (1.2)

A Lipschitz extension of a function fe Lip, ¥ is a function F e Lip, X
such that F |, = fand || Flly = || flly . It is known (see, ¢.g., [2]) that every
feLip, Y has a Lipschitz extension in Lip, X.

For a subset ¥ of X and x € X we put

d(x, Y) = inf{d(x, y): y € Y. (1.3)

Now, let E be a normed linear space, G a nonempty subset of E, x an
element from F, and

Po(x) ={yeG:(lx —y| = d(x, G)}. (1.4)

An element from P¢(x) is called a best approximation to x from G. If M is
a subset of F we say that G is M-proximinal if P(x) == @, for all xe M.
If Pgs(x) contains exactly one element for every x e M, then G is called
M-chebyshevian. If the set G is E-proximinal (respectively E-chebyshevian)
then we say, simply, that G is proximinal (respectively chebyshevian).
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We say that a linear subspace Z of E has the property (U} if every
continuous linear functional on Z has a unique Hahn—Banach extension to £
(i.e., linear and norm preserving) [6]. Let us denote by £* the conjugate space
of F and by Z% the annihilator of the subspace Z in £*, i.e.,

7b = {peE* ¢, = O} (1.5

Phelps [6] showed that the subspace 7 of E has property (U} if and only if
its annihilator Z is chebyshevian. This result can be extended to Lipschitz
functions:

THeorEM 1 {[5, Lemma 2)). Let X be a metric space, xq in X, and Y C X
such that x,€ Y. The space Y* is chebyshevian for fe Lip, X if and only if
fly e Lipy Y has a unique Lipschitz extension in Lip, X.

We also need the following lemma.

Lemma 1. Every best approximation to fe Lipy X from Y is of the forn:
f— F, where F is a Lipschitz extension of f |y to X.
Proof. Suppose F is a Lipschitz extension of /1y to X. Then, by I35,

P

Theorem 2 and Lemma 1], we get
= =By =Fly = |flly =d(f, )

Conversely, if ge Y+ is a best approximation to f, then |f— gy =
d(f. Y5 = | flly and (f — g) |y = f|, . Therefere F = ' — g is a Lipschitz
extension of f'ly .

2. MAIN THEOREM

A metric space X is called uniformly discrete if there exists a number
8 > 0, such that d(x,y) > 6 for all x, y e X with x & 3. The following
theorem appears in [5], in the hypothesis that ¥ has an accumulation point
in X. The main result is:

THEOREM 2. Let X, x, , and Y be as in Theorem 1. Suppose, further, thar ¥
is nonuniformly discrete. If every fe Lip, Y has a unique Lipschitz extension.
then Y = X (or equivalently Y+ = {0}).

Proof. Since Y is nonuniformly discrete, for every n e N, there exist
X,. .= 7Y, x, = y,such that d(x,, , »,) < l/n. Defining f,; X — R bv

Folxy = d(x, x,) — d(x, v,) — d(xg. x,) + dlxy- 1) n=123..
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we have
Julxg) =0, n=1273,..,
-—2d(xn » yn) < fn(xn) = _d(xn > yn) - d(xo > x'n) _|_ d(x() ’ yn)
<0, n=1,273,...,
0 <f’n(yn) = d(xn ] yn) - d(xo s xn) + d(xo s yn)
< 2d(xn > .V'n)a n=1, 2: 37-"7
I fullx = sup{l d(x, x,.) — d(x, y,) — d(y, x,) + d(¥, ya)lfd(x, ):
x,ye¥, x £yt <2, n=1273..
so that f, e Lip, X forn = 1,2, 3,....
Let a, = d(xy, y,) — d(xy, X,), and suppose that the set / = {ne N:
a, < O}isinfinite, say I = {n;: j € N}. Then, we have Ju %) =0, fn]_(x.,,j) <0,

Ju(¥n) =0, j = 1,2,3,.... Now, we consider the sequence {i};} of functions
2 fu (X) — [0, 1] defined by

lpj(t) =1, ! <f'n,-(xnl-)»
= t/fnj(xnj)7 fnj-(xn,-) <t < 0 :fn]-(xo),
=0, t =0,

forj =1,2,3,...Putting g, = ¢; ofn,_ , we have
H q; ”Y > l l/‘/(fn,(‘cnj)) - ll‘j(ﬁz,»(ynl))'/d(x'nj > J’nj) 2 n;.
By [5, Corollary 2] it follows that
d(x, Y) < (sup{(fn(¥): y € V1 — inf{ify(fo (¥): y € YDI21 45 l¥)
= 1/21g;lly) < 1/n; — 0,

sothat xe Y, for all x e X, thatis ¥ = X.

By Theorems 1 and 2, we have

CoRrOLLARY 1. Suppose that Y is nonuniformly discrete. Then Y1 is
chebyshevian in Lipy X if and only if Y+ = {0}.

We can also prove the following result.

THEOREM 3. Let X, x,, and Y be as in Theorem 1. If (Y1)L has the property
(U) then every f e Lip, Y has a unique Lipschitz extension F € Lip, X.

Proof. Follows from [8, Corollary 3.1.b)] and the above Theorem 1.

CoROLLARY 2. Let X, x,, and Y be as in Theorem 1. Suppose that Y is

nonuniformly discrete. If (YD) has the property (U), then Y = X (or equiva-
lently Y+ = {0}).
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3. EXAMPLES

(a) Let X =1[0,1},d(x,») =|x—y|,x =0,and ¥ = {0, 1}. Then
every fe Lipy{0, 1} has a unique Lipschitz extension F & Lip,[0, 1], namely,
F(x) = f(I)x. This example shows that the supposition that Y is non-
uniformly discrete is essential in Theorem 2.

(b} Let e Lip,[0, i] and let ¥ be the set of points 0 = x, < x; < -
<< X,y = 1. Then, we have:

THEOREM 4. The following conditions are equiralent:
(1°y Y= is f~chebyshevian,
2% NSy = lxe, Xpea 3 fll, 6 =0, 1, 2,07,
where [x1, Xega 5 f1 = (f (e — FO0 D/ (0 — 20
Proof. (1°) = (2°) Obviously,
L{xy =[xy, Xppq 5 fIX — xp) + f(x0), xe(xp, Xpa) K =0, 1.1
3.1
is a Lipschitz extension of £y and || fily =[xy, xoa 1 f1, A =0, 1,.., .
Suppose that &, 0 < &k, << mis such that || iy > B ;1. We have
to consider the following cases:
(D flxr) <flrgn),
(1) flxe) > fxuan)s
(i) F(x) = F(Xue0):

If condition (i) holds, put z; = x; -+ (f(x, ) — F(xp )i /1y and define
the function F;: [0, 1] — R by

Fly) = L{x). xe{0, 11 — {Xko s -‘f,z.-o-lla
= f(xko) =1 Ay (x — v\'z;(,), Xe (.-‘fl.-” s 71 (3.2}
= (¥, X €{zy , Xpge1)-

It is easy to see that F; is a Lipschitz extension of /|, , distinct from Z,
and then, by Theorem I, Y% is not f~chebyshevian.

In case (ii) the proof proceeds similarly. If condition (iii) holds, put
Z, = (2ka + xkuq)/?a and define

Fy(xy = L{x), xe]0, 1] — {xi.'(, - —\"/:‘,Hl
= flxn,) + 1 Flly (x — xp). X € (X, » 22l (3.3)
= .f(xl.'m-l) - “ /ﬂ”Y (x - xluu+1)a Xe (Z‘_’. H x!(U —1‘}'

640’19 3-3
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Then F, is a Lipschitz extension of f|y, different from L. By Theorem 1,
Y+ is not f~chebyshevian.

(20) = (10) If l[xl., s Xkl ’f]\ = HfHY for k= 0’ 19 27-'-’ n, then the
function L defined by (3.1) is the only Lipschitz extension of f|y .

A consequence of Theorem 4 is:

COROLLARY 3. Let Y be the set of points 0 = x, << X3 < *** < Xpq =1,
feLipJ0, 1] and
K ={hhelip,[0,1], h(x}) = f(xp), k =0,1,2,....,0 -+ 1}. (3.4

Then Y- is K~chebyshevian if and only if Y= is f~chebyshevian.

(c) Let C'[0, 1] be the space of all continuously differentiable functions
on [0, 1] and let Y be the set of points 0 = x; < x; <+ < x,,; = 1. Put

Z = €0, 1] N Lip,[0, 11, W = C0,1]1n Y- (3.5)
For fe Z, we have
[/ Mo = max{] f'(x)i: x [0, 1]}- (3.6)
Let us define the function set S by
S={hheZ [x., X1 FlXpi1 > Xpa 5 B
# —hly,k=0,1,2,...,n— 1} 3.7
We need the following two lemmas:
LemMa 2. Let [p,qlCR, f(X) =ax + b, a,beR, a >0, and M > a.
Then there exists a function g € CYp, q] such that f(p) = g(p), f(q) = g(q),

f'(p) =M (f'(g)=M), f'(q) =2g'(q) (f(p) =g (p) and max{| g'(x)|:
xelp,ql} =M.

Proof. The proof of the lemma is obvious from Fig. 1:

¢

FIGURE 1
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(AC) si(x) = f(p) + M(x —p),
(BC) sx(x) = flg) — M{x —q),
(DE)  s5(x) = f(r) — M(x —r), re(p, g

Lesva 3. Ifhe S, then h |y has at least one Lipschitz extension H= Z.

Proof. letheSand kgeN, 0 < kg < n - 1, such that

(VP
[0}
S

[Xkg » Xpprr 3 AT = | hly.
By the definition of S, we have
— iy < IDxvpgas>xgs A SThiv.
— iRy < [Xigers Xpgea s Al < A1)y

Applving Lemma 2 to the intervals [xr, 15 X ] and [x;,U+1 , x,v,ofz], iwice
it follows that there exists a function H; in Clxp i, X 10] such that

max{| H,'(x)l: x e [Xe,-15 Xpgelt = [ 1 ]ly and which interpolates the funciion
/1 at the points Xeg—1 0 Xny > Xipr1 > Xngrz -

Applying Lemma 2 to the intervals [x;.x,4, i=0,1,....&4 — 2.
kg + 2...., 2, we get a function H € Z, which is a Lipschitz extension of /4 7\
to [0, 1]

If [xz, » Xp1 s h] = —]l & |ly we can proceed analogousiy.

THEOREM 5. The subspace W is S proximinal and for each hel the
Sfollowing equality holds:

N2

d(h, W) = d(h, Y*). (3.9;

Proof. Let heS. By Lemma 3, /i |y has a Lipschitz extension H e Z.
Then, # — H e W, and this is a best approximation to £, from Y-
But then

dlh, YY) <d(h, W)y < || h — {(h — H)l|y = dik, ¥5),
so that

I —(h — H)llx = d(h, W) = d(h, T*).

Remark 1. Let feZ — S; that is, there exists 0 << k; <<n -+ 1 such
that

[Xp1 s Xny s Fxs, Xp s f1= — \f\\zy .

In this case, it is possible that no Lipschitz extension o f exists in Z: e.g..
for f{x) = —4x% 4+ 4x, Y = [0, 1, 1} we have

[0, 3 1% 1: f1 = —4



228 COSTICA MUSTATA

and the only Lipschitz extension of f|y is

F(x) = 2x, xel0, 3),
= _z(x - I)* Xe [%9 l]a

which, obviously, does not belong to Z.

By Lemmas 2 and 3, every 4 € .S has a best approximation in W, namely,
h — H, where H is a Lipschitz extension of /A, such that HeZ. We can
show that every best approximation is of this form (Lemma 1). It follows that
W is chebyshevian for 4 € Sif and only if % |, has a unique Lipschitz extension
in Z. A class of such functions is given by

Sy = heS hix) =h()xe, k=0,1.2,n+1. G101

THEOREM 6. W is S;-chebyshevian.

Proof. If heS;, then the unique Lipschitz extension of /% in Z is
H(x) = h(l)x. Therefore A(x) — A(1)x is the only element of best approxi-
mation for 4 in W.

Remark 2. J. Favard and recently de Boor [1] considered a problem
analogous to that in Example (c).
(d) Finally, let X be a metric space of finite diameter (i.e., sup{d(x, v):
X, y € X} < o), x, a fixed element in X, and Y a subset of X such that x, € Y.
Let fe Lip, X and let G(f) be the set of best approximation to f from Y.
We can define on Lip, X the uniform norm || - ||,: Lip, X — R by

I/l = sup{| f(x)|: xe X},  felip, X. (3.12)

Obviously, the set G(f) C Y* is closed, convex, and bounded, for every
feLip, X. We consider the following problems: Find g, , g* € G(f) such
that

IS — gxlly = inf{l| /' — g iz g € GO} (3.13)

and
1f—g*llu = sup{llf — gll.: g € G(f)}; (3.14)

i.e., find the nearest and the farthest point to fin G( f), in the uniform norm.

Since every element in G(f) is of the form f — F, where F is a Lipschitz
extension of /|y it follows that the problems (3.13) and (3.14) are equivalent
to the following problems: Find two Lipschitz extensions F, and F* of f|,
such that

| Fylle = inf{]| F|,: F is a Lipschitz extension of f |y} (3.13)

and
| F* I, = sup{|| F||,: Fis a Lipschitz extension of f|;}.  (3.14)
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THEOREM 6. The infimum (3.13) is attained for every g, :f — F,. such
thar Fy is a Lipschitz extension of f |y and || F. |, = | f |y |, . The set of these
extensions is nonempiy.

Proof. 1If Fis a Lipschitz extension of /], then

Fly Zsup{i F(y)irye Yy =sup{l f(»iye Y ={/lrl..
Therefore, if || Fy ll, = 1.f 'yl then inf{|| F{,: F is a Lipschitz extension of
Flel =2 Fele = I1f lvile - Now, if Fis a Lipschitz extension of f|; . we
define a new Lipschitz function F, by

F, (A\) = ]\fyi ]xu if F(’C) > f]Yl\u P
= F(x) i = flylh, S Fl) <l 1305
= =S¥l if Flxy <—f iYH._z-

it is easy to see that F, is a Lipschitz extension of /|y such that | 7., =

Jflu-

TaroreM 7. The supremum (3.14) is attained for [— Fy* or 7 - F,*
or for both of these funcrions, where

Fif(x) = inf{[f(p) = |fly dlx.v)]: 3 Y. {3.16;
and
Fy#() = sup{lf(3) — [/ Iy dx, 01y & Y (3.17)

Proof. By [2], F1* and F,* are Lipschitz extensions of /|y and obviously.
for every Lipschitz extension F of /|, we have

FoX(x) << F(x) < FiF (o, XE X,
From these inequalities, it follows that
“FHU < max(“Fl*‘,u " “—‘F'E*‘[u)‘

Remark 3. Dunham [3] has considered a problem similar to the problem
in (d) in the case when G(f) has the betweenness property (see {3] for
definition). In (d) the set G(f), being convex, has the betweenness property.
We found explicitly the nearest and the farthest points of /'in G(/).
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