Best Approximation and Unique Extension of Lipschitz Functions

COSTICĂ MUSTĂŢA

Institutul de Calcul, Cluj-Napoca, R. S. Romania

Communicated by Lothar Collatz

Received July 21, 1975

1. Introduction

In the sequel, X will always denote a metric space with the metric d, x_0 a fixed point from X, and Y a subset of X such that $x_0 \in Y$. If f is a real-valued function defined on X, denote

$$||f||_{Y} = \sup\{|f(x) - f(y)|/d(x, y): x, y \in Y, x \neq y\}.$$
 (1.1)

A Lipschitz function on X is a function $f: X \to R$ such that $||f||_X < \infty$. Denote by Lip₀ X the Banach space of all Lipschitz functions on X which vanish at x_0 , with the norm $||f|| = ||f||_X$. Put also

$$Y^{\perp} = \{ f : f \in \operatorname{Lip}_0 X, f|_Y = 0 \}. \tag{1.2}$$

A Lipschitz extension of a function $f \in \text{Lip}_0 Y$ is a function $F \in \text{Lip}_0 X$ such that $F|_Y = f$ and $||F||_X = ||f||_Y$. It is known (see, e.g., [2]) that every $f \in \text{Lip}_0 Y$ has a Lipschitz extension in $\text{Lip}_0 X$.

For a subset Y of X and $x \in X$ we put

$$d(x, Y) = \inf\{d(x, y): y \in Y\}. \tag{1.3}$$

Now, let E be a normed linear space, G a nonempty subset of E, x an element from E, and

$$P_G(x) = \{ y \in G : ||x - y|| = d(x, G) \}.$$
 (1.4)

An element from $P_G(x)$ is called a best approximation to x from G. If M is a subset of E we say that G is M-proximinal if $P_G(x) \neq \emptyset$, for all $x \in M$. If $P_G(x)$ contains exactly one element for every $x \in M$, then G is called M-chebyshevian. If the set G is E-proximinal (respectively E-chebyshevian) then we say, simply, that G is proximinal (respectively chebyshevian).

We say that a linear subspace Z of E has the property (U) if every continuous linear functional on Z has a unique Hahn-Banach extension to E (i.e., linear and norm preserving) [6]. Let us denote by E^* the conjugate space of E and by Z^{\perp} the annihilator of the subspace Z in E^* , i.e.,

$$Z^{\mathbb{L}} = \{ \varphi \in E^*; \ \varphi \mid_Z = 0 \}. \tag{1.5}$$

Phelps [6] showed that the subspace Z of E has property (U) if and only if its annihilator $Z^{\mathbb{A}}$ is chebyshevian. This result can be extended to Lipschitz functions:

THEOREM 1 ([5, Lemma 2]). Let X be a metric space, x_0 in X, and $Y \subseteq X$ such that $x_0 \in Y$. The space Y^{\perp} is chebyshevian for $f \in \text{Lip}_0 X$ if and only if $f|_Y \in \text{Lip}_0 Y$ has a unique Lipschitz extension in $\text{Lip}_0 X$.

We also need the following lemma.

LEMMA 1. Every best approximation to $f \in \text{Lip}_0 X$ from Y^{\perp} is of the form f - F, where F is a Lipschitz extension of $f|_Y$ to X.

Proof. Suppose F is a Lipschitz extension of $f|_Y$ to X. Then, by [5, Theorem 2 and Lemma 1], we get

$$\|f-(f-F)\|_{X}=\|F\|_{X}=\|f\|_{Y}=d(f,\,Y^{\perp}).$$

Conversely, if $g \in Y^{\perp}$ is a best approximation to f, then $\|f - g\|_{X} = d(f, Y^{\perp}) = \|f\|_{Y}$ and $(f - g)|_{Y} = f|_{Y}$. Therefore F = f - g is a Lipschitz extension of $f|_{Y}$.

2. Main Theorem

A metric space X is called uniformly discrete if there exists a number $\delta > 0$, such that $d(x, y) \ge \delta$ for all $x, y \in X$ with $x \ne y$. The following theorem appears in [5], in the hypothesis that Y has an accumulation point in X. The main result is:

Theorem 2. Let X, x_0 , and Y be as in Theorem 1. Suppose, further, that Y is nonuniformly discrete. If every $f \in \text{Lip}_0 Y$ has a unique Lipschitz extension. then $\overline{Y} = X$ (or equivalently $Y^{\perp} = \{0\}$).

Proof. Since Y is nonuniformly discrete, for every $n \in \mathbb{N}$, there exist $x_n, y_n \in Y$, $x_n \neq y_n$ such that $d(x_n, y_n) < 1/n$. Defining $f_n: X \to R$ by

$$f_n(x) = d(x, x_n) - d(x, y_n) - d(x_0, x_n) + d(x_0, y_n), \quad n = 1, 2, 3, ...$$

we have

$$f_{n}(x_{0}) = 0, \qquad n = 1, 2, 3, ...,$$

$$-2d(x_{n}, y_{n}) \leq f_{n}(x_{n}) = -d(x_{n}, y_{n}) - d(x_{0}, x_{n}) + d(x_{0}, y_{n})$$

$$\leq 0, \qquad n = 1, 2, 3, ...,$$

$$0 \leq f_{n}(y_{n}) = d(x_{n}, y_{n}) - d(x_{0}, x_{n}) + d(x_{0}, y_{n})$$

$$\leq 2d(x_{n}, y_{n}), \qquad n = 1, 2, 3, ...,$$

$$||f_{n}||_{X} = \sup\{|d(x, x_{n}) - d(x, y_{n}) - d(y, x_{n}) + d(y, y_{n})|/d(x, y):$$

$$x, y \in Y, x \neq y\} \leq 2, \qquad n = 1, 2, 3, ...,$$

so that $f_n \in \text{Lip}_0 X$ for n = 1, 2, 3, ...

Let $a_n = d(x_0, y_n) - d(x_0, x_n)$, and suppose that the set $I = \{n \in N: a_n \leq 0\}$ is infinite, say $I = \{n_j: j \in N\}$. Then, we have $f_{n_j}(x_0) = 0, f_{n_j}(x_{n_j}) < 0$, $f_{n_j}(y_{n_j}) \geq 0, j = 1, 2, 3, \dots$. Now, we consider the sequence $\{\psi_j\}$ of functions $\psi_j: f_{n_j}(X) \to [0, 1]$ defined by

$$\psi_j(t) = 1,$$
 $t < f_{n_j}(x_{n_j}),$
 $= t/f_{n_j}(x_{n_j}),$ $f_{n_j}(x_{n_j}) \le t < 0 = f_{n_j}(x_0),$
 $= 0,$ $t \ge 0.$

for j = 1, 2, 3,.... Putting $q_j = \psi_j \circ f_{n_j}$, we have

$$||q_j||_Y \geqslant |\psi_j(f_{n_j}(x_{n_j})) - \psi_j(f_{n_j}(y_{n_j}))|/d(x_{n_j}, y_{n_j}) \geqslant n_j.$$

By [5, Corollary 2] it follows that

$$d(x, Y) \leq (\sup\{\psi_j(f_{n_j}(y)): y \in Y\} - \inf\{\psi_j(f_{n_j}(y)): y \in Y\})/(2 \| q_j \|_Y)$$

= $1/(2 \| q_j \|_Y) \leq 1/n_j \to 0$,

so that $x \in \overline{Y}$, for all $x \in X$, that is $\overline{Y} = X$.

By Theorems 1 and 2, we have

COROLLARY 1. Suppose that Y is nonuniformly discrete. Then Y^{\perp} is chebyshevian in $Lip_0 X$ if and only if $Y^{\perp} = \{0\}$.

We can also prove the following result.

THEOREM 3. Let X, x_0 , and Y be as in Theorem 1. If $(Y^{\perp})^{\perp}$ has the property (U) then every $f \in \text{Lip}_0 Y$ has a unique Lipschitz extension $F \in \text{Lip}_0 X$.

Proof. Follows from [8, Corollary 3.1.b)] and the above Theorem 1.

COROLLARY 2. Let X, x_0 , and Y be as in Theorem 1. Suppose that Y is nonuniformly discrete. If $(Y^{\perp})^{\perp}$ has the property (U), then $\overline{Y} = X$ (or equivalently $Y^{\perp} = \{0\}$).

3. Examples

- (a) Let X = [0, 1], d(x, y) = |x y|, $x_0 = 0$, and $Y = \{0, 1\}$. Then every $f \in \text{Lip}_0\{0, 1\}$ has a unique Lipschitz extension $F \in \text{Lip}_0[0, 1]$, namely, F(x) = f(1)x. This example shows that the supposition that Y is non-uniformly discrete is essential in Theorem 2.
- (b) Let $f \in \text{Lip}_0[0, 1]$ and let Y be the set of points $0 = x_0 < x_1 < \cdots < x_{n+1} = 1$. Then, we have:

THEOREM 4. The following conditions are equivalent:

(1°) Y^{\perp} is f-chebyshevian,

$$(2^{\circ}) \quad ||f||_{Y} = [[x_{k}, x_{k+1}; f]|, k = 0, 1, 2, ..., n,$$

where
$$[x_k, x_{k+1}; f] = (f(x_{k+1}) - f(x_k))/(x_{k+1} - x_k)$$
.

Proof. $(1^{\circ}) \Rightarrow (2^{\circ})$ Obviously,

$$L(x) = [x_k, x_{k+1}; f](x - x_k) + f(x_k), \qquad x \in (x_k, x_{k+1}), \ k = 0, 1, ..., n,$$
(3.1)

is a Lipschitz extension of $f|_{Y}$ and $||f||_{Y} \geqslant |[x_{k}, x_{k+1}; f]|, k = 0, 1, ..., n$. Suppose that k_{0} , $0 \leqslant k_{0} < n$ is such that $||f||_{Y} > |[x_{k_{0}}, x_{k_{0}+1}; f]|$. We have to consider the following cases:

- (i) $f(x_{k_0}) < f(x_{k_0+1}),$
- (ii) $f(x_{k_0}) > f(x_{k_0+1}),$
- (iii) $f(x_{k_0}) = f(x_{k_0+1})$.

If condition (i) holds, put $z_1 = x_{k_0} + (f(x_{k_0+1}) - f(x_{k_0}))/||f||_Y$ and define the function $F_1: [0, 1] \to R$ by

$$F_{1}(x) = L(x), x \in [0, 1] - [x_{k_{0}}, x_{k_{0}-1}],$$

$$= f(x_{k_{0}}) + ||f||_{Y}(x - x_{k_{0}}), x \in (x_{k_{0}}, z_{1}),$$

$$= f(x_{k_{0}}), x \in [z_{1}, x_{k_{0}+1}).$$
(3.2)

It is easy to see that F_1 is a Lipschitz extension of $f|_Y$, distinct from L, and then, by Theorem 1, Y^{\perp} is not f-chebyshevian.

In case (ii) the proof proceeds similarly. If condition (iii) holds, put $z_2 = (2x_{k_0} + x_{k_0+1})/3$ and define

$$F_{2}(x) = L(x), x \in [0, 1] - [x_{k_{0}}, x_{k_{0}+1}],$$

$$= f(x_{k_{0}}) + ||f||_{Y}(x - x_{k_{0}}), x \in (x_{k_{0}}, z_{2}],$$

$$= f(x_{k_{0}+1}) - ||f||_{Y}(x - x_{k_{0}+1}), x \in (z_{2}, x_{k_{0}-1}).$$
(3.3)

Then F_2 is a Lipschitz extension of $f|_Y$, different from L. By Theorem 1, Y^{\perp} is not f-chebyshevian.

 $(2^{\circ}) \Rightarrow (1^{\circ})$ If $|[x_k, x_{k+1}; f]| = ||f||_Y$ for k = 0, 1, 2, ..., n, then the function L defined by (3.1) is the only Lipschitz extension of $f|_Y$.

A consequence of Theorem 4 is:

COROLLARY 3. Let Y be the set of points $0 = x_0 < x_1 < \cdots < x_{n+1} = 1$, $f \in \text{Lip}_0[0, 1]$ and

$$K = \{h: h \in \text{Lip}_0 [0, 1], h(x_k) = f(x_k), k = 0, 1, 2, ..., n + 1\}.$$
 (3.4)

Then Y^{\perp} is K-chebyshevian if and only if Y^{\perp} is f-chebyshevian.

(c) Let $C^1[0, 1]$ be the space of all continuously differentiable functions on [0, 1] and let Y be the set of points $0 = x_0 < x_1 < \cdots < x_{n+1} = 1$. Put

$$Z = C^{1}[0, 1] \cap \text{Lip}_{0}[0, 1], \qquad W = C^{1}[0, 1] \cap Y^{\perp}.$$
 (3.5)

For $f \in \mathbb{Z}$, we have

$$||f||_{[0,1]} = \max\{|f'(x)| \colon x \in [0,1]\}. \tag{3.6}$$

Let us define the function set S by

$$S = \{h: h \in Z, [x_k, x_{k+1}; h][x_{k+1}, x_{k+2}; h]$$

$$\neq - \|h\|_Y^2, k = 0, 1, 2, ..., n - 1\}.$$
(3.7)

We need the following two lemmas:

LEMMA 2. Let $[p, q] \subseteq R$, f(x) = ax + b, $a, b \in R$, a > 0, and M > a. Then there exists a function $g \in C^1[p, q]$ such that f(p) = g(p), f(q) = g(q), f'(p) = M (f'(q) = M), f'(q) = g'(q) (f'(p) = g'(p)) and $\max\{|g'(x)|: x \in [p, q]\} = M$.

Proof. The proof of the lemma is obvious from Fig. 1:

(AC)
$$s_1(x) = f(p) + M(x - p),$$

(BC)
$$s_2(x) = f(q) - M(x - q),$$

(DE)
$$s_3(x) = f(r) - M(x - r), r \in (p, q).$$

LEMMA 3. If $h \in S$, then $h \mid_Y$ has at least one Lipschitz extension $H \in Z$.

Proof. Let $h \in S$ and $k_0 \in N$, $0 \le k_0 < n + 1$, such that

$$[x_{k_0}, x_{k_0+1}; h] = \|h\|_Y. (3.8)$$

By the definition of S, we have

$$-\|h\|_{Y} < [x_{k_0-1}, x_{k_0}; h] \leqslant \|h\|_{Y}.$$

$$-\|h\|_{Y} < [x_{k_0+1}, x_{k_0+2}; h] \leqslant \|h\|_{Y}.$$

Applying Lemma 2 to the intervals $[x_{k_0-1}, x_{k_0}]$ and $[x_{k_0+1}, x_{k_0+2}]$, twice it follows that there exists a function H_1 in $C^1[x_{k_0-1}, x_{k_0+2}]$ such that $\max\{|H_1'(x)|: x \in [x_{k_0-1}, x_{k_0+2}]\} = ||h||_Y$ and which interpolates the function h at the points $x_{k_0-1}, x_{k_0}, x_{k_0+1}, x_{k_0+2}$.

Applying Lemma 2 to the intervals $[x_i, x_{i+1}]$, $i = 0, 1, ..., k_0 - 2$, $k_0 + 2, ..., n$, we get a function $H \in \mathbb{Z}$, which is a Lipschitz extension of h^{\perp_F} to [0, 1].

If $[x_{k_0}, x_{k_0+1}; h] = -\|h\|_Y$ we can proceed analogously.

Theorem 5. The subspace W is S proximinal and for each $h \in S$ the following equality holds:

$$d(h, W) = d(h, Y^{\perp}). \tag{3.9}$$

Proof. Let $h \in S$. By Lemma 3, $h|_Y$ has a Lipschitz extension $H \in Z$. Then, $h - H \in W$, and this is a best approximation to h, from Y^{\perp} .

But then

$$d(h, Y^{\perp}) \leq d(h, W) \leq ||h - (h - H)||_{X} = d(h, Y^{\perp}),$$

so that

$$||h - (h - H)||_X = d(h, W) = d(h, Y^{\perp}).$$

Remark 1. Let $f \in Z - S$; that is, there exists $0 \le k_1 < n+1$ such that

$$[x_{k_1-1}, x_{k_1}; f][x_{k_1}, x_{k_1+1}; f] = -\|f\|_Y^2.$$

In this case, it is possible that no Lipschitz extension to f exists in Z; e.g., for $f(x) = -4x^2 + 4x$, $Y = [0, \frac{1}{2}, 1]$ we have

$$[0, \frac{1}{2}; f][\frac{1}{2}, 1; f] = -4$$

and the only Lipschitz extension of $f|_{Y}$ is

$$F(x) = 2x,$$
 $x \in [0, \frac{1}{2}),$
= $-2(x-1),$ $x \in [\frac{1}{2}, 1],$

which, obviously, does not belong to Z.

By Lemmas 2 and 3, every $h \in S$ has a best approximation in W, namely, h - H, where H is a Lipschitz extension of h, such that $H \in Z$. We can show that every best approximation is of this form (Lemma 1). It follows that W is chebyshevian for $h \in S$ if and only if $h \mid_Y$ has a unique Lipschitz extension in Z. A class of such functions is given by

$$S_1 = \{h: h \in S, h(x_k) = h(1) \ x_k, k = 0, 1, 2, ..., n+1\}.$$
 (3.11)

THEOREM 6. W is S_1 -chebyshevian.

Proof. If $h \in S_1$, then the unique Lipschitz extension of h in Z is H(x) = h(1)x. Therefore h(x) - h(1)x is the only element of best approximation for h in W.

Remark 2. J. Favard and recently de Boor [1] considered a problem analogous to that in Example (c).

(d) Finally, let X be a metric space of finite diameter (i.e., $\sup\{d(x,y): x, y \in X\} < \infty$), x_0 a fixed element in X, and Y a subset of X such that $x_0 \in Y$. Let $f \in \text{Lip}_0 X$ and let G(f) be the set of best approximation to f from Y^{\perp} . We can define on $\text{Lip}_0 X$ the uniform norm $\|\cdot\|_u$: $\text{Lip}_0 X \to R$ by

$$||f||_u = \sup\{|f(x)|: x \in X\}, \quad f \in \operatorname{Lip}_0 X.$$
 (3.12)

Obviously, the set $G(f) \subseteq Y^{\perp}$ is closed, convex, and bounded, for every $f \in \operatorname{Lip}_0 X$. We consider the following problems: Find $g_*, g^* \in G(f)$ such that

$$||f - g_*||_u = \inf\{||f - g||_u : g \in G(f)\},\tag{3.13}$$

and

$$||f - g^*||_u = \sup\{||f - g||_u : g \in G(f)\};$$
 (3.14)

i.e., find the nearest and the farthest point to f in G(f), in the uniform norm. Since every element in G(f) is of the form f - F, where F is a Lipschitz extension of $f|_{Y}$ it follows that the problems (3.13) and (3.14) are equivalent to the following problems: Find two Lipschitz extensions F_* and F^* of $f|_{Y}$ such that

$$||F_*||_u = \inf\{||F||_u: F \text{ is a Lipschitz extension of } f|_Y\}$$
 (3.13')

and

$$||F^*||_u = \sup\{||F||_u: F \text{ is a Lipschitz extension of } f|_Y\}.$$
 (3.14')

THEOREM 6. The infimum (3.13) is attained for every $g_* = f - F_{\times}$ such that F_* is a Lipschitz extension of $f|_Y$ and $||F_*||_u = ||f|_Y||_u$. The set of these extensions is nonempty.

Proof. If F is a Lipschitz extension of $f|_Y$ then

$$||F||_u \geqslant \sup\{|F(y)|: y \in Y\} = \sup\{|f(y)|: y \in Y\} = ||f|_{Y \mid u}.$$

Therefore, if $||F_*||_u = ||f|_Y||_u$ then $\inf\{||F||_u : F \text{ is a Lipschitz extension of } f|_Y\} = ||F_*||_u = ||f|_Y||_u$. Now, if F is a Lipschitz extension of $f|_Y$, we define a new Lipschitz function F_* by

$$F_{*}(x) = ||f|_{\Gamma}||_{u} \quad \text{if} \quad F(x) > ||f|_{Y}||_{u},$$

$$= F(x) \quad \text{if} \quad -||f|_{Y}||_{u} \leqslant F(x) \leqslant ||f|_{Y}||_{u}, \quad (3.15)$$

$$= -||f|_{\Gamma}||_{u} \quad \text{if} \quad F(x) < -||f|_{Y}||_{u}.$$

It is easy to see that F_* is a Lipschitz extension of $f|_Y$ such that $||F_*||_y = ||f||_y$.

THEOREM 7. The supremum (3.14) is attained for $f - F_1^*$ or $f - F_2^*$ or for both of these functions, where

$$F_1^*(x) = \inf\{[f(y) + ||f||_Y d(x, y)] : y \in Y\}, \tag{3.16}$$

and

$$F_2^*(x) = \sup\{[f(y) - ||f||_Y d(x, y)]: y \in Y\}. \tag{3.17}$$

Proof. By [2], F_1^* and F_2^* are Lipschitz extensions of $f|_Y$ and obviously, for every Lipschitz extension F of $f|_Y$ we have

$$F_2^*(x) \leqslant F(x) \leqslant F_1^*(x), \qquad x \in X.$$

From these inequalities, it follows that

$$||F||_u \leq \max(||F_1^*||_u, ||F_2^*||_u).$$

Remark 3. Dunham [3] has considered a problem similar to the problem in (d) in the case when G(f) has the betweenness property (see [3] for definition). In (d) the set G(f), being convex, has the betweenness property. We found explicitly the nearest and the farthest points of f in G(f).

REFERENCES

- C. DE BOOR, "On "Best" Interpolation," University of Wisconsin, MRC TSR No. 1426, 1974.
- J. CZIPSER AND L. GEHÉR, Extension of function satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213–220.

- 3. C. B. Dunham, Chebyshev approximation with a null space, *Proc. Amer. Math. Soc.* 41 (1973), 557~558.
- J. A. JOHNSON, Banach space of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147–169.
- C. Musrăța, Asupra unor subspații cebîșeviene din spațiul normat al funcțiilor lipschitziene, Rev. Anal Numer. Teoria Aproximației 2 (1973), 81–87.
- R. R. PHELPS, Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
- A. K. Roy, Extreme points and linear isometries of Banach space of Lipschitz functions, Canad. J. Math. 20 (1968), 1150-1164.
- 8. I. SINGER, Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale, *Edit. Acad. R. S. Romania*, București, (1967).
- 9. D. R. SHERBERT, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, *Trans. Amer. Math. Soc.* 111 (1964), 240-272.