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Let (X, d) be a metric space. A function f: X--t R is called Lipschitz if 
there exists a number M 2 0 such that 

,f(.Y) --- .f( y)l sz ML&Y, y) (1) 

for all X, y t X. The smallest constant M verifying (I) is called the norm of,f 
and is denoted by /f’ ,r . 

We have 

‘Ifs ,y ---= sup{/ f(x) - f(y)l/d(x, y) : X, y E x, x z yj. (2) 

Denote by Lip X the linear space of all Lipschitz functions on X. Actually, 
il . j X is not a norm on the space Lip X, since I& =: 0 iffis constant. 

Now let Y be a nonvoid subset of X. A norm-preserving extension of a 
function fg Lip Y to X is a function F t Lip X such that F iy =: f and 
lIfl~r- : j’ Fll,. By a result of Banach [I] (see also Czipser and Geher [2]) 
every f~ Lip Y has a norm-preserving extension F in Lip I’. Two of these 
extensions are given by 

and 
F,(x) = sup{f( y) - s,fl,Y d(.u, ~1) : .V E Y) (3) 

F,(.r) = inf{f(-r) -C ~ j- y d(x, y) : y E Y). (4) 

Every norm-preserving extension F offsatisfies 

F,(x) 5; F(x) -(- F?(x) (5) 

for all x t X (see [7]). 
Now, let X be a normed linear space and let Y be a nonvoid convex subset 

of X. Concerning the convex norm-preserving extension to X of the convex 
functions in Lip Y, we can prove the following theorem: 
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THEOREM I. If X is a normed linear space and Y a nonvoid convex subset 
of X, then every convex function f in Lip Y has a comlex norm preserving 
extension F in Lip X. 

Proof. We show that the maximal norm-preserving extension (4) off is 
also convex. Let F(x) = inf{f( y) + lifllY ~1 x - y 11 : y E Y), x1 , x, E X, y1 , 
y, E Y, and 01 E [0, I]. Then 

F(CLX, -+ (1 - a) x,) 

:< f(av1 + ( 1 - 4 Y2) + :iflly Ii ax1 + (1 - a) x2 - ay1 - (1 - a) y2 1~ 

G d(Yl) + (1 - df(Y2) -t !lfll~(~ Ii Xl - .h II + (1 - a>l! X2 - YZ II> 
= df(Yl) + II fllY II Xl - 1'1 'I) + (1 - 4(f(Y2) + IIfllY II x2 - Yz II>. 

Taking the infimum with respect to ,I’~ , y2 E Y, we obtain 

F(ol.x, 4 (I - 4 -4 < aF(x,) + (1 - a) F(x(x,), 

which shows that the function F is convex. 
In general, this extension is not unique. Indeed, let X = R, with the usual 

absolute value norm, Y = [-I, I], and f: Y--f R be given by f(x) = -x 
for x E [- I, 0] and f(x) = 2x for x E IO, 11. Then the maximal norm- 
preserving extension (4) off is given by F(x) == -2x for x E ] -co, - I[, 
F(x) = -2x for x E [- 1, O[, and F(x) = 2x for x E [0, + a[. But the function 
G(x) = -x for x E ]- co, 0[ and G(x) = 2x for x E [0, + co[ is also a convex 
norm-preserving extension off. and so is every convex combination crF + 
(I - a) G, 01 E [0, I], of the functions F and G. 

Let, as above, X be a normed linear space and Z a convex subset of X such 
that 0 E Z. Denote by Lip, Z the space 

Lip, Z = (f t Lip Z : f(0) = 01. (6) 

Then (2) is a norm on Lip, Z and Lip,, Z is a Banach space with respect to 
this norm. 

We use also the following notations: 

Kz = {f t Lip, Z : f is convex on Z}, 

-the convex cone of convex functions in Lip,, Z; 

X, = K, - ,KX , 

-the linear space generated by the cone KX ; 

(7) 

(8) 

Z,l : {fs x, : f Iz = O], (9) 

-the null space of the set Z in X, . 
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If E is a normed linear space, M a nonvoid subset of E and x t E. we 
denote by d(x, M) the distance from x to M. i.e., 

and by P,,, the metricprqjection of X onto M, i.e., 

If K is a subset of X, then the set A4 is called K-proximinal (K-Chebyshevian) if 
PM(x) # o (respectively card(P,(x)) = I), for all x E K. 

In the sequel X denotes a normed linear space and Y a convex subset of A’ 
such that 0 E Y. Tt follows that KY is a P-cone in the sense of [lo], and as a 
particular case of the results proved there, one obtains: 

THEOREM 2. (a) Iff E KX then 

(b) The space Y,’ IS K,-proximinal. For f E KX , the function g is in 
P+(f) ifand only ifg = ,f -- F, where F is a convex norm-preserving extension 
off lY. 

(c) The space Y,’ is .K,-Chebyshevian if and only if erery f E KY has a 
unique convex norm-preserving extension to X. 

Remark. Similar duality results appear in [4, 1 I] for linear functionals 
and in [6-IO] for Lipschitz functions. 

Now, we want to show that an inequality similar to (5) holds also for the 
convex norm-preserving extensions of a given convex Lipschitz function. 
For f E KY let us denote by EY”(f) the set of all convex norm preserving 
extensions off. We denote the norm . ! ,r by !! . ~’ 

THEOREM 3. If f E K, then there exist two functions F, , Fz in Eye(f) suclz 
that 

F,(x) < F(x) :< F,(x) (10) 

for all x t X and F E Eye(f). 

For the proof we need the following lemma: 

LEMMA 4. The set E,“(.f) is down,r,ard directed (with respect to the 
pointwise ordering). 
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Proof of Lemma 4. We have to show that for G1 , G, E Eye(f) there 
exists G E Eye(f) such that 

for all x E X. 

G(x) d min(GW, G&N, (11) 

If E is a linear space and 9) : E -+ R u {f co> is a function, then the strict 
epigraph of 9) is defined by 

epi’ v = {(x, a) E E x R : p(x) < a}. 

The function q~ is convex if and only if its strict epigraph is a convex subset 
of E x R (see Laurent [S, Theorem 6.1.5, Remark 6.1.61). 

For G1, G, E E#(f) put 

r =co(epi’ G, u epi’ G,), (12) 

where co(A) denotes the convex hull of the set A. 
DefineG:X-+Ru{fco}by 

G(x) = inf{a E R : (x, a) E I’), x E x. (13) 

We show that G E EYc(f) and that G verifies the inequality (1 I). The proof 
is divided into several steps. 

(i) The set r is open. Since the functions G, and G, are continuous, the 
sets epi’ G, and epi’ G2 are open, and so is their convex hull l? 

(ii) If (z, c) E I’ and d 2 c then (z, d) E r. Let z = 01x + (1 - c+) y, 
c = ala + (1 - a) b, for 01 E [0, I], (x, a) E epi’ G1 , (y, b) E epi’ G, and let 
E > 0 be an arbitrary number. Then (x, a + E) E epi’ G, and (v, b + l ) E 
epi’ G, , so that (z, c + 6) = a(x, a + 6) + (1 - a)( y, b + e) E r. 

(iii) epi’ G = r and G is a conuex function. Let (x, a) E epi’ G, i.e., 
G(x) < a. By (13) there exists b E R such that (x, b) E r and b < a. By (ii), 
(x, a) E r, proving the inclusion epi’ G C r. 

Conversely, let (x, a) E I’. By (i) I’ is open, so that there exist a neigh- 
borhood U of x and E > 0 such that U x ]a -- E, a + E[ C r. Therefore 
{x} x ]a - E, a + E[ C r and, by (13), G(x) < a -- E < a, which shows that 
(x, a) E epi’ G and r C epi’ G. 

The convexity of G follows from the above quoted result in Laurent [5]. 
(iv) We have G(x) ,( min(G,(x), G,(x)) for all x E X and G(z) = 

G,(z) = G,(z) for all z E Y. Let x E X. Then for all a > G,(x) and b > G,(x) 
we have (x, a) E epi’ G, C rand (JJ, b) E epi’ G, C I’, so that, by (13) G(x) < 
min(Gdx), G(x)). 
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Let z be in Y and c in R such that (2, c) E r. Then (z, c) 2.. II(S, U) 
(I --- ol)(y, b), for a number N E [0, I], (x, a) E epi’ G1 , and ( y, 6) E epi’ G, . 
But, by the convexity of G, and G, , Gi(z) = Gi(cux + (1 - IY) y) <: olG,(.~-) 
-t (1 - a) Gi(y) < olu $ (1 -- N) b =: c, for i =: I, 2. Taking the infimum 
with respect to all c E R such that (z, c) E r we obtain G(z) 2 G,(z) = 
G,(z). Since the converse inequality holds for all x t X, it follows G(z) 
G,(z) = G2(z), for all z E Y. 

(v) - oc < G(x) x + a3 for all .X E X. The relations (x, G,(s) - 1) t 
epi’ G, C r and (13) imply G(x) < G,(x) $ 1 < co. Suppose there exists 
x E X such that G(x) == -co. Choose an element y E Y and put z = 2y - x. 
Then, by (iv) and the convexity of G we get 

G,(y) = G(y) < 2-l(F(x) $ F(z)) = - 00, 

implying G,(y) = -. co, which is impossible. 

(vi) Equality of the norms: Ij G !j = 1, f Ivy = ,j G, 11 = /, G, /I . Since 
G jy = G, jy = f, it follows ii G 11 2 /I G, 1; . Suppose I/ G I/ > I/ G1 II . By the 
definition (2) of the norm in Lip X, there exist x, y E A’, x # y such that 
I G(x) - G(Y)I/II x - 3’ 11 > I! Gl !I , say 

I G(x) -- G(u)l/ll x - Y II = ,I G II + E, 

for an E > 0. Without loss of generality we can suppose 

G(y) - G(x) = /I G1 !j + c. 
-iF-7 

(14) 

Let ?y = {x + t( y - x) : t > 0} be the half-line determined by x and J. 
Define q~ : IO, oo[ 4 R by p(t) = t-l(G(x + t(y - x)) - G(x)). By Holmes 
[3, p. 171, the function y is nondecreasing, so that 

G(x + 0 - 4) - G(4 _ 1 
II f(Y - XII! // y _ x 1; - 9x4 > 

1 
/I y - x II - d1) 

-- G(.d - ‘(‘) = /I G 
ilY -xl! 1 /, + E 

> G(x + 0 - x)1 - G,(x) + 
II f(Y - x)ll 

E 3 

for all t >, 1. 
Therefore 

G,(x + t( y - x)) < G(x + t(y - x)> - (G(x) - G,(x) + tc /I Y - x II>, 

for all t > 1. But for t sufficiently large, G(X) - G,(x) + te j( y - x 11 > 0, so 
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that G,(x + t(y -- x)) < G(x + t(y - x)), contradicting the inequality 
G < G, (iv). 

Lemma 4 is completely proved. 

Proof of Theorem 3. Let F, be the maximal norm-preserving extension (4) 
of $ By the proof of Theorem 1, F, is convex and since F2(x) 3 F(x) for 
every norm-preserving extension F off, this is a fortiori true for the convex 
norm-preserving extensions ofj: 

Put 

E;(x) = inf{F(x) : FE &“(f)j. (15) 

To end the proof we have to show that Fl is a convex norm-preserving 
extension off. 

(i) Fl is a COI~WX function. Let x, y E X, cx E [0, 11, E ID 0 and let G, , 
G, E &“(f) be such that G,(x) < F,(x) + E and G,(y) < Fl(y) + E. Since, by 
Lemma 4, the set E,,“(f) is downward directed, there exists Ga E Eye(f) such 
that G, < G, and G3 < G, . Then 

F,(ax + (1 - 4 Y> 

< Gs(ax + (1 - 4 Y) < G(X) + (1 - 4 G(Y) 

< aG,(x) + (1 - 4 G,(Y) < &(x) -t (1 - 4 MY) + E. 

Since E > 0 is arbitrary, it follows that 

Max + (1 - 4 Y> < 6(x) + (1 - 4 F,(Y), 

i.e., the function Fl is convex. 

(ii) Fl jr = f. This is obvious since F(y) = f(y) for all y E Y and 
FE W(f). 

(iii) Equality of the norms: II Fl 11 = I/f IIy . Obviously, 1 Fl 11 3 l/f j’y . 
Let us suppose 1: Fl II > l/f Ily . Then there exists 6 > 0 such that // Fl 1; = 
II f jly + 8. By the definition of the norm in Lip X, there exist x, y E X, x f y 
such that 

(F,(Y) - F~WYll Y - x II 2 llflh + E, (16) 

where 0 < E < 6. By definition (15) of Fl , for 0 < 7 < E I/ x - y 11 , there 
exist G, , G, E E*“(f) such that G,(x) < F,(x) + 7 and G,(y) < F,(y) + 7. 
The set Eye(f) being downward directed (Lemma 4), there exists G, E Eye(f) 
such that G3 < G1 and G3 < G, . Consequently 

and 
F,(x) G G(X) < F,(x) + rl 

F,(Y) G G(Y) <NY) + T 
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or, equivalently, 

and 
0 -2. G,(x) -- F,(x) -.I 71, 

0 < G,(Y) - F,(y) --= rl. 

From these inequalities one obtains 

G&d - K(x) - (G,(Y) - F,(Y)) < G(-x) - F,(x) < 7, 

so that 

G,(Y) - G&4 > FI( Y> - F,(x) - rl. 

Taking into account (16) and (17) 

(17) 

G(Y) - G&4 > F,(Y) - F,(x) _ 
IIY - XII I/Y - XII IIY I! x/l 

But then // G, 11 > ]iflIY, in contradiction to G3 E Ey”(f). 
Theorem 3 is proved. 

Remark. Let X = R and Y = [a, 61, 0 E Y. For fE KY , let 

ml = mW/ f’@ + WI , I f’@ - ON 
and 

m2 = max(I f’(a + 011 , If’@ - ON. 

Then the minimal and maximal convex norm-preserving extensions FI and 
F, , respectively, off, are given by 

F&4 = f(x) for x E [a, b], 

= f(x) - mi(x - a) for xE]-co, a[, 

= f(x) + mi(x - 6) for x E]b, +c0[; 

i = 1,2. 
Let now X be a normed linear space, Y a convex subset of X such that 

0 E Y, and 2 a nonvoid bounded subset of X. 
Consider the space 

normed by the uniform norm 

llflz I~?6 = SUPilflz (4 : x E a. 
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Consider the following problem: 

(A) For f E K, , find two elements g, and g* in P+(f) such that 

iLflz -- 87, izllu = infil’flz - g lzllzL : g e P&f>> 
and 

I’J’I 2 - g* I z llu = Wllf’ I z - s I z IL : g E b;(f 1). 

THEOREM 5. Problem (A) has a solution for allf E Kx . 

Proof. By Theorem 2(b) every g in P+(f) has the form g = f - F for a 
convex norm-preserving extension F off lY . By Theorem 3, there exist two 
convex norm-preserving extensions FI and F, of f I Y such that 

F,CxI < F(x) < F,(x): 

for all x E X, i.e., 

f (4 - gdx) < f (4 - g(x) < f(x) - &(X), 

for all x E X, where gi = f - Fi , i = I, 2. Therefore 

min(llf L - gl Iz ~ltL , Ilf lz - g, IZ ii,) :G llf lz - g /Z :lLc 
G max(llf Iz - gl IZ ~I*( , lkf Iz - gz Iz II,>. 

It follows that a solution of Problem (A) is given by g, = gi and g* = gj , 
where i,j E {I, 2} are such that 

and 
1 f L - gi Iz !lu = min(l~f Iz - gl lz Ilu , llf Iz - g, Iz ,I,,) 

if lz - gj IZ ilu = m4.f!2 - & IZ lilc5 llf Iz - g2 IZ II,). 

REFERENCES 

1. S. BANACH, “Wstep do teorii funkji rzeczwistych,” Warszawa/Wroclav, 1951. 
2. J. CZIPSER AND L. GEHER, Extension of function satisfying a Lipschitz condition, 

Acta Math. Acad. Ski. Hungar. 6 (1953, 213-220. 
3. R. B. HOLMES, “A Course on Optimisation and Best Approximation,” Lecture Notes 

in Mathematics No. 257, Springer-Verlag, Berlin/Heidelberg/New York, 1972. 
4. I. KOLUMBAN, Ob edinstvennosti prodolienija lineinyh funkcionalov, Mathematics 

(Cluj) 4 (1962), 267-270. 
5. P. J. LAURENT, “Approximation et optimisation,” Hermann, Paris, 1972. 
6. C. MUSTQA, Asupra unor subspatii cebiseviene din spafiul normat al funciiilor 

lipschitziene, Rea. Anal. Num. Teoria Aproximaiiei 2 (1973), 81-87. 



244 COBZAS AYD MUSTiTA 

7. C. MUST~TA, 0 proprietate de monotonie a operatorului de tea mai buni aproximarie 
in spatiul functiilor lipschitziene. Rrr. Anal. Num. Troria Aproxima++ 3 (1974). 
153-160. 

8. C. MUSTATA, Asupra unicitritii preiungirii g-seminormelor continue, Reu. Anal. :Lwn. 
Teoria Apvoximafiei 2 (1973), 173-l 77. 

9. C. MUST~TA, Best approximation and unique extension of Lipschitz functions, J. 
Approximation Theory 19 (1977), 222-230. 

10. C. MUST.~TA, A characterisation of Chebyshevian subspace of Y--type, Rec. Atlal. 
Num. ThPor. Approximation 6 (1977), 51-56. 

11. R. R. PHELPS, Uniqueness of Hahn-Banach extension and unique best approximation, 
Trans. Au7er. Math. Sot. 95 (1960), 238-255. 


