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Let (X, d) be a metric space. A function f: X — R is called Lipschitz if
there exists a number M 2> 0 such that

) — f(n)] < Md(x, y) (1

for all x, y € X. The smallest constant M verifying (1) is called the norm of f
and is denoted by || f1 ;.
We have

1 flx = sup{| f(x) — f(W/d(x, y): x,ye X, x # y}. (2)

Denote by Lip X the linear space of all Lipschitz functions on X. Actually,
il - I'xis not a norm on the space Lip X, since || fi; == 01if fis constant.

Now let Y be a nonvoid subset of X. A norm-preserving extension of a
function fe Lip Y to X is a function Fe Lip X such that F|, == f and
N flly = | Fliy. By a result of Banach [1] (see also Czipser and Geher {2])
every f€ Lip Y has a norm-preserving extension F in Lip X. Two of these
extensions are given by

Fi(x) =sup{f(y) — i flydx,y): ye Y] (3)
and
Folx) = inf{f(y) + 1 flydx,y): ye Y. (4)

Every norm-preserving extension F of fsatisfies
Fi(x) << F(x) << Fy(x) (5)

for all x € X (see [7]).

Now, let X be a normed linear space and let Y be a nonvoid convex subset
of X. Concerning the convex norm-preserving extension to X of the convex
functions in Lip Y, we can prove the following theorem:

236

0021-9045/78/0243-0236%$02.00/0

Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82772797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONVEX LIPSCHITZ FUNCTIONS 237

THEOREM 1. If X is a normed linear space and Y a nonvoid convex subset
of X, then every convex function f in Lip Y has a convex norm preserving
extension F in Lip X.

Proof. We show that the maximal norm-preserving extension (4) of f is
also convex. Let F(x) = inf{f(y) -+ fllyllx —yl:ve ¥} x,x€ X, »,,
y,€ Y, and « € [0, 1]. Then

Flax; + (1 — o) x,)

L floyy + (1 — o) yp) + il flly faxy + (1 — a) xp — oy — (1 — o)
< of (y) = ) f(p) FUSr(all Xy =yl + 0 — D)l xz — »2 1)
= aolf(y) + 1 flly 1 x1 — 2D+ (0 — (f () + [ flly | x2 — 2 ).

Taking the infimum with respect to ¥, , v, € Y, we obtain
Floxy + (1 — o) xp) < aF(xy) + (1 — o) Fxy),

which shows that the function F is convex.

In general, this extension is not unique. Indeed, let X = R, with the usual
absolute value norm, ¥ = [—1, 1], and f: Y — R be given by f(x) = —x
for xe[—1,0] and f(x) = 2x for xe]0,1}]. Then the maximal norm-

preserving extension (4) of f is given by F(x) == —2x for xe€] —o0, —1],
F(x) = —2xforx e[—1, 0f, and F(x) = 2x for x € [0, + oo[. But the function
G(x) = —x for x € ]— o0, O] and G(x) = 2x for x € [0, + oo is also a convex

norm-preserving extension of f, and so is every convex combination aF -+
(I — o) G, « €10, 1], of the functions F and G.

Let, as above, X be a normed linear space and Z a convex subset of X such
that 0 € Z. Denote by Lip, Z the space

Lip, Z ={feLip Z: f(0) = 0}. (6)

Then (2) is a norm on Lip, Z and Lip, Z is a Banach space with respect to
this norm.
We use also the following notations:

K, ={feLipy Z : fis convex on Z}, 7
—the convex cone of convex functions in Lip, Z;
X, = Ky — Ky, ®
—the linear space generated by the cone K ;
Zt={feX,: flz =0}, 9)

—the null space of the set Z in X,.
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If Eis a normed linear space, M a nonvoid subset of £ and x e E, we
denote by d(x, M) the distance from xto M, i.e.,

dix, M) = inf{!! x -~y pe M
and by P, the metric projection of X onto M, i.e.,
Pulx) ={yeM:ix —y| =dx, M).

If K is a subset of X, then the set M is called K-proximinal (K-Chebyshevian) if
Pulx) # & (respectively card(Py,(x)) == 1), for all x € K.

In the sequel X denotes a normed linear space and Y a convex subset of X
such that 0 € Y. It follows that K, is a P-cone in the sense of [10], and as a
particular case of the results proved there, one obtains:

THEOREM 2. (a) If fe Ky then

‘f‘y i Yy = d(f; YcL)-

(b) The space Y, - is Ky-proximinal. For f€ Ky, the function g is in
Pyi(f) if and only if g = f — F, where F is a convex norm-preserving extension

of fly.

(¢c) The space Y * is Ky-Chebyshevian if and only if every fe Ky has a
unigue convex norm-preserving extension to X.

Remark. Similar duality results appear in [4, 11] for linear functionals
and in [6-10] for Lipschitz functions.

Now, we want to show that an inequality similar to (5) holds also for the
convex norm-preserving extensions of a given convex Lipschitz function.
For fe K, let us denote by E,*(f) the set of all convex norm preserving
extensions of /. We denote the norm | -], by !l - |

THEOREM 3. If f€ Ky then there exist two functions F, , F, in Ey(f) such
that

Fi(x) < F(x) < Fy(x) (10)
for all x e X and F € E,°(f).

For the proof we need the following lemma:

LemMMA 4. The set Ey(f) is downward directed (with respect to the
pointwise ordering).



CONVEX LIPSCHITZ FUNCTIONS 239

Proof of Lemma 4. We have to show that for G;, G, Ey°(f) there
exists G € Ey%(f) such that

G(x) < min(Gy(x), Go(x)), (1D

for all x e X.
If Eis a linear space and ¢ : E— R U {d-o0} is a function, then the strict
epigraph of ¢ is defined by

epi’ ¢ ={(x,a) e E X R: ¢(x) < a}.

The function ¢ is convex if and only if its strict epigraph is a convex subset
of E X R (see Laurent [5, Theorem 6.1.5, Remark 6.1.6]).
For G,, G, € Ey(f) put

I' =co(epi’ G, U epi’ G,), (12)

where co(A4) denotes the convex hull of the set A.
Define G: X — R U {4-o0} by

G(x)=inf{ac R: (x,a)e I}, xeX. (13)

We show that G € E,*(f) and that G verifies the inequality (11). The proof
is divided into several steps.

(i) The set I is open. Since the functions G, and G, are continuous, the
sets epi’ G, and epi’ G, are open, and so is their convex hull I,

() If z,o)el and d=c¢ then (z,d)el. Let z=ax 4+ (1 — )y,
c=oa+ (1 —a)b, for «€[0,1], (x,a)ecepi’ G;, (y,b)cepi’ G, and let
€ > 0 be an arbitrary number. Then (x,a + €)cepi’ G, and (y,b+ ¢) €
epi’ Gy,sothat (z,c + €y =alx,a+¢€) -1 — )y, b+ el

(iii) epi' G =TI and G is a convex function. Let (x, a) eepi’ G, i.e.,
G(x) < a. By (13) there exists b € R such that (x, ) € I" and b < a. By (ii),
(x, a) e I', proving the inclusion epi’ G C I,

Conversely, let (x,a)e I'. By (i) I' is open, so that there exist a neigh-
borhood U of x and e > 0 such that U X la — €, a + €[ C I'. Therefore
{x} X la — ¢, a+ €[ C I'and, by (13), G(x) < a — € < a, which shows that
(x,a)cepi’ Gand I' Cepi’ G.

The convexity of G follows from the above quoted result in Laurent [S].

(iv) We have G(x) < min(Gy(x), Go(x)) for all xe X and G(z) =
G(z) = Gy(z) for all ze Y. Let x € X. Then for all a > G,(x) and b > Gy(x)
we have (x, @) e epi’ G; C I'and (y, b) e epi’ G, C I, so that, by (13), G(x) <
min(Gy(x), Gy(x)).

640(24/3-5
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Let z be in Y and ¢ in R such that (z, ¢)e I'. Then (z, ¢) =- alx, ¢) -
(I — &)(y, b), for a number « < [0, 1], (x, @) eepi’ G, , and (¥, b) cepl’ G, .
But, by the convexity of G, and G,, G(2) = G(ax — (I — @) ¥) < xG,(x)
(1 —a)Gy) <aa+ (1 —a)b = ¢, for i=1,2. Taking the infimum
with respect to all ce R such that (z,c)e " we obtain G(z) = G\(z) ==
Gy(z). Since the converse inequality holds for all x € X, it follows G(z) -
G1(z) = G,(z),forall ze Y.

(v) —oo < Gx) <+ for all xe X. The relations (x, G({x) — 1) ¢
epi’ G, C I" and (13) imply G(x) < Gy(x) + 1 < co. Suppose there exists
x € X such that G(x) == — o0. Choose an element y € Y and put z = 2y — x.
Then, by (iv) and the convexity of G we get

Gi(y) = G(y) < 27(F(x) + F(z)) = — 0,

implying G,(y) = — o0, which is impossible.

(vi) Equality of the norms: |G| = f|y =G| =] Gl . Since
Gly = Gy |y = f, it follows || G || > Gy ;. Suppose || G| > | G, || . By the
definition (2) of the norm in Lip X, there exist x, y € X, x # y such that
| G(x) — G x =yl =1 G, say

[G(x) — GWINllx —yl =1Gl+ e

for an ¢ > 0. Without loss of generality we can suppose

G(») — G(x)
- = Gy !l . 14
HX‘}’II H 1‘+6 ()
Let ;))z = {x + t(y — x) : t == 0} be the half-line determined by x and y.
Define ¢ : 10, oo > R by ¢(t) = t-(G(x + t(y — x)) — G(x)). By Holmes
[3, p. 17], the function ¢ is nondecreasing, so that

Glx + H(y — 0)) — G(x) 1 . 1 .
Ty = BT AR T TR
G =G gy e
ly — x|
G =) — G
- ey — ) ’

forall t > 1.
Therefore

Gy(x + t(y — ) < Gx + t(y — %)) — (G(x) — Gix) + telly — x1)),

for all ¢ == 1. But for 7 sufficiently large, G(x) — Gy(x) + telly — x!1 > 0, so
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that Gy(x + #(y — x)) < G(x + t(y — x)), contradicting the inequality
G < Gy ().
Lemma 4 is completely proved.

Proof of Theorem 3. Let F, be the maximal norm-preserving extension (4)

~F +thA ~f AF Tha 1
O1 J u_y tne prooi of 1ncorem 1,1 2 is convex aud since lvo\./\} /1. \A; for

every norm-preserving extension F of f, this is a fortiori true for the convex
norm-preserving extensions of f.
Put
Fi(x) = inf{F(x) : F € Ey*(f)}. (15)

To end the proof we have to show that F; is a convex norm-preserving
extension of f.

T ot Y .11 ¢ a
\1/ 11 is a convex _/MILLELUII LU X, yEA, €U, 1], € > U an

G, € Ey¢(f) be such that G,(x) << Fy(x) + e and G,(y) < Fy(y) + e. Since, by
Lemma 4, the set E,¢(f) is downward directed, there exists G € Ey¢(f) such
that G; << G, and G < G, . Then

Filax + (1 — o) y)

< Gylax + (1 — o) ) < aGy(x) + (1 — o) Gy(y)
< aGy(x) + (1 — o) Go(y) < aFy(x) -+ (1 — ) Fy(y) + e

Since € > 0 is arbitrary, it follows that

Fy(ex + (1 — @) y) < aFy(x) + (1 — o) Fy(y),

i.e., the function F, is convex.

(i) F,|y =f This is obvious since F(y) = f(p) for all ye Y and
Fe Ey(f).

(iii) Equallty of the norms: | Fy || =| flly. Obviously, | F;{ > Hfi‘

T at Lo~ —
J_/\,l UD DHPPUO\/ [ 11 -~ HJ“HY Th\.nll Lhere eXlStS 8 > 0 Du\ah that “1 1 [! _—

i flly -+ 8. By the definition of the norm in Lip X, there exist x, ye X, x £ y
such that

(F(y) — FQ))/lly — x| Z I flly + & (16)

where 0 << e < 8. By definition (15) of F,, for 0 < n << el x — y]||, there
exist G, , G, € Ey*(f) such that Gy(x) < Fy(x) + 5 and Gy(y) < Fi(y) + 7.
The set Ev¢(f) being downward directed (Lemma 4), there exists G, € Ev(f)
such that G; << G, and G; << G, . Consequently

Fi(x) < Gy(x) < F(x) + 1
and

F(y) <Gi(y) <F(y -+
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or, equivalently,

0 = Gylx) — Fy(x) <,
and
0 < Gy(y) — Fu(y) <.

From these inequalities one obtains

Gy(x) — Fi(x) — (Ga(y) — Fi()) < Ga(x) — Fi(x) <,

so that
G3(y) — Gy(x) > Fi(y) — Fy(x) — . a7
Taking into account (16) and (17)
Go(y) — Gs(®) _ B —F(x) 7
ly—=xi =y —xl Iy — xil

= Ufly + e = T =i fly.

X

But then || G, || > || f|ly , in contradiction to G5 € Ex°(f).
Theorem 3 is proved.

Remark. Let X =Rand Y = [a,b],0c Y. For fe Ky, let

my = min(| f'(a + O)f , | /(& — 0)})
and
my, = max(| f'(a + 0)f, | f'(b — 0))).

Then the minimal and maximal convex norm-preserving extensions £, and
F, , respectively, of f, are given by

Fy(x) = f(x) for x € [a, b],
=f(x) — m(x — a) for x € ]— o0, 4],
= f(x) 4+ m(x — b) for x € )b, +o];
i=1,2
Let now X be a normed linear space, ¥ a convex subset of X such that

0 e Y, and Z a nonvoid bounded subset of X.
Consider the space

Lipo(X, Z) = {f1z: f€ Lipy X},
normed by the uniform norm

11z e = sup{l flz (x)| : x e Z}.
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Consider the following problem:

(A) Forfe Ky, find two elements g and g* in Py'(f) such that

1 flz—gxlzlh =f{f|z — glzll.: g€ Py:(f)}
and

1 flz — g% Izllu = sup{ll f1z — g lzllu 1 & € PyA(/)}.

THEOREM 5. Problem (A) has a solution for all f€ Ky .

Proof. By Theorem 2(b) every g in Py:(f) has the form g == f — F for a
convex norm-preserving extension F of f|, . By Theorem 3, there exist two
convex norm-preserving extensions F; and F, of f|y such that

Fi(x) < F(x) < Fo(x),

for all xe X, i.e.,

FO0) — gi(x) < f(x) — g(x) <f(x) — ga(x),

forall xe X, where g, = f — F;, i = 1, 2. Therefore

min([f1z — &1zl 1 flz — & |z <If1z — gz
<max(lflz — & lzllus 1 flz — & |z llw)-

It follows that a solution of Problem (A) is given by g, = g; and g* = g;,
where i, j € {1, 2} are such that

Slz— gzl =min(l fiz — gzl 11z — &z 1)
and
iflz — &ilzllu = max(1 flz — g1 lzllus 1 f1z — g2 1z [l
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