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ON THE EXTENSION OF HULDER FUNCTIONS

Costicéd Mustifa

1. Let (X,d) and (Y,¢) be two metric spaces. For e (0,1]
a function f: X—>Y is called HSlder of class o if there
exists M320 such that

(1) (B(x),£(y)) £ nl(d(x,y)) ;.

for all x,ye X .

Denote by Ad(x,x) the set of all Holder functions of class «
from X to I ;

If T 4is a metric linear space then, equiped with the poink-
wise operations of addition and multiplication by scalars , A‘(I,I)
become a linear space. If Y =R then A (X,R) is also a lattice
(the order is defined pointwisely tbo ).

For fe /\u‘(X,R) put

(2) el = sup {l f(x) - f(:r)i/(d(x-l')ft x,yeX, xAyl,
fhe cmallest number M0 for which the inequality
) [£(x) - 2l £ ¥ (alxz, ;)" ,

holds for all x,yeX .
Obviously irL;o and J£1_ =0 u -and onl: if f = const,,
for all fE /\d(x R) .
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Let x €X be fixed and let
(%) Alxg B = {fe ALLE) , £(x) =0} .

Then A‘(xo,x,n) is a subspace of /\d(I,R) and the functional

"defined by (2) is & norm on this subspace and is called the

Hélder norm of £ .
We say that two functions f,ge Aq(x,n) are equivalent if

£ - g = const. and we shall denote this by frug .

It is immediate that the gquatient space of !'\“(X,B) by this
equivalence reletion is isomorphic to A “(xn.x,n).

A very important problem in the theory of Holder functions is
the .extension problem. More exactly, let (X,d), {I,s) be two
metric spaces and let Z<X . The gxtension problem is the follo-
wing : for fe A (Z,Y) find Fe ALX,Y) such that

(5) t= ¥, ana B2l =Jrl .

The function F 4s called a norm preservinp extension of £ .
For o = 1 ( the case of Lipschitz functions ) the problem

wWas extsnsiv* studied . The existence of a norm preserving exten-
sion for every fe A(Z,Y) depends on the properties of the sets
Z end T .4 positive solution for the extension problem in the
case ¥ =R and for X arbitrary was given by Mc SHANE [14] and
by G. MINTY [11) in the case when X and Y are Bilbers spaces.

If I and Y are arbitrary metric spaces (even Banach spaces)
the extensions is not always possible as was shown by B. Gi TNBAUU
[5) and 6.0. scudusxsEck [12], [13]

oM, PLETT [4] proved that if X and Y are normed spaces
and - Z2cX is éo.r';m,_ closed, bounded of diameter § and contains
& ball -u,t radius r>0 then for every fe A“(Z,I) there_exi:sts



. t‘! _\2‘

Famie

= BB

Fe A,l(x,x) stch that FIZ = f and IIFlll = %-ﬂfﬂl i

If every function fe AL2,Y) has an extension Fe A (X,Y)
it is natural to ask if this extension is unique or not. It was
shown that the question of the unicity of the norm preserving
extension i:s closely related to some approximation problems in
the space A (X,Y) (see (7] , (e), [10] ) .

2. In the following we shall denote ILip(X,Y) = A,(X;Y). If
X is a Banach spoce and B is a closed ball of radius r>0 in
X then as was sbown by T.M. FLETT f;-l-] there exists a function
F e Lip(X,X) such that

(6 1rR= 2021,

where f = Els .

THEOREM 1. Let X Dbe a Banach space and let fe Lip(X,X).
S ose that the foll onditions hold &

a) M&wmﬂ of diameter §
and containing a ball of radius ¢>0 guch hat -

I z] cl_]_ < ;" §

b)wlgtm

(7" it - ?|1< 1- RBelghy & '1'

MMJ* I guch that -r(f')-=t"-
(The function f bas a unigue fir pojmt x%eX) .

Progf. Iet fe I-:I.p('I.I) and C<cX ‘such that: _=m'd:lt£m_ a)
is verified. By the abon quated result of Flett there cﬂ.les :
Fe Lip(X,X) such that 'Ic = f’c and 7], = lrlglﬂs. Then

(£, =t - r+rllslr-rllolrl1< 1""9&-‘”0‘1‘- 1.

4. .. -57-

Bince f£(x) -.f(._yjlﬁlﬂ‘lz -yl for all x,yeX it follows

that £ 4is a contraction om X and by Banach contraction prin=-
ciple there ex.ists a un'iéu.s x"_e X such that £(x*) = x®

* Theorem ia proved

 COROLLARY 1. lLet X be i Banech space and fe Lip(X,X).

EBuppose that there ui:sts.a closed ball 8 cX of radius d>0
such that every extension F of f‘a verifies the condition :

®  Mz-7y <1-20tgl .

Then £ has a unigue fix point in X .
. 4
Progf. he diemeter of B is ¢ =20 and by (8) lflgh <3
go that the wnnr.lltion a) and b) from Theorem 1 are verii’ied..

'M 1, Let. O Mo i i Thmoren, otk 4.6 THalEE)-

I l:{cll =0 then lf(x) - 2(y)] =0 for all x,yeC eand

£(x) = 2(y) = z&X for all x,y&0 . Since Plg=f and el =

=0 .0 it follows that ¥(x) = z for all x€X . Therefore

the om'ﬂiﬂ_.nn..('?) from Theorem 1 becomes
7 bzl <1,
i.8. £ is s contraction on X .

2z Jelgh, =0 then f = comst. on C and the extension
Feldp(¥.X) is onigoe .

3. We comiﬁdr'thu following problem ¢ for a metric space ¥,
a subsst M of X and a function re/\(mn) find

: (99 . = min {t(;r) % 1;1!]

In mto pmb.‘l.-l the set M is usually daternined hy some

tut.rm:l.m and t.!u rmm £ 1ie replaced by the fonction %



defined by
: ; £(x) xe M
F(x) = '
: e » X&X\M
Obviously min {£(y) : yeM} = min {T(::) 1 xeXi.
HIRIART-URRUTY [6] proved that if X is a Banach apa.ee McX
is closed and fe Lip(M,R) , then the problem

i min {£(3) :+ yeuj
can be replaced by the problem :
min { Fl(x) T Xe I}

where Fy(x) = inf [£(y) + I£l -0 x -] , =xeX.
yell

In this note we shall give some similar results in the case of
a metric space X and for a function fe A (M,R) , O<=s 1.
Let X be a metric space, let M be a closed subset of X
and let fe A-(m.n) . By a result in [9] the funetion F, defined
by

(10) P = it [2(3) + bR (a(x,3)) ), xeX
'zeH
is in A“(X,R) and
rlllﬂ PR 'Flﬂ‘=lfl.t .
A point Yo €M is called a minimum (maximum) for £ if
I(y,) ¢ (3 O 2z, > 2(3) )

for all ye M.

THEOREM 2, Let X be a metric space, M g closed subset of X
and fe A_(Ii,R) . Then YoeM is a minimum point for £ on N
if and only if Yo is a minimum point for Fl on X,

- Por .£n= _ﬂ‘_. .dlmtins In =%,

= 39'-

'-x bn daﬁ.mdby (ln) !nr every x& M we have
1

r,_(x) =20 3 #3;) = 11(:,:» :

."-xil the sat- M be:l.ng alaud.. there exists §>0 ' such that
. L

a(z.:)ad'> a for all ;rell . Therefore
rl(,x) - % (26 » Bet, @] 5 .
> m [fm+ et J‘lzm 10 > 29

}(

-othat yo'ua:ﬂﬂmm:tw l'lo.nI._.
Conversely monthlt ¢ K -iaamimpointrnr 11 on
¥
da
X. Ituuuﬂﬁ.thlt 7::"' than.u._rﬂu_r,itwoul
follow that ’o js a minimum point for £ an N . ¥
Buppose,mth-m.w y°+ll.'rhen,since M is

closed ,
| iy = ur{d(x..:) : yeuj =a>0 .
wmmma ¥, we have

M) = 5 [23) + Bell (aGrgumd]
-lnthlt.mevtqt>0.:}mracﬂm ye U aur.hthat

'1(103 '_“t > ﬁ’ﬁ) + Mzl {d(s'n;}';_)) .

, one obtains

ook Eap e N g > a‘-ﬂ_"q.

:{7 ) = Il'l(;rnj ”'1(?:) > £(yy) * (F4 BCICAE 0D R

: _-_-uch implies

SRS S
Bel - ((alygdd)) - 7 ) £9-




=90~

If I£l, = 0 then f = comst on M and jJ, ( -as every other -
point in M ). will be & minimum point for £. om M. :
Ir £, >0 then ;

o q
(a(y,35)) - €0
so that Senj .
. 9 &
Odqsd(yo.ln)$( ;J o=
! 4

Hio .

Letting n —>e in the inequality 0 < q £ (

contradiction. Thecrem 2 is proved .

Let fe A (4,R) and let
Fy(x) = sup [f(]) - R, (G(IJJ)J s x&X

yeM
The function ]?2 has the properties :

'2]11!_‘ £ and Irzﬂ‘-_-lrl,l ;

(see [9) ) .
THEOREM 3. Let X be a metri ace;, M a closed subset of X

and fe A(K,R) . Then y €M 4is s meximum point for £ on M

if and anly if y, is a maximum point for F, on X.
The proof of this Theorem is simillar to the proof of Theorem 2.

Remark 2. If X is a metric linear space, M a closed conver
subset of X and f e /\‘(M,R) is convex, then f has minimum
point on M . The function F) , defined by (o) , has the same mi-
nimun on X as f on M. Furthermore the function F 18 conver
too (see [83 J; )

If £ 4is a concave function on M , théen the function l‘z is
concave too on X and the maximum of J!’2 on X equals the maximum

of £ on M

]T.. one ubtains. a
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ON SOME UNIVERSAL SUBDIFFERENTIABILITY PROPERTIES
OF ‘ORDERED VECTOR SPACES

A.B. Némsth

- Introduction and definitions. Besides many studies of convex

operators with values in order complete vector lattices ( see

 for example (V), (L), (TL), (AK), (KUL), (23); (K), (B5) and

(®) ), ZOWE (Z1), (22), PEL'DMAN (F), snd recently BORVEIN (B1),
(B2) and the author (I_'llJ, (N2) have considered problems on
subdifferentiability of convex operators with values in more
general ordered vector spaces. The main result in (N2), which
constitutes the complete characterization of ordered vector
spaces admitting strictly monotone functionals in order to
eT¥ery convex operator with values in them have pleasant
subdifferentiabllity properties, gives the idea to consider
other less restrictive conditions on subdifferentiability from
this point of view. More precisely this approach is the
following : to consider ordered vectopr spaces with some
universality property formulated in terms of subdifferentia-
bility and then to characterize these spaces in other terms of

the theory of ordered vector spaces, as well as to estabilish

interrelations of various subdifferentiability like properties.
Our paper constitutes an attempt in this direction. A PTrogram
of this kind is very general and since the subdifferentiability



