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EXTENSION OF HOLDER FUNCTIONS ARD BOME RELATED
PROBLEME OF BEST APPROXIMATION

Costicl Mustita

1. Let -(X,d) be a metric space and a € (0,1]. A function
£f : X+ R is called H8lder of class @ on X if there exists
K 2 0 . such that
(1.1) [£(x) - £(y)| < K a%(x,y) ,
for all x,y E X.

Put’

(1.2) 1flg,x = sup {|£(x) - £(y)| / d%(x,¥) : X,y € X, x*y }.
Then |f],,y is the smallest constant K > 0 for which the
inequality (1.1) holds and is called H8lder norm of f .

Denote by A, (X,d) the set of all Holder functions of class
@ on X [3]. Ther A,(X,d) is a vector lattice, that is, it is
closed under the operations of addition, multiplication by
scalars and formation of supremum and infimum of two of its
elements. )

For a nonvoid subset Y of X , the Hélder norm Ifi,,y and

the space A,(Y¥,d) are defined similarly.
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THEOREM 1. Let (X,d) be a metric space, Y c X and
. € {0 TY. If f € A (Y,d) then the functions
Fy(x) = inf { f(y) + Jfl,,y @%(x,¥) : Y € ¥} , X € X,
— Fy(x) = sup { £ly) = |f|a'y d (xy) : Yye¥X } , x¢eX
are extension of £ , i.e.
a) Fyy=Fly=1, k

b} ”F1|a,x = Hlea.x - Iflu.! ‘

Theorem 1 follows from Corollary 1.2 in [3].

For £ € A,(Y,d) denote hy E,(f) the set of all extensions
of £ in A (X,d) , i.e.
(1.4) Ey(E) = { F € Aj(%X,4) : Hly =£, |[Flgx = I£flqgy?-

Let € be a convex subset of a vector space V. A subset
H of C is called a face of C if Ax + (1L = M)y € H for some
A e (0,1) and some ¥,y € C, implies ¥,y € H. A one-point face
of C 1is called an extremal element of C.

In Theorem 2 below we present some properties of the set

0

Ey(f).

THEOREM 2. Let (X,d) be a metric space , Y a nonvoid
subset of X , a € (0,1) and £ € A, (Y,d). Then

a) Ey(f) 1is a convex subset of A (X,d);

b) For every F € Ey(f), Fi(x) 2 F(x) z Fp(x), ® e Ny
where the functions F, and F, are defined by (1.3);

c) The functions F, and F, defined by (1,3) are

extremal elements of Ey(f).

Proof. a) For F,G € Ey(f) and 1 € [0,1] we have
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(AF + (1 - A)G)|y = APy + (1 - X)Gy = AEf + (1 - A)f = L.
Since
IAF + (1 = MGlg,x £ AMFlg,x + (2 - )G, ¢ =
= Mflgy + (1 - A)Ifl,y = Ifl,,y
and
IAF + (1 = M)Gllg x 2 [(AF + (1 = 2)G)| yla,y = Vg,
it follows that
[AF + (1 = A)Gl,,x = 1£l,,y
i.e. AF + (1 - A)G € Ey(f)
b) Let F e'EY(EJ and x € X. Then for y € Y we have

F(x) - £(y) = F(x) - F(y) 2 - [Flg,x d%(x,y) = - [£l,,y 4% (x,¥)

so that
F(x) 2 £(y) - I1flq,y a%(x,y) , for all y e Y.
Therefore .
F(x) z sup { £(y) = Iflg,y a%(x,y) * ¥y € Y } = Fp(x).
Similarly ,

F(x) - £(y) = F(x) = F(y) € |Flg,yx 6%(x,y) = I£fl,,y a%(x,y)

implies

A

F(x) < f(y) + |f”u,r da%(x,y) . for all y € ¥
so that

F(x) < inf | £(y) + Kflg,y d°(x,y) 1 ¥y € ¥ | = Fy(x).

1A

c) If F, G € Ey(f) and A € (0,1) are such that AF +
(1L - A)G = Fy = AFJ + (L= l)Fl, then l[Fi -F) = {1-24)(G - Fy)
and since by b), G - F; £ 0 it follows that F; < F. But F; = F
and hence F = F;. Then the relation AF + (1 - A)G = F; yields
alsoc G = F;.

The case of the function F, can be treated similarly. ]
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¥, ¥ora nenvoid subset Y of metric space (X,d) denote
(2.1) Y' = { feM(X,d) : fy=0}.

Obviously, v’ is a closed subspace of A (X,d).

A subset 5 of a normed space (V,| ) is called proximinal
if for every x € V there exists ¥Yp € § such that
(2.2) Ix = yol = d(x,8) =inf { |x - y] : y € 8§ }.

An element y; € S for which the infimum in (2.2) is attained
is called an element of best approximation of x by elements in
S. If for every x € V there exists a unique element of best
approximation of x in §, then the set S is called Chebyshevian
[6]. Denote by Pg(x) the set of all best approximation elements

of x in s.

THEOREM 3. If Y is a nonvoid subset of a metric space
(x,d) then

a) The subspace Y is proximi_nal and
¢2.3) d(f.-Y:L) = 1f] yla,y A
for every ~ f € A (X, d) ; - .

b) Every element g ¢ v of best approximation for £ has
the form gy = f - F, where F ¢ Ey(f]y), and, conversely, for
every F ¢ Ey(fly), £ - F is an element of best approximation for
f in ¥Y', i.e.

Pyi(f) = £ - Ey(f]y) ;

c) The subspace v is Chebyshevian if and only if for
every f € A, (X,d) the function fl y has a unique extension in
A, (X,d).

Proof. a) Let f € A (X,d) ;ﬁd F € Ey(f|ly). Then

(2.4) It = Ut “ By = 1F1, 5 = 1 gloy-
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Since f - F ¢ YJ', it follows i
inf (If ~gley: g€ } < 1€l y -
On the other hand ;
1] yla,x = sup {|(£=9) () = (E=9)(¥) | / a%(x,¥) : x,y € ¥;
Xy} ssup (|(£-g)(x) - (£=g) (¥)| / d%(x,¥) : X,y € X ;
x*y)=1£-qlgx.
for every g € YJ' , So that
1fglyy Sinf { If = glax: ge ¥ )
Therefore 12l g,y = 1€ = (£ = F)lgx = d(x;,v*} ,  which
shows that !J' is proximinal and that the formula (2.3) holds.
b) By (2.4), it follows that £ = F ¢ Y' is an element of
best approximation for f in Yl, where F € Ey(fly)- If gy € Y
is an element of best approximation for f by element':s of YJ',
then
If - gola,x = Iflgla,y and (f - go)ly = fly
so that £ - gy € Ey(f]y) and Fy = £ - gy is an extension of f],.
e) If YJ' is Chebyshevian, then every £ e A (X,d) has a
unique element of best approximation in v and by b), the set

Ey(f| y) contains only one element. ]

3. Let now (X,d) be a metric space of finite diameter,
i.e. d(X) = sup { d(x,y) : %,y € X } < ®». Then every function
e A,(x,;:l)'_is bounded, for if X, € X is fixed, then
£ | s [£(x) = £(xg) | + [£(xp) | < |£(xg) | + I£lq,x A%(X,%Xg) <
S |£(xg) | + I£l,,x [d(X)]%, for every x £ X.

In this case, we can define the uniform norm on A (x,q),

Ay I£l,,x = sup { |£(x)| : x € X }.
Let Y be a subset of metric space of finite diameter (X,d)

and let Y- be defined by (2.1). For £ € A (X,d) let G(f) denote
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the set of all best approximation elements, with respect te che

Holder norm, of £ by elements in Y . Consider the following

problem:

"

Find g, and g® in G(f) such that

FE - g,lu'x = inf { If - qﬂu.x g e G(E) T .,

(2-2)

1£ - g®l,,x = sup { If - g, « g € G(f) 1}

By Theorem 3 b), the problem (3.2) is equivalent to the following
problem:
Find two extensions ¥, and F' 1in Ey(f]y) such that

P & Bl ¥ 4

F e By(f]y) }

The next theorem shows that the problem considered above has

!F_Hu'x = inf { "F”u,x
(3.3)
'1F"uu,:( = sup { qF"u,x

always a solution.

THEOREM 4. a) The infimum in (3.2) is attained, namely for
everv function g, € G(f) of the form g,= f - ¢, where
F, € B, (f]y) dis such that “F-Hu,x = |f|r§u,x 7

b) The supremum in (3.2) is attained, namely for g'= £ - F,
or g'= £ = Fy or for both of these functions, where F, and F, are

de ‘ned by (1.3)-.

Proof. a) First, observe that there exists F, € Ey(f] y) such

that |F.0, x = I € yly,x+ Indeed, if for F e Ey(f|y) put

Fo(x) = 1€ ylly,y if F(x) > |f ¢ly,x «
(3.4) = F(x) if =1 ol ¢y < F(x) < 18 gly, v
= -lff[ Yuu,! if F{x) < _[[fi Y"u,gr

then F, is in Ey(f]y) and [F.ly,zx = U] yly,¢-
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Since
IFlyx 2 sup { [F(y)| =y e ¥} = §fyly
for every F ¢ Ey(f|,), it follows that
: F e Ey(fly) } = IF .0y

where F_ is defined by (3.4).

inf { |Fl,, g«

b) Since
Fo(x) < F(x) s Fy(x) , ® € X,
for every F e Ey(fly) (Theorem 2. b)) , it follows that
IFl,, x < max { IFyly,x o+ IFaly,x } - L

Remarks. a) The set of the functions of the form (3.4) 1s
a convex subset of Ey(f]y)
b) The functions F,, F; Ffor which the supremum in (3.3) is

attained are extremal elements of the convex set Ey(fl )

4. Let (X,d) be a metric space of finite diameter. Consider

on A, (X,d) the norms
ity = el x * VEL, &

== { |
Ity =max | J€l,x ¢ [flg,x
called the "sum-norm" and the "max-norm" , respectively.

TF Y is a subset of %X and f is in A_(Y¥,d) , then it
is natural to ask if £ has an extension F ¢ A, (X,d) preserving

the norms (4.1). An afirmative answer to this question and some

consequences will be objects of the following theorems.

THEOREM 5. If (X,d) is a metric space of finite diameter and
Y is a nonvoid subset of X , then for every f € A,(Y,d) there

exists F € A (X,d) such that
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(4.2) Hy=£f and IFl, = Ifi, .
Proof. Let F; be defined by (1.3) and let
Fi(x) = Fy(x) if" Fy(x) & Ifl,, ¢
(4.3)

= Ifl,,y if Py(x) > [¥ly,y
Then Fyy = f and F, preserves both of the Hdlder and uniform
norms, so that it preserves the "sum—norm", also.

Similarly, the function
s Fa(x) = Fp(x) if Fp(x) 2 ~=Ifl,,y
= Ifl,,y if Fp(x) < “1fly,y «
where F, is defined by (1.3), _i.s also an extension of £,
preserving both of the HSlder and uniform norms.

Denote by Eg(f) the set of all extensions of f € An(‘l,d)
which preserve the "sum-norm"”, i.e.

(4.5) Eg(f) = { FeA(X,d) : Hy =£, |Flg=1Ifl,}. W

THEOREM 6. If (X,d) is a metric space of finite diameter,
Y a subsat of X and £ € A (Y,d) , then )
(4.8) a) Iytg'x - Itlt'! - and lrlurg & !flu,x

for every F ¢ Ey(f) ; )
b) If F, and F, are defined by (4.3) and (4.4) then

(4.7) Fi(x) 2 F(x) 2 Fp(x) , xeXx,

-y

for every F € Ei(f)
c) The set E,(f) is a comnvex subset of the ball ( with

respect to "sum-norm®) of center 0 and radius [£f], in A (X,d) ;
d) The functions F, and F, are extramal elements of E,(f) ;
e) r:l:l,-i, then £ hmaxtm-ldaﬁntntthnm;it

ball of A (Y,d) (with respsct to t:ba “gsum-norm”) if and only if
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Ey(f) is a Tface of the unit ball of A (X,d).

Proof. a) Let F € E,(f). Since F, = £ , it follows that
= IFla,x 2 Ifl,,y and IFly,x 2 1€,y . If IFlg,x > 1£l,,y then
Ifla,y + 1£]y,y < IFlg,x + IFl,,x = IFl, = I£lg = I£lg,y + I£hy,y »
which is impossible. Therefore IFly.» = Ifl,;y and IFly,x =
= [Py~ IFlg,x = 1€l - ela,y = I£]y,,-

The proof of b), c), d) proceedes similarly to the proofs
of assertions a), b), ¢) of Theorem 2.

e) Let If be an extremal element of the unit ball of
A,(¥.,d) and'let 1 e (0,1) . If Fy , F, are elements of the
unit ball of A,(X,d) such that AF; + (1 - A)F, € E_(f) ,
then AFyy + (1 - A)Fy)ly = £. Since f is extremal it follows
that Fjly =Fjly=£ and |FRl, = IF,l, = 1, i.e. F,F, ¢ E (f) .
We have shown that E (f) is a face of the unit ball of Ay (%,d).

Conversely, suppose that Jf|, = 1 and £ is not an
extremal element of the unit ball of A (Y,d). Then there
exists £,, f, in A, (Y,d), £, £y, [f4l, =1, i = 1,2, and
A € (0,1) such that if, + (1 - A)f, = £. If F; e Eq(f;),
i1=1,2, then AFjy + (1 - A)Fjy=~f and 1= [AF), +
+ (- 0F)yly < | AF; + (1 - A)FJl, < 1, which show that
AF; + (1 - \MF, € Eg(f). Consequently’ E,(f) is not a face of
the unit ball of Fa(X,d). [Z]

THEOREM 7. Let (X,d) be a metric space of finite diameter,
Y a subset of X and suppose A, (Y,d) and A, (X,d) endoved with
the "max-norm”. Then

a) For every F ¢ Eg(f) , IFl, = I£l, ;
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E(f) =4 F e A(X,d) : Fy =%, IFly= £, },
hern theres axists ;J and Fz in E,(f) such that
-2) Flcx} > F(x) 2 ?;(xy v XE X

svery F e Ej(f) 3

c) The set E,(f) is a convex subset of the ball ( in the
norm | |, ) of center 0 and radius I£l, 4in A (X,d) ;

d) The rfunctions ;J and ;? satisfying (4.9) are extremal
elements of the set E (L)

e) The function f is an extremal element of the unit ball
of A,(¥,d) if and only if E,(f) is a face of the unit ball of

Ag(X%,d) .

Proof. a) If F € E (f) then , by Theorem 6. a) ,
IFlq,x = I1£l4,y and IFly,x = 1€ly,v «
sc that [F|, = |£f], .
b) Let -
Hi(x) = inf { f(y) + I£l, a%(x,¥) s ¥ € ¥ }, x € X.
Then (see [2]) the function H, has the properties
Hily = £, IBylg,x = I£l, .
The function
i Fi(x) = By(x) if Hy(x) < |, ,
= Ifly if Hy(x) > |£], ,
has the properties
Fily =f . [Fyly = It
that is F, ¢ E (f) .
Similarly, by truncating the fﬁnctzon

Hp(x) = sup { f(y) = Ifl, d%x,y) : Y€ ¥} , x € X
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one obtains the function
Fp(x) = Hy(x) if Hy(x) z -lfly ,
(4.11)
= =1 E€la if Hy(x) < =|£l, ,
which is an extension of f with respect to the "max-norm",
i.e. ;2 € E (f) .

The inequalities (4.9) can be obtained reasoning l.kxe in
the proof of assertion b) in Theorem 2.

The proofs of c) and d) are similar to the proofs of asser-
tion a) and c) of Theorem 2 and the proof of e) is similar to the
proof of e) in Theorem 6. | |

From Theorem 6 and 7 obtains the following corolary:

COROLLARY 1. If (X,d) is a metric space of finite diameter,
Y is a subset of X and f ¢ A, (Y,d), then

a) Eg(f) © Eq(f) ;

b) Fix) 2 Fy(0) 2 F, (1) 2 Fp() , xeX,
where the functions F,, F,, F,, F, are defined by (4.3), (4.4),

(4.10) and (4.11) , respectively.

5. In the following we shall give a procedure to find the
global extrema of a function f e A, (X,d) by using the extensi-
ons of the restriction of f to some finite subset of X.

Let (X,d) be a compact metric s.par.:e and let - £ be in
A.(X,@). If Y is a subset of X and q > Iflyl,,y (here f|,
denotes the restriction of £ to Y), then the functions

Ug(X) = inf { £(y) + g d%(x,y) : y € Y}, x € X 5
B g e (ot - g e sy ey, xex,
are extensions of f|, which belongs to A,(X,d) and have the

H&lder norms at most q (see [2]). If U and u denotes the
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functions defined by (5.1) for g = Ifl,, x then
u(x) s £(x) < U(x) , x € X ,

(5.2)
and for gq > |f], x Wwe have
(5.3) uq{x) < u(x) _4_: f(x) < U(x) < Uq(x) s X € X,

A maximum (respectively a minimum) point of a funétion
f: X — R is a point %" € X such that F
(5.4) £(x") 2 £(x) (respectively f(x) < £(x) )
for all x € X.
For a bounded real function f on X put
Mg = sup{ f(x) : x € X } , By = f F(X) = xeX} ,
i Ef={xe)(:f(x}=llt},ef={xex:f{x)=nf}.
Let now (X,d) be a compact metric and let f be a
function in A, (X,d).
We define now inductively two sequences (x;),., and
(M) pso ©f points in X and of real numbers, respectively, as
follows: -
Let g 2 |fl, x be fixed and Tet Xy be a fixed point in X.
Let U%x) '= f(x5) + g d%(x,x3) , x € X , the greatest extension
of f obtained from (5.1) for Y = {%} and let
My =sup { 0%x) : x e X } .
Let x; € X be a point with ©0(x) = n, .
Suppose now that for a natural number n z 1, the poirﬁ:s
X0 » ¥ 4+ «-- , X, , and the numbers My , M , ... , M, , were
defined. Let U™! be the greatest extension of f| y obtained
from (5.1) for Y = { Xgs X34 -w. , X4}, Put
My =sup { U"X(x) : xeXx ),
and let x, be a point in X such that U l(x) =N, .
The properties of ﬁhe so defined sequences (Xp)nzo and
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(M) n20 are described in the following theorem:

Theorem 8. Let (X,d) be a compact metric space and let
£ e A,(X,d) . For a fixed q > 1€l ., x lef: the sequences (%,) n20
and (Hn)m be defined as ‘.:-;.bove. Then

a)  lmw, =u ;

b) &H[inf[d(x,xn):xfzf}]za;

c) The sequence (f(x,)) n=0 has the number M; as a

limit point.

FProof. Since ' 30"V for n = 1,2,... $t Tollows Ehat
the sequence (M;),., is nonincreasing . By (5.3), M, = Ul )>
2 £(x;) 2 min { £(x) : x € X } so that the sequence | (M) ..o
is also bounded . Therefore there exists M'= ]&ﬂl M, .. By {5:3);
f(x) < Ux) <M, , for all x ¢ N so that
(5.6) £(x) <M, for all x e X.

The metric space X being compact , the sequence (x.)..q
contains a subseguence (xnkj .- converging to a point z ¢ X.
Since the function f is continuous it follows that
(5.7) (g ) — £(2) , k — » .

But, for k=1,

-1 - m=1 ny=1
|u (z) - "rll = |u _{z) - U (xnk)l £ q d“(:.xnk) - 0
for k = w , and- 'nt-l"""' for k—--,sathat

» -1
(5.8} - - - I:l,-sk__ (2) ~—~M¥, for kK — @ .

By the fclﬁfion

P e Dy
o (=) - £(xa )| = |U (2) - ¥® ()] s q f(:.x.k) — 0,
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kK --—— w , and by (5.7) it follows that

.

e
(5.9) U (2) — f(2) ,

k — wm ,
Therefore , if in the ineqgualities

b =1 ny_, »
El=z) < U (z) =10 =) v kB 1,

we let k — = one obtains £(z) <M < £(z) , so that f(z) = M.
Taking into account (5.6) it follows that
M = f(z) = max { BixX) * e X }.
To prove b) , observe that if contrary, tﬁen there exist
> 0 and an infinite subset J of N such that
(5.10) inf { d{x.xj) T By YRR
for all j € J. The space X being compact there exists a subse-

quence (xjk) £ {xj )jca converging to a point Y € X.

o
k=0
But then, repeating the above arguments will follows that Y € Eg,

which contradicts (5.10).

The affirmation ¢) follows from (5.7). H

Remarka. 1) In the clase X = (a,b] and ¢ =1 a similar
result is proved in [7]. :

2) If the extensions U™ are replaced by the extensions u"
and m, = inf { W"(%) : x e X boo u(x,y) = m, , then one obtains

a procedure to find the minimum me of a function' f e A (x,d).

¥xample. let Xx = [0,1] , d{x,y) = [x ~y| and
£(x) = % sin (/) , 3 % e (0,1] ,
= 0 v AL X =8
It is known that f ¢ Ay(X,d) if and only if a e (0,1/2]
( see [8], Problem 153 ) and in this case

1€la,x < [1+ 2 1n (1 + 2n) + 2m¥/2 < 4
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OH VECTOR TOPOLOGIES ON FINITE-DIMENSIOMAL VECTOR BPACES

Zoltan Balogh and Marius Moisescu

i. Introductien.

This arficle grew out from some basic ideas presented by
I.Muntean in his book [1]. We wrote it thinking th.t the gquestion
of the indepehdence of the defining axioms of a vector topolegy
is still an interesting one.

Let X be a vector space on K (K being R or €, endowed with
the Euclidian topology). Let O be the origin of X.

A topology 7 in X is named vector topology if it satisfies:
TV1) The'adition P+ o X x X = X, +(x,¥) = % + y is continuous.
*(a,x) = ox is

Tv2) The multiplication "e® : K x X - X,

continuous.

Generally, the axioms TV1l) and TV2) are independent.

2. Independence of the axioms.

If X is a vector space, X + {0} with the discrete topology,
TV1) is verified without TV2) being verified.

In 1988, V.Anisiu gave an exemple of a vector topolugy wich
verifies TV2) without TV1l) being satisfied. The vector space he

considered was infinite dimensional. We give now an exemple of



