"BABEŞ—BOLYAI" UNIVERSITY FACULTY OF MATHEMATICS AND PHYSICS RESEARCH SEMINARS

SEMINAR ON MATHEMATICAL ANALYSIS

Preprint Nr. 7, 1991

CLUJ-NAPOCA ROMANIA

CONTENTS

MUNTEAN I. : Extensions of some mean value theorems
TOTH L. : Some inverse Hölder inequalities2
VORNICESCU N. : A note on Wirtinger's integral and discrete
inequalities
MOCANU P. T. : On a class of first-order differential
subordinations
SĂLĂGEAN G. Ș. : On univalent functions with negative
coefficients47
MUREŞAN M. : A note on partial stability for differential
inclusions55
TOADER G. : Invariant transformations of p,q-convex
sequences
MITREA A. I. : On the convergence of numerical
differentiation for Hermite nodes
MUSTĂȚA C. : Extension of Hölder functions and some related
problems of best approximation71
BALOGH Z. and MOISESCU M. : On vector topologies on finite
-dimensional vector spaces87
ANISIU M-C.: On fixed point theorems for mappings defined
on spheres in metric spaces95
KASSAY G. : On Brézis-Nirenberg-Stampacchia's minimax
principle

"BABEŞ-BOLYAI" UNIVERSITY
Faculty of Mathematics
Reasearch Seminars
Seminar on Mathematical Analysis
Preprint Nr.7, 1991, pp.107 - 114

ON A PROBLEM OF EXTREMUM Costică Mustăța

Let [a,b] be an interval of the real axis and let D : a = $x_0 < x_1 < x_2 < ... < x_n = b$ be a division of this real interval. Let

 $V=\{\ y_k:\ k=0,1,\ldots,n\ \}\subset\mathbb{R}\ \text{ and let }M>0\ \text{ be, such that}$ $M>|y_{k+1}-y_k|/(x_{k+1}-x_k)\ ,\ k=0,1,\ldots,n-1.$

A function $f:[a,b] \to \mathbb{R}$ is called Lipschitz on [a,b] if there exists a number $K \ge 0$ such that:

(1) $|f(x) - f(y)| \le K|x - y|$,

for all $x,y \in [a,b]$. We shall denote by K_f the smallest of the numbers K for which the relation (1) holds and we shall call it the Lipschitz norm of the function f. Obviously that K_f is given by:

 $K_f = \sup\{ |f(x) - f(y)|/|x - y| ; x,y \in [a,b], x \neq y \}$.

Denote by Lip[a,b] the set of all real-valued Lipschitz functions defined on [a,b] and let

(2) $\mathcal{I}(D, V, M) = \{ f \in Lip [a,b] : f(x_k) = Y_k, k = \overline{0, n}, K_f \leq M \}.$

The function whose graph is the polygonal line joining the points (x_k,y_k) , $k=0,1,\ldots,n$ belongs to $\mathcal{F}(D,V,M)$ so that

where, as usually, C [a,b] denotes the Banach space of all continuous real-valued functions defined on [a,b], equiped with the uniform norm:

 $||f|| = \sup \{ |f(x)| : x \in [a,b]^{-} \}, f \in C[a,b].$ (3)

As a subset of the Banach space C[a,b] the set $\mathcal{S}(D,V,M)$ has the following properties:

THEOREM 1. a) The set $\mathcal{F}(D,V,M)$ is a convex subset of C [a,b];

b) The functions F_i and F_g given by

$$F_{i}(x) = \max \{ f(x_{k}) - M|x - x_{k}|, k = 0, 1, ..., n \},$$

$$F_{g}(x) = \min \{ f(x_{k}) + M|x - x_{k}|, k = 0, 1, ..., n \},$$
for $x \in [a, b]$, are extremal points of $\mathcal{P}(D, V, M)$;

c) The set $\mathcal{F}(D,V,M)$ is compact with respect to the uniform topology of the space C [a,b].

Proof. a) Let f_1 , $f_2 \in \mathcal{G}(D,V,M)$, $\lambda \in [0,1]$ and $f = \lambda f_1 +$ + $(1 - \lambda) f_2$. Then, obviously, $f(x_k) = y_k$, k = 0, 1, ..., n and $|f(x) - f(y)| \le \lambda |f_1(x) - f_1(y)| + (1 - \lambda) \cdot |f_2(x) - f_2(y)| \le$ $\leq (\lambda K_{f_1} + (1 - \lambda)K_{f_2}) \cdot |x - y| \leq$ $\leq (\lambda M + (1 - \lambda)M) |x - y| = M \cdot |x - y|$

for all x,y ϵ [a,b], impling $K_f \leq M$. It follows that f ϵ 9(D, V, M).

b) By a theorem of McShane [2], the functions F_i and F_s defined by (4) are in $\mathcal{G}(D,V,M)$ and furthermore

(5)
$$F_{i}(x) \leq f(x) \leq F_{s}(x) \ , \ x \in [a,b] \ ,$$
 for all $f \in \mathcal{F}(D,V,M)$. To prove the second inequality in (5), suppose, on the contrary, that there exists a function $f \in \mathcal{F}(D,V,M)$ on a point $c \in [a,b]$ such that $f(c) > F_{s}(c)$. As $F_{i}(x_{k}) = f(x_{k}) = F_{s}(x_{k}) = y_{k}$, $k = 0,1,\ldots,n$, it follows that

there exists k_0 ε {0,1,...,n} such that c ε $(x_{k_0}$, $x_{k_0+1})$. But then

$$\frac{f(c) - f(x_{k_0})}{c - x_{k_0}} > \frac{F_g(c) - F_g(x_{k_0})}{c - x_{k_0}} = M$$

$$\frac{f(x_{k_0+1}) - f(c)}{x_{k_0+1} - c} < \frac{F_s(x_{k_0+1}) - F_s(c)}{x_{k_0+1} - c} = -M,$$

according as c belongs to the interval

$$\left(\begin{array}{c} x_{k} \ , \ \frac{x_{k_{0}+1} \ + \ x_{k_{0}}}{2} \ + \ \frac{y_{k_{0}+1} \ - \ y_{k_{0}}}{2M} \end{array}\right) \quad \text{or} \quad \left(\begin{array}{c} x_{k_{0}+1} \ + \ x_{k_{0}} \ + \ \frac{y_{k_{0}+1} \ - \ y_{k_{0}}}{2M} \ , \quad x_{k_{0}+1} \end{array}\right) \quad ,$$

respectively. In both of the cases it follows $K_f > M$, contradicting the hypothesis f ϵ $\mathscr{G}(\mathtt{D},\mathtt{V},\mathtt{M})$. The first inequality in (5), $F_i(x) \le f(x)$, for all $x \in [a,b]$, can be proved similary.

To prove that $\mathbf{F}_{\mathbf{s}}$ is an extreme point of the convex set $\mathcal{F}(D,V,M)$ suppose that $F_8 = \lambda f_1 + (1 - \lambda) f_2$ for two functions f_1 , $f_2 \in \mathcal{G}(D,V,M)$ and a number $\lambda \in (0,1)$. We have to show that $f_1 =$ $f_2 = F_8$, but this follows immediately from the inequalities (5).

c) By the Arzelà - Ascoli theorem (see e.g. [5]) it is sufficient to show that $\mathcal{R}(D,V,M)$ is a closed, uniformly bounded and equicontinuous subset of C [a,b]. By the definition of $\mathcal{I}(D,V,M)$ it is obvious that if (f_n) is a sequence in $\mathcal{I}(D,V,M)$ converging to $f \in C [a,b]$ then f is in $\mathcal{P}(D,V,H)$ too, and by (5)

$$\|f\| \le \max \{\|F_i\|, \|F_n\|\}$$

showing that $\mathcal{G}(D,V,M)$ is a closed and uniformly bounded subset of C [a,b].

Now, for
$$\varepsilon > 0$$
 let $\delta = \varepsilon/(M+1)$. Then
$$|f(x) - f(y)| \le M|x - y| < M \frac{\varepsilon}{M+1} < \varepsilon ,$$

for all x,y ϵ [a,b] with $|x-y| < \delta$ and all f in $\mathcal{I}(D,V,M)$ proving the equicontinuity of the set $\mathcal{I}(D,V,M)$ and, by the above quated result of Arzelà - Ascoli, also its compactness.

Exemple. In the paper [3] there are given several solutions to the following problem: let $f:[0,2] \stackrel{!}{\to} \mathbb{R}$ be a continuous function derivable on (0,2) and such that $|f'(x)| \leq 1$, for all $x \in (0,2)$ and f(0) = f(2) = 1. Show that $1 < \begin{cases} 2 \\ f(x) dx < 3 \end{cases}$.

The hypotesis of the problem show that f belongs to a class of the type $\mathcal{F}(D,V,M)$, namely for $D=\{0,2\}$, $V=\{1,1\}$ and M=1.

In this case the exremal functions F_i and F_g are not derivable in the point x=1, explaining why the inequalities in the conclusion of the problem are strict.

Consider now for p ϵ N the functional $I_p: \mathscr{P}(D,V,M) \to \mathbb{R}$, defined by:

(6)
$$I_p(f) = \int_a^b |f(x)|^p dx.$$

One asks to find the minimal and the maximal values of this functional. The solution of this problem is given by:

THEOREM 2. a) If the numbers $\alpha_k=\frac{y_{k+1}+y_k}{2}-\frac{M}{2}~(x_{k+1}-x_k)$ are non-negative for all $k=0,1,\ldots,n-1$ then

(7)
$$\max I_p(f) = \int_a^b (F_s(x))^p dx , \quad and$$

$$\min I_p(f) = \int_a^b (F_i(x))^p dx ;$$

b) If the numbers $\beta_k = \frac{y_{k+1} + y_k}{2} + \frac{M}{2} (x_{k+1} - x_k) \quad \text{are}$ non - positive for all $k = 0, 1, \dots, n-1$, then

(8)
$$\max I_{p}(f) = \int_{a}^{b} |F_{i}(x)|^{p} dx , \quad and$$

$$\min I_{p}(f) = \int_{a}^{b} |F_{s}(x)|^{p} dx ;$$

c) If the numbers γ_k are non - negative for all k = 0,1,...,n then

(9)
$$\max I_{p}(f) = \int_{a}^{b} (F_{g}(x))^{p} dx ,$$

$$\min I_{p}(f) = \int_{a}^{b} (\max \{F_{i}(x), 0\})^{p} dx ;$$

d) If the numbers γ_k are non - positive for all $k=0,1,\dots,n$ then

(10)
$$\max I_{p}(f) = \int_{a}^{b} |F_{i}(x)|^{p} dx , \text{ and}$$

$$\min I_{p}(f) = \int_{a}^{b} (\max \{|F_{e}(x)|, 0\})^{p} dx .$$

Proof. a) The numbers α_k , $k=0,1,\ldots,n-1$ are the relative minima of the function F_i on the interval [a,b]. If $\alpha_k \geq 0$ for $k=0,1,\ldots,n-1$, then

$$0 \le F_i(x) \le f(x) \le F_g(x)$$
, $x \in [a,b]$,

implying the inequalities

$$0 \le (F_i(x))^p \le (f(x))^p \le (F_s(x))^p$$
, $x \in [a,b]$,

which by integration over [a,b] yield a).

b) The numbers β_k are the relative maxima of the function F_s on [a,b]. If $\beta_k \le 0$ for all $k=0,1,\ldots,n-1$, then $F_i(x) \le f(x) \le F_s(x) \le 0$, $x \in [a,b]$, implying:

$$-F_{i}(x) \geq -f(x) \geq -F_{s}(x) \geq 0, x \in [a,b].$$

Rising to the power p and integrating over [a,b] one obtains b).

c) If the numbers \boldsymbol{y}_k , k = 0,1,...,n are all non - negative

then the inequalities

 $\max \ \{F_i(x),0\} \le |f(x)| \le F_s(x) \ , \ x \in [a,b] \ ,$ hold, which rised to the power p and integrated over [a,b] give (9).

d) The proof is similar to that in the case c).

Remark 1. The set $\mathcal{F}(D,V,M)$ being compact every continuous functional defined on $\mathcal{F}(D,V,M)$ attains its extrema.

Remark 2. All the integrals appearing in the calculation of the extrema of the functional I_p (the formulae (7) - (10)) can be easily calculated, taking into account the fact that the functions F_i and F_s are segmentary linear functions and have very simple expression. For instance, in the case a):

$$\max \ I_{p}(f) = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} (F_{g}(x))^{p} \ dx = \sum_{k=0}^{n-1} \left[\int_{x_{k}}^{x_{M_{k}}} (F_{g}(x))^{p} \ dx + \int_{x_{M_{k}}}^{x_{k+1}} (F_{g}(x))^{p} \ dx \right] = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{M_{k}}} [M(x - x_{k}) + y_{k}]^{p} \cdot dx + \int_{x_{k}}^{n-1} \int_{x_{M_{k}}}^{x_{k+1}} [-M(x - x_{k+1}) + y_{k+1}]^{p} \ dx ,$$

where $x_{M_k} = \frac{x_k + x_{k+1}}{2} + \frac{y_{k+1} - y_k}{2M}$ is the point of relative maximum of the function F_g on the interval $[x_k, x_{k+1}]$, $k = 0, 1, \dots, n-1$.

In the case D = {0,2}, V = {1,1} and M = 1, p ϵ N one obtains the following result:

The inequalities

$$\mathbf{m}_{\mathbf{p}} \leq \mathbf{I}_{\mathbf{p}}(\mathbf{f}) \leq \mathbf{M}_{\mathbf{p}} \ ,$$
 hold for every f ϵ $\mathscr{F}(\mathbf{D},\mathbf{V},\mathbf{M})$, where

$$m_{p} = \int_{0}^{2} |F_{i}(x)|^{p} dx = \int_{0}^{1} (-x + 1)^{p} dx + \int_{1}^{2} (x - 1)^{p} dx =$$

$$= 2/(p + 1) ,$$

$$M_{p} = \int_{0}^{2} |F_{i}(x)|^{p} dx = \int_{0}^{1} (x + 1)^{p} dx + \int_{1}^{2} (x - 1)^{p} dx =$$

$$M_{p} = \int_{0}^{2} |F_{g}(x)|^{p} dx = \int_{0}^{1} (x + 1)^{p} dx + \int_{1}^{2} (-x + 3)^{p} dx =$$

$$= 2(2^{p+1} - 1)/(p + 1) .$$

For p = 1 we find

$$1 \le \int_0^2 f(x) dx \le 3 ,$$

for all $f \in \mathcal{F}(D,V,M)$, i.e a non - sharp version of the inequality proved in [3].

Considering the L_p - norm of a function f ε $\mathscr{G}({\rm D},{\rm V},{\rm M})$ one gets

$$\sqrt[p]{\frac{2}{p+1}} \le \|f\| \le \sqrt[p]{2 \frac{2^{p+1}-1}{p+1}}$$

which for p $\rightarrow \infty$ yields the uniform bounds of the set $\mathscr{F}(D,V,M)$: $1 \le \|f\| \le 2$ for every f $\epsilon \mathscr{F}(D,V,M)$.

REFERENCES

- ARONSSON, G., Extension of functions satisfying Lipschitz conditions, Arkiv för Mathematik 6 (1967) Nr.28, 551 - 561.
- 2. Mc SHANE, E.J., Extension of range of functions, Bulk. Amer. Math. Soc. 40 (1934), 837 842.
- MOCANU, P., Variațiuni pe o temă de concurs, Seminarul "Didactica Matematicii", 1985 - 1986, 123 - 128.
- MUSTĂŢA, C., On the extension problem with prescribed norm, Seminar of Functional Analysis and Numerical Methods, Preprint Nr.4 (1981), 93 - 99..
- 5. TRENOGUINE, V., Analyse fonctionnelle, Edition Mir, Moscow 1985.

Institutul de Calcul Oficiul Poștal 1 C.P. 68 3400 Cluj - Napoca Romania

This paper is in final form and no version of it is or will be submitted for publication elsewhere.