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EXTENSION OF LIPSCHITZ FUNCTIONS AND BEST APPROXIMATION

S. COBZAŞ AND C. MUSTǍŢA

The aim of this paper is to present various extension results for Lipschitz functions and to put in
evidence their relevance for some best approximation problems in spaces of Lipschitz functions.

1. Extension theorems for Lipschitz functions

Let (X, d) be a metric space having at least two distinct points. A function f : X → R is called
Lipschitz if there exists a number L ≥ 0 such that

(1.1) |f (x)− f (y)| ≤ Ld (x, y) .

for all x, y ∈ X.
The smallest number L ≥ 0 for which (1.1) holds is called the Lipschitz norm of the function f and

it is denoted by ‖f‖ . It can be calculated by the formula

(1.2) ‖f‖ = sup

{
|f (x)− f (y)|

d (x, y)
: x, y ∈ X, x 6= y

}
.

Denote by Lip X the set of all real-valued Lipschitz functions on X. With respect to the pointwise
operations of addition and multiplication by scalars Lip X is a vector space and (1.2) is a seminorm
on Lip X (constant functions have Lipschitz norm zero).

In order that the formula (1.2) define a proper norm we fix a point x0 ∈ X (if X is a vector space,
then one usually takes x0 = 0) and consider the space

(1.3) Lip0 X = {f ∈ Lip X : f (x0) = 0} .
In this case (1.2) is a norm on Lip0X and (Lip0X, ‖‖) is a Banach space, even a conjugate one. If

the metric space X is bounded then the product of two Lipschitz functions is a Lipschitz function too
and

(1.4) ‖f · g‖ ≤ ‖f‖ ‖g‖ .
It follows that, in this case, Lip0X is a Banach algebra too. The properties of Banach spaces and
Banach algebras of Lipschitz functions have been intensively studied in the papers of J. A. Johnson
[57, 58, 59], K. de Leeuw [67], W. E. Mayer-Wolf [77], D. R. Sherbert [130], N. Weaver [144, 145, 146,
147].

As in the cases of spaces of continuous function or in the case of normed spaces an essential tool in
developing the theory of spaces of Lipschitz functions is an extension theorem for Lipschitz functions.
In the case of continuous functions we have Tietze’s extension theorem in its scalar or vector versions
(see [34] and [33]) and in the case of normed spaces we have Hahn-Banach extension theorem.

Theorem 1.1 ([78]). Let (X, d) be a metric space and Y a subset of Y. Then any real Lipschitz
function on Y admits at last one extension to X with the same Lipschitz constant.

If f ∈ Lip Y with Lipschitz constant L ≥ 0 then two such extension are given by the formulae

(1.5) F1 (x) = sup {f (y)− L · d (x, y) : y ∈ Y } , x ∈ X ,
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and

(1.6) F2 (x) = inf {f (y) + L · d (x, y) : y ∈ Y } , x ∈ X .

Any other extension F with Lipschitz constant L satisfies the inequalities

(1.7) F1 (x) ≤ F (x) ≤ F2 (x) .

In particular there exists at least one extension F of f verifying

(1.8) ‖F‖ = ‖f‖ ,
where, in (1.8), ‖f‖ is the Lipschitz norm of f in Lip Y and ‖F‖ is the Lipschitz norm of F in Lip
X.

The problem of the extension of vector-valued functions is more complicated and delicate. The
norm preserving extension is not always possible and sometimes is possible only by increasing the
Lipschitz constant.

A metric space (X, d) is said to have the binary intersection property if any collection of mutually
intersecting closed balls in X has nonvoid intersection. This property was first introduced by L.
Nachbin [97] in connection with the vector version of Hahn-Banach extension property for operators.
A Banach space Y is said to have the Hahn-Banach extension property if for any normed space X
and any subspace Z of X every continuous linear operator A ∈ L (Z, Y ) admits a norm-preserving
extension B ∈ L (X,Y ) . L. Nachbin [97] proved that Y has the Hahn-Banach extension property if
and only if it has the binary intersection property and in its turn, this happens exactly when Y is
isometrically isomorphic to a space C (T ) , with T an extremally disconnected compact space (see J.
L. Kelley [63] for the real case and M. Hasumi [48] for the complex one).

Remark that in the real case the fact that the compact T is extremally disconnected is equivalent
to the fact that C (T ) is a complete lattice.

The binary intersection property is also relevant in the case of the extension of Lipschitz func-
tions, but we need a property considered by M. Kirszbraun [64] (see also F. Valentine [140]). A pair
(X, d1) , (Y, d2) of metric spaces is said to have property (K) provided

(1.9)
⋂
i∈I

BX (xi, ri) 6= ∅

implies

(1.10)
⋂
i∈I

BY (yi, ri) 6= ∅ ,

for all families of closed balls {BX (xi, ri) : i ∈ I} and {BY (yi, ri) : i ∈ I} in X and Y, respectively,
such that

(1.11) d2 (yi, yj) ≤ d1 (xi, xj) (∀i, j ∈ I) .

One can consider also the problem of the extension of Lipschitz or Lipschitz-Hölder maps from
subsets of X to Y to the whole X.

A map f : Z → Y form a subset Z of X is called a Lipschitz-Hölder map of order α if

(1.12) d2 (f (x1) , f (x2)) ≤ Ld1 (x1, x2)α , x1, x2 ∈ Z .
If α = 1 and L < 1 then f is called a contraction from Z to Y. If α = 1 and L = 1 then f is called

nonexpansive. It is called an isometry provided

(1.13) d2 (f (x1) , f (x2)) = d1 (x1, x2) , x1, x2 ∈ Z.
A pair X,Y of metric spaces is said to have the extension property for Lipα-maps (nonexpansive

maps, isometries) provided any Lipα−map (nonexpansive maps, isometry) f from a subset Z of X
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to Y admits a Lipα-extension with the same Lipschitz constant (an extension which is nonexpansive,
an isometry).

Supposing 0 < α ≤ 1 then, replacing the metric d1 by L · dα1 , one can suppose that f is always
nonexpansive, i.e. the extension problem for Lipschitz-Hölder maps of order α with 0 < α ≤ 1, reduces
to the problem of the extension of nonexpansive maps.

Theorem 1.2 (M. Kirszbraun [64]). The pair of metric spaces (X, d1) , (Y, d2) has the extension
property for nonexpansive maps if and only if the pair (X,Y ) has property (K) .

To characterize metric spaces Y with the extension property for nonexpansive maps for every other
metric space X we need a further notion. A metric space (Y, d2) is called metrically convex if x, y ∈ Y
and 0 < λ < 1 imply the existence of a point z ∈ Y with the property d2 (x, z) = λd2 (x, y) and
d2 (y, z) = (1− λ) d2 (x, y) . Obviously that any normed linear space is metrically convex.

Theorem 1.3 (M. Kirszbraun [64], see also [148]). A metric space Y has the extension property for
nonexpansive maps for every metric space X if and only if Y is metrically convex and has the binary
intersection property. In this case (X,Y ) has the Lipα extension property for every metric space X
and 0 < α ≤ 1.

Theorem 1.4 ([148, 79, 126]). If H is a Hilbert space then the pair (H,H) has the extension property
for nonexpansive maps and Lipα-maps, 0 < α ≤ 1.

Theorem 1.5 ([148]). If H is a Hilbert space then (H,H) has the isometric extension property if and
only if H is finite dimensional.

The following results show that, in some sense, the Hilbert space setting is the most general in the
class of Banach spaces for which the contraction extension property holds.

Theorem 1.6 ([128]). If X is a strictly convex Banach space then the pair (X,X) has the extension
property for nonexpansive maps if and only if X is a Hilbert space.

Theorem 1.7 ([128]). If X,Y are Banach spaces, with Y strictly convex and of dimension at least
2, then (X,Y ) has the extension property for nonexpansive maps if and only if X and Y are Hilbert
spaces.

It can be shown that the finite dimensional space lpn, 1 < p < ∞, does not have the property (K)
for n > 1 and p 6= 2. (see [148], p.50).

Other extension results for Banach valued Lipschitz functions can be found in [3, 4, 5, 39, 69, 127,
128, 141]. A good account of all these problems is given in the book [148].

As in the case of norm preserving extension theorem for linear maps (Hahn-Banach theorem) it is
natural to study the existence of Lipschitz extensions preserving also other properties of the function.
Results of this kind are known for convex and starshaped functions.

Theorem 1.8 ([20]). Let X be a normed space and Y a convex subset of X. Then any convex function
f ∈ LipY admits a norm-preserving convex extension F ∈ LipX.

The maximal extension F2 given by (1.6) is convex and there exists also a minimal convex norm
preserving extension F ∈ LipX such that

(1.14) F (x) ≤ F (x) ≤ F2 (x) , ∀x ∈ X ,

for any other convex norm preserving extension F of f.

A proof of the fact that the maximal extension F2 of a convex Lipschitz function is convex appear
also in [50] (see also [52]).

A result, similar to that proved Theorem 1.8, but for starshaped Lipschitz functions defined on
starshaped subsets of Banach spaces, was proved by C. Mustǎţa [87].
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W. Rzymowski [122] has found the following condition in order that a function admit a convex
Lipschitz extension.

Theorem 1.9. Let Ω ⊂ Rn be open non-empty convex and let f : bd (Ω)→ R. The function f admits
a convex extension F : Rn → R satisfying the Lipschitz condition with constant L if and only if the
following condition is fulfilled

(1.14a) f (z)− f (x) + f (y)

2
≤ L

∥∥∥∥z − x+ y

2

∥∥∥∥ ,
for all x, y, z ∈ bd (Ω) .

Some extension results for Lipschitz functions on p-normed spaces were proved by W. Ruess [121].
A function ‖·‖ : X → R defined on a real vector space X is called a p-norm on X, 0 < p ≤ 1, provided
it verifies the axioms

p1) ‖x‖ ≥ 0, ‖x‖ = 0 ⇐⇒ x = 0
p2) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p
p3) ‖λx‖ = |λ| ‖x‖ ,

for all x, y ∈ X and λ ∈ R.
W. Ruess [121] considered as a dual for X the cone

(1.15)
CpX = {h : X → R+ : h (x+ y) ≤ h (x) + h (y)

and h (λx) = |λ|p h (x) , for all x, y ∈ X and λ ∈ R} .
in Lip0 X.

In this case one can prove the following extension result.

Theorem 1.10 ([121]). If Y is a linear subspace of the p - normed space (X, ‖·‖) and h ∈ CpY then
the function H : X → R+ given by

(1.16) H (x) = inf {h (y) + ‖h‖ · ‖x− y‖ : y ∈ Y }
is a norm preserving extension of h in CpX , i.e.

(1.17) H ∈ CpX , H |Y = h and ‖H‖ = ‖h‖ .
where ‖H‖ and ‖h‖ stand for the Lipschitz norms (with respect to the p-norm ‖·‖) of H and h,
respectively.

These extension results can be used as a base for developing a duality theory with Lipschitz functions
instead of continuous linear functional. This has been done in [123, 124, 125].

For instance K. Schnatz [124, 125] considers a metric linear space X with a translation invariant
metric d and takes as dual space to X the space o-Lip0X formed of all odd Lipschitz functions on
X, called the non-linear dual space of X, and shows that known results in the linear case as Alaoglu-
Bourbaki, Krein-Milman a.o. theorems, hold in this nonlinear case, too. Similar ideas appear in [123],
but working with Lipschitz functions on a Banach space.

Another way to obtain a norm on a space of Lipschitz functions is to consider the vector space of
bounded Lipschitz functions, denoted by BLipX (X a metric space) and equip it with the norm

(1.18) ‖f‖s = ‖f‖L + ‖f‖∞ ,

where ‖f‖L stands for the Lipschitz norm (1.2) and ‖f‖∞ for the uniform norm. Again BLipX is a
Banach space with respect to the norm (1.18) (see [57]), and the following extension result holds true.

Theorem 1.11 ([93]). Let (X, d) be a metric space and Y a subset of X. Then any f ∈ BLipY admits
a norm preserving extension F ∈ BLipX, i.e. satisfying

(1.19) F |Y = f and ‖F‖s = ‖f‖s .
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Two such extensions are given by

(1.20) F 1 (x) =

{
F1 (x) if F1 (x) ≤ ‖f‖∞
‖f‖∞ if F1 (x) > ‖f‖∞

and

(1.21) F 2 (x) =

{
F2 (x) if F2 (x) ≤ −‖f‖∞
−‖f‖∞ if F2 (x) < −‖f‖∞

where F1, F2 are the extremal norm preserving extensions of f given by (1.5) and (1.6) respectively.

Remark 1.12. The extensions F 1, F 2 given by (1.20) and (1.21), preserve both the Lipschitz and
uniform norms of the function f, implying

∥∥F 1

∥∥
m

= ‖f‖m =
∥∥F 2

∥∥
m

, where ‖·‖m denotes the norm
on BLipX, equivalent to (1.18), given by

(1.22) ‖g‖m = max {‖g‖L , ‖g‖∞} , g ∈ BLipX.

The paper [93] contains also similar extension results for Hölder-Lipschitz functions of order α, 0 <
α < 1. Furthermore, based on this extension property, one gives an algorithm for finding the global
minimum of a function F ∈ LipαX for a compact metric space (X, d) . One starts with the restriction
of F to a subset Y of X and one uses the norm preserving extensions of F |Y to X (a similar procedure
was used in [131] in a particular case).

When (X, d) is a compact metric space, then, by the Stone-Weierstrass theorem, LipX is dense in
C (X) with respect to the uniform norm. Using this fact, some convergence results for sequences of
Markov operators (linear positive operators on X which preserve the constant functions) were proved
in [1].

An extension theorem for multivalued functions which are Lipschitz with respect to the Hansdorff-
Pompeiu metric was proved by A. Bressan and A. Cortesi [11]. This extension does not preserve the
Lipschitz constant, and the authors give an example of a multivalued Lipschitz map which does not
admit extensions with the same Lipschitz constant.

Theorem 1.13 ([11]). Let H be a Hilbert space, Ω a subset of H and f : Ω → C (Rm) a set-valued
map taking values in the family C (Rm) of all nonempty compact convex subsets of Rm.

If f is Lipschitz with respect to the Hansdorff-Pompeiu metric with constant L, then it admits an
extension F : H → C (Rm) which is Lipschitz with Lipschitz constant Lm

√
28/3.

Extension theorems for Lipschitz fuzzy-valued functions were proved by N. Furukama [42].
.

2. Applications to best approximation in spaces of Lipschitz functions

For a real normed space X a subset Y of X and an element x ∈ X put

d (x, Y ) = inf {‖x− y‖ : y ∈ Y }
PY (x) = {y ∈ Y : ‖x− y‖ = d (x, Y )} .

The elements (if any) of the set PY (x) are called nearest points to x in Y (or elements of best
approximation). The set Y is called proximinal if PY (x) 6= ∅ for all x ∈ X, a uniqueness set if card
PY (x) ≤ 1 for all x ∈ X and Chebyshevian if card PY (x) = 1 for all x ∈ X.

If Y is a subspace of X let

(2.1) Y ⊥ = {x∗ ∈ X∗ : x∗|Y = 0}
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be the annihilator space of X in X∗. R. R. Phelps [106] proved that the subspace Y ⊥ is always
proximinal and that it is Chebyshevian if and only if every y∗ ∈ Y ∗ has a unique norm preserving
extension x∗ ∈ X∗.

It can be shown that similar results hold in the case of Lipschitz functions.
Let (X, d) be a metric space, x0 a fixed point in X and Y a subset of X containing x0. Denote by

Lip0X (Lip0 Y ) the spaces of all Lipschitz functions on X (respectively on Y ) vanishing at x0 ∈ Y.
Normed by (1.2) they are Banach spaces.

Put

(2.2) Y ⊥ = {F ∈ Lip0X : F |Y = 0} ,
and, for f ∈ Lip0 Y, let

(2.3) E (f) = {F ∈ Lip0X : F is a norm preserving extension of f} ,
i.e.

F ∈ E (f) ⇐⇒ F |Y = f and ‖F‖X = ‖f‖Y .
By the extension theorem (Theorem 1.1) the set E (f) is non-empty for any f ∈ Lip0 Y.

Theorem 2.1 ([83]). Let (X, d) , x0, Y be as above and Y ⊥ be defined by (2.2)
1◦ The space Y ⊥ is always proximinal in Lip0X and for every F ∈ Lip0X

(2.4) d
(
F, Y ⊥

)
= ‖F |Y ‖ ,

and

(2.5) PY ⊥ (F ) = F − E (F |Y ) .

2◦ The space Y ⊥ is Chebyshevian in Lip0X if and only if every f ∈ Lip0 Y has a unique norm
preserving extension F ∈ Lip0X.

Proof. For F ∈ Lip0X and arbitrary G ∈ Y ⊥ we have

‖F |Y ‖ = sup

{
|F (x)− F (y)|

d (x, y)
: x, y ∈ Y, x 6= y

}
= sup

{
|(F −G) (x)− (F −G) (y)|

d (x, y)
: x, y ∈ Y ;x 6= y

}
≤

≤ sup

{
|(F −G) (x)− (F −G) (y)|

d (x, y)
: x, y ∈ X;x 6= y

}
= ‖F −G‖ ,

implying

‖F |Y ‖ ≤ inf
{
‖F −G‖ : G ∈ Y ⊥

}
= d
(
F, Y ⊥

)
.

By Theorem 1.1 there exists G ∈ Lip0X such that G|Y = F |Y and ‖G‖ = ‖F |Y ‖ . It follows
F −G ∈ Y ⊥ and

d
(
F, Y ⊥

)
≤ ‖F − (F −G)‖ = ‖G‖ = ‖F |Y ‖ ,

showing that (2.4) holds.
Also G ∈ Y ⊥ is a nearest point to F in Y ⊥ iff

‖F −G‖ = d
(
F, Y ⊥

)
= ‖F |Y ‖ .

Since (F −G) |Y = F |Y we have F −G ∈ E (F |Y ) which is equivalent to G ∈ F − E (F |Y ) .
Therefore

G ∈ PY ⊥ (F ) ⇐⇒ G ∈ F − E (F |Y ) ,

proving the formula (2.5).
The second assertion of the theorem is an immediate consequence of this formula. �
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By Theorem 1.1, any norm preserving extension of F |Y is contained between the extremal extensions
F1, F2 given by (1.5) and (1.6), respectively, it follows that E (F |Y ) is a singleton if and only if

sup {F |Y (y)− ‖F |Y ‖ d (x, y) : y ∈ Y } =

inf {F |Y (y) + ‖F |Y ‖ d (x, y) : y ∈ Y } ,

for all x ∈ X.
Since

inf (F |Y ) (Y ) + ‖F |Y ‖ d (x, y) ≤ sup (F |Y ) (Y )− ‖F |Y ‖ d (x, Y ) ,

we have

(2.6) d (x, Y ) ≤ sup (F |Y ) (Y )− inf (F |Y ) (Y )

2 ‖F |Y ‖
,

for every x ∈ X and every F ∈ Lip0X \ Y ⊥.
Using this inequality one can give conditions on Y in order that its annihilator Y ⊥ be Chebyshevian.

Proposition 2.2. Let (X, d) be a metric space and Y a subset of X containing the distinguished point
x0.

1◦ If Y = X, then Y ⊥ is Chebyshevian in Lip0X.
2◦ If Y ⊥ is Chebyshevian and Y contains at least one accumulation point, then Y = X.

Similar results hold in the case of the extension of convex Lipschitz functions.
By Theorem 1.8 every convex function f ∈ LipY admits a convex norm preserving extension

F ∈ LipX. The minimal extension F1 given by (1.5) is convex and there exists a maximal extension
F too.

Now, if 0 ∈ Y is the fixed point, then put

KY = {f ∈ Lip0 Y : f is convex on Y } .

It follows that KY is a convex cone and let

Xc = KX −KX

be the linear space generated by the cone

KX = {F ∈ Lip0X : F is convex on X} .

Let also

Yc = KY −KY ,

and

Y ⊥c = {F ∈ Xc : F |Y = 0} .

Theorem 2.3 ([20]). 1◦ If F ∈ KX , then

‖F |Y ‖ = d
(
F, Y ⊥c

)
2◦ The space Y ⊥c is KX-proximinal and, for F ∈ KX , a function G ∈ Y ⊥c is a nearest point to F

in Y ⊥c if and only if G = F −H where H is a convex norm preserving extension of F |Y .
3◦ The space Y ⊥c is KX-Chebyshevian if and only if every f ∈ KY has a unique convex norm

preserving extension to X.

Similar results hold for starshaped Lipschitz functions (see [90]).
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Chr. Tammer, Eds. Deutsche Hochschulschriften vol. 2398, H¨ansel-Hohenhausen Frankfurt 1997, pp. 19-29.
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(1977), 183-187.
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