#### Sinus Association

UNIQUENESS OF THE EXTENSION OF SEMI-LIPSCHITZ FUNCTIONS ON QUASI - METRIC SPACES

Author(s): Costică MUSTĂŢA

Source: Buletinul științific al Universitatii Baia Mare, Seria B, Fascicola matematică-

informatică, Vol. 16, No. 2 (2000), pp. 207-212

Published by: Sinus Association

Stable URL: https://www.jstor.org/stable/44001754

Accessed: 31-03-2023 10:33 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms



Sinus Association is collaborating with JSTOR to digitize, preserve and extend access to Buletinul ştiințific al Universitatii Baia Mare, Seria B, Fascicola matematică-informatică

Bul. Științ. Univ. Baia Mare, Ser. B, Matematică - Informatică, Vol. XVI(2000), Nr. 2, 207 - 212

### Dedicated to Maria S. Pop on her 60th anniversary

## UNIQUENESS OF THE EXTENSION OF SEMI-LIPSCHITZ FUNCTIONS ON QUASI - METRIC SPACES

## Costică MUSTĂTA

Let X be a nonvoid set and  $d: X \times X \to [0, \infty)$  a function satisfying the following conditions:

- (i)  $d(x,y) = 0 \iff x = y$ ,
- (ii)  $d(x,y) \leq d(x,z) + d(z,y)$ ,

for all  $x, y, z \in X$ . We call d a quasi-metric on X and the pair (X, d), a quasi-metric space. Remark that the main difference with respect to a metric is the symmetry condition, d(x, y) = d(y, x), which is not satisfied by a quasi-metric.

The conjugate of a quasi-metric d, denoted by  $d^{-1}$  is defined by

$$d^{-1}\left( x,y\right) =d\left( y,x\right)$$

for all  $x, y \in X$ . Obviously, that the mapping  $d^s: X \times X \to [0, \infty)$  defined by

(2) 
$$d^{s}(x,y) = \max \{d(x,y), d^{-1}(x,y)\}, x,y \in X$$

is a metric on X, i.e.  $d^s$  satisfies the conditions (i), (ii) and the symmetry condition:

(iii) 
$$d^{s}\left(x,y\right)=d^{s}\left(y,x\right),\quad x,y\in X.$$

A function  $f: X \to \mathbb{R}$ , defined on a quasi-metric space (X, d) is called *semi-Lipschitz* provided there exists a number  $K \geq 0$  such that

$$(3) f(x) - f(y) \leq K d(x, y),$$

for all  $x, y \in X$ . A function  $f: X \to \mathbb{R}$  is called  $\leq_{d}$ -increasing if

(3a) 
$$d(x,y) = 0 \Longrightarrow f(x) - f(y) \le 0$$

for all  $x, y \in X$ .

The definition of  $\leq_d$  - increasing function  $f: X \to \mathbb{R}$  is consistent for  $T_0$  - separated quasi-metric space (X,d) (see [6]). In this note the quasi-metric space (X.d) is  $T_1$  - separated (see the condition (i) and (ii)).

Since  $d(x,y) = 0 \iff x = y$ , it follows that  $f(x) \le f(y)$  for any function  $f: X \to \mathbb{R}$  i.e. any real - valued function on a quasi - metric space X is  $\le_d$  - increasing.

**Theorem 1** Let  $f: X \to \mathbb{R}$  be such that

$$(4) \qquad \|f\|_{d} = \sup \left\{ \frac{\left(f\left(x\right) - f\left(y\right)\right) \vee 0}{d\left(x,y\right)} : x, \ y \in X, \ d\left(x,y\right) > 0 \right\} < \infty$$

Then f satisfies the inequality

(5) 
$$f(x) - f(y) \le ||f||_d \cdot d(x, y), \ \forall x, y \in X$$

and  $||f||_d$  is the smallest constant for which the inequality (3) holds.

**P roof.** nce f is  $\leq_d$  - increasing (see (3a)) it follows that f(x) - f(y) > 0 implies d(x, y) > 0. But then

$$\frac{f\left(x\right)-f\left(y\right)}{d\left(x,y\right)}>0 \text{ and } \left\|f\right\|_{d}=\sup_{d\left(x,y\right)>0}\frac{\left(f\left(x\right)-f\left(y\right)\right)\vee0}{d\left(x,y\right)}\geq\frac{f\left(x\right)-f\left(y\right)}{d\left(x,y\right)}$$

implying

$$f(x) - f(y) \le \|f\|_d \cdot d(x, y).$$

If  $f(x) - f(y) \le 0$  then

$$\frac{\left(f\left(x\right)-f\left(y\right)\right)\vee0}{d\left(x,y\right)}=0$$

implying  $f(x) - f(y) \le ||f||_d \cdot d(x, y)$ .

Let now  $K \geq 0$  be such that

$$f\left(x\right) - f\left(y\right) \leq K \cdot d\left(x, y\right)$$

for all  $x, y \in X$ . Then f is  $\leq_d$  - increasing and

$$\frac{\left(f\left(x\right)-f\left(y\right)\right)\vee0}{d\left(x,y\right)}=\frac{f\left(x\right)-f\left(y\right)}{d\left(x,y\right)}\leq K\quad\text{if}\quad f\left(x\right)-f\left(y\right)>0$$

and

$$\frac{\left(f\left(x\right)-f\left(y\right)\right)\vee0}{d\left(x,y\right)}=0\leq K\quad\text{if}\quad f\left(x\right)-f\left(y\right)\leq0.$$

Consequently,  $||f||_d \leq K$ .

Denoting by  $SLip\ X$  the set of all real - valued semi - Lipschitz functions defined on a quasi - metric space (X,d) we have

(6) 
$$SLipX = \left\{ f: X \to \mathbb{R}, \sup_{d(x,y)>0} \frac{\left(f\left(x\right) - f\left(y\right)\right) \vee 0}{d\left(x,y\right)} < \infty \right\}.$$

Let  $Y \subset X$ ,  $Y \neq \emptyset$ , where (X,d) is a quasi - metric space. It follows that (Y,d) is a quasi - metric space, too, and let's denote by  $SLip\ Y$  the set of all semi - Lipschitz functions on Y.

The following extension problem arises naturally: for  $f \in SLip\ Y$  find  $F \in SLip\ X$  such that

(7) 
$$F|_{Y} = f \text{ and } ||F||_{d} = ||f||_{d}.$$

The answer is affirmative. In [5] it was shown that the functions

(8) 
$$F(x) = \inf_{y \in Y} [f(y) + ||f||_{d} \cdot d(x, y)], \ x \in X,$$

(9) 
$$G(x) = \sup_{y \in Y} \left[ f(y) - \|f\|_d \cdot d^{-1}(x, y) \right], \ x \in X$$

satisfy the equalities

$$F|_Y = G|_Y = f$$
 and  $||F||_d = ||G||_d = ||f||_d$ .

In other words, for any  $f \in SLip Y$  the set

(10) 
$$E_Y^d(f) := \{ H \in SLipX : H|_Y = f \text{ and } ||H||_d = ||f||_d \}$$

of all extensions of f which preserve the smallest Lipschitz constant is non-void.

Concerning the unicity of the extension ( card  $E_Y^d(f) = 1$ ) one can prove:

**Theorem 2** Let (X,d) be a quasi - metric space,  $Y \subset X$  and  $f \in SLipY$ . Then

a) For every  $H \in E_Y^d(f)$  the following inequalities hold:

(11) 
$$G(x) \le H(x) \le F(x), \quad x \in X$$

where the functions F, G are defined by (8), (9); b) card  $E_{\mathbf{v}}^{\mathbf{d}}(f) = 1$  if and only if

(12) 
$$\sup_{y \in Y} \left[ f(y) - \|f\|_d d^{-1}(x, y) \right] = \inf_{y \in Y} \left[ f(y) + \|f\|_d d(x, y) \right]$$

for all  $x \in X$ .

**P** roof.  $t H \in E_Y^d(f)$ . Then we have for every  $x \in X$  and  $y \in Y$ :

$$H(x) - H(y) \le ||f||_d d(x, y)$$
  

$$H(y) - H(x) \le ||f||_d d(y, x) = ||f||_d \cdot d^{-1}(x, y).$$

The first inequality implies

$$H(x) \le H(y) + ||f||_d \cdot d(x,y) = f(y) + ||f||_d d(x,y)$$

and, taking the infimum with respect to  $y \in Y$ , we have

$$H(x) \leq F(x), \quad x \in X.$$

Similarly, we get

$$H(x) \ge H(y) - \|f\|_d d^{-1}(x,y) = f(y) - \|f\|_d d^{-1}(x,y).$$

Taking the supremum with respect to  $y \in Y$  one obtains

$$H(x) \ge G(x), \quad x \in X.$$

The assertion b) is a direct consequence of the inequalities (11).  $\blacksquare$  Remark. 1<sup>0</sup>. If the function  $f: X \to \mathbb{R}$  is constant on X then  $||f||_d = 0$ , and the equality (12) holds.

Consider on Rde quasi-metric

$$d(x,y) = \begin{cases} x - y, & x \ge y \\ 0, & x < y \end{cases}$$

and let Y = [0,1] and  $f(y) = 2y, y \in Y$ . Then  $||f||_d = 2$  and the extremal extensions F, G are

$$F\left(x
ight) = \left\{ egin{array}{ll} 2 & x < 0 \ 2x & x \geq 0 \end{array} 
ight. \quad ext{and} \quad G\left(x
ight) = \left\{ egin{array}{ll} 2x & x \leq 1 \ 0 & x > 1 \end{array} 
ight.$$

which are distinct.

 $2^{0}$ . By Theorem 2, if  $f \in SLipY$  has a unique extension then the equality (12) holds and, since

$$\begin{split} &\inf_{y \in Y} \left[ f\left(y\right) + \left\| f \right\|_{d} \cdot d\left(x,y\right) \right] \geq \inf_{y \in Y} f\left(y\right) + \left\| f \right\|_{d} \cdot d\left(x,Y\right), \\ &\sup_{y \in Y} \left[ f\left(y\right) - \left\| f \right\|_{d} \cdot d^{-1}\left(x,y\right) \right] \leq \sup_{y \in Y} f\left(y\right) - \left\| f \right\|_{d} \cdot d^{-1}\left(x,Y\right) \end{split}$$

where

$$d(x,Y) = \inf \left\{ d(x,y) : y \in Y \right\}$$

and

$$d^{-1}(x, Y) = \inf \{d(y, x) : y \in Y\}$$

we obtain the inequality

(13) 
$$d\left(x,Y\right) + d^{-1}\left(x,Y\right) \leq \frac{1}{\|f\|_{d}} \left(\sup_{y \in Y} f\left(y\right) - \inf_{y \in Y} f\left(y\right)\right).$$

**Theorem 3** Let (X,d) be a quasi - metric space and  $Y \subset X$ ,  $Y \neq X$ , containing at least one cluster point. If each function  $f \in SLipY$  has a unique extension then  $\overline{Y} = X$ .

**P roof.** t  $y_0 \in Y$  be a cluster point of the set Y and let  $y_n \in Y \setminus \{y_0\}$ , n = 1, 2..., be such that  $\lim_{n \to \infty} d(y_n, y_0) = 0$ .

Claim: There exists  $x_0 \in X$  such that  $d(x_0, y_0) > 0$  and  $d(x_0, y_n) > 0$ , n = 1, 2, ...

Indeed, if contrary, then for every  $x \in X$ ,  $d(x, y_0) = 0$  or  $d(x, y_n) = 0$  for all  $n \in \mathbb{N}$ . In the first case  $x = y_0 \in Y$  and in the second  $x = y_n \in Y$ . It follows Y = X, a contradiction.

Consider the function  $f: X \to \mathbb{R}$  defined by

$$f(x) = d(x, y_0) - d(x_0, y_0), x \in X.$$

We have

$$f(y_0) = d(y_0, y_0) - d(x_0, y_0) = -d(x_0, y_0) < 0$$
  
$$f(y_n) = d(y_n, y_0) - d(x_0, y_0) > -d(x_0, y_0)$$

for all  $n=1,2,\dots$  . Define the sequence of functions  $\varphi_n:f(X)\to [0,1]$  by

$$\varphi_{n}\left(t\right) = \begin{cases} 1 & \text{if } t < f\left(y_{0}\right) \\ \frac{f\left(y_{n}\right) - t}{f\left(y_{n}\right) - f\left(y_{0}\right)} & t \in \left[f\left(y_{0}\right), f\left(y_{n}\right)\right] \\ 0 & t > f\left(y_{n}\right) \end{cases}$$

The function  $\Psi_n = \varphi_n \circ f : X \to \mathbb{R}, \ n = 1, 2, \dots$ , satisfy

$$\left\|\Psi_{n}\right\|_{d} \geq \frac{\left(\varphi_{n}\left(f\left(y_{0}\right)\right) - \varphi_{n}\left(f\left(y_{n}\right)\right)\right) \vee 0}{d\left(y_{0}, y_{n}\right)} = \frac{1}{d\left(y_{0}, y_{n}\right)} \rightarrow \infty,$$

for  $n \to \infty$ .

By the inequality (12)

$$d\left(x,Y\right)+d^{-1}\left(x,Y\right)\leq\frac{1-0}{\left\Vert \Psi_{n}\right\Vert _{d}}\rightarrow0$$

for  $n \to \infty$ , showing that Y is dense in X, with respect to the quasi - metric d and with respect to  $d^{-1}$ , as well.

# References

- [1] Cobzas, S., Mustăța, C., Norm Preserving Extension of Convex Lipschitz Functions, J.A.T. 24(1978), 555-564.
- [2] Fletcher, P., Lindgren, W.F., "Quasi-Uniform Spaces" Dekken, New York, 1982.
- [3] McShane, J.A., Extension of range of functions, Bull.Amer.Math.Soc. 40(1934) 837-842.
- [4] Mustăța, C., Best Approximation and Unique Extension of Lipschitz Functions, J.A.T. 19(1977), 222-230.
- [5] Mustăța, C., On the Extension of Semi-Lipschitz Functions on Quasi-Metric Space (to appear).
- [6] Romaguera, S., Sanchis, M., Semi-Lipschitz Functions and Best Approximation in Quasi-Metric Spaces, J.A.T. 103 (2000) 292-301.
- [7] Wells, J.H., Williams, L.R., Embeddings and Extensions in Analysis, Springer-Verlag, Berlin 1975.

Received 19.10.2000

"T. Popoviciu" Institute of Numerical Analysis str. Gh. Bilaşcu nr.37 C.P. 68, O.P. 1 3400 Cluj-Napoca