

The PAMM's periodical BULLETINS for APPLIED & COMPUTER MATHEMATICS (BAM)

Editorial Board

at the Technical University, H-1111 Budapest, Müegyetem rkp. 7.
PAMM-Centre: Z. IV. 01.
(Mailing address)

Prof. Dr. F. FAZEKAS
(TU-Budapest)
Editor in Chief

Prof. Dr. A. TAKACI (U-Novi Sad) Prof. Dr. N. BOJA (TU-Timisoara) Prof. Dr. L. TRAUNER (U-Maribor)

Prof. Dr. R. FOLIC (U-Novi Sad) Prof. Dr. I. ZOBORY (TU-Budapest) Prof. Dr. J. BRNIC (U-Rijeka)

Prof. Dr. S. SKRABL (U-Maribor) Prof. Dr. R. ISLER (U-Trieste)

Co-editors

András HEGEDÜS, M. Sc.hort. (Budapest) Vice-editor

BAM 1891-1938/2001-XCVI-C

Lecture at the PC-135/2001- Baia Mare-Borşa ISSN 0133-3526

-ManuscriptPrepared for publication at the
Department of Mathematics and Computer Science
North University of Baia Mare
Baia Mare, November-December 2001
ROMANIA

Extension of bounded starshaped semi-Lipschitz functions on quasi-metric linear spaces

Costică Mustăța

1 Introduction

Let X be a nonvoid set. A function $d: X \times X \to [0, \infty)$ satisfying the conditions:

(i) $d(x,y) = 0 \iff x = y$,

(ii) $d(x,y) \le d(x,z) + d(z,y)$,

for all $x,y,z\in X$ is called a *quasi-metric* on X and the pair (X,d) is called quasi-metric space. The essential difference with respect to a metric on X is that a quasi-metric does not satisfy the symmetry condition d(x,y)=d(y,x).

If X is a linear space and d a quasi-metric on X then the pair (X, d) is called a quasi-metric linear space.

Let $\theta \in X$ be the null element of the linear space X. A subset Y of X is called *starshaped* (with respect to θ) if it satisfies the condition:

(1)
$$\forall y \in Y \quad \forall \alpha \in [0,1] : \alpha y \in Y.$$

If Y is a starshaped subset of the linear space X then a function $f: Y \to \mathbb{R}$ is called a *starshaped function* provided:

(2)
$$\forall y \in Y \qquad \forall \alpha \in [0,1] : f(\alpha y) \le \alpha f(y).$$

Obviously that the condition (1) implies $\theta \in Y$ and the condition (2) implies $f(\theta) \leq 0$. In what follows we shall consider only starshaped functions on Y which vanish at θ , i.e. $f(\theta) = 0$.

If (X,d) is a quasi-metric linear space and $Y\subset X$ is a starshaped set, the quasi-metric d is called starshaped on Y if

(3)
$$\forall x, y \in Y, \forall \alpha \in [0, 1]: d(\alpha x, \alpha y) \leq \alpha d(x, y).$$

Let (X,d) be a quasi-metric space and $Y \subset X$, $Y \neq \emptyset$. A function $f: Y \to \mathbb{R}$ is called *semi-Lipschitz* if it satisfies the condition

$$(4) \qquad \exists K_Y \ge 0 : f(x) - f(y) \le K_Y \cdot d(x, y),$$

for all $x, y \in Y$.

A number $K_Y \geq 0$ for which (4) holds is called a *semi-Lipschitz constant* for f (on Y).

One sees that

(5)
$$||f||_{Y} = \sup \left\{ \frac{(f(x) - f(y)) \vee 0}{d(x, y)} : x, y \in Y, d(x, y) > 0 \right\}$$

is the smallest semi-Lipschitz constant for the function f on the set Y (see [6] and [4, Th.1]). Let

(6)
$$SLipY := \{f : Y \to \mathbb{R}, f \text{ is semi-Lipschitz}\}$$

the set of all real-valued semi-Lipschitz functions defined on the quasi-metric space $(Y,d), Y\subseteq X$.

If (X, d) is a quasi-metric linear space and Y is a subset of X containing θ then the set

(7)
$$SLip_0Y := \{ f | f \in SLipY \text{ and } f(\theta) = 0 \}$$

is a semilinear space and the functional $\|\cdot\|_Y: SLip_0Y \to \mathbb{R}_+$ defined by

(8)
$$||f||_{Y} : \sup \left\{ \frac{(f(x) - f(y)) \vee 0}{d(x, y)} : x, y \in Y, \ d(x, y) \neq 0 \right\}$$

is a quasi-norm on $SLip_0X$ (see [4] and [6]).

A semilinear space satisfies axioms similar to those defining a linear space, excepting the existence of the opposite element (the inverse with respect to +) and that the multiplication is defined only for positive scalars. (see [6]).

2 Extensions

The following problem is treated in [4]:

Let (X,d) be a quasi-metric space, $Y\subset X$ and $f\in SLip\ Y.$ One asks to find a function $F\in SLipX$ such that

(9)
$$F|_{Y} = f \text{ and } ||F||_{X} = ||f||_{Y}$$

One shows ([4, Th.2]) that for every $f \in SLipY$ there exists $F \in SLipX$ satisfying (9). This result is similar to a result of Mc Shane from 1934 (see [2]) asserting that every real valued Lipschitz function defined on a subset of a metric space X admits an extension to the whole space with the same Lipschitz constant.

In the present paper we study the extension problem for bounded starshaped semi-Lipschitz functions defined on sharshaped subsets of quasi-metric linear spaces:

For a quasi-metric linear space (X,d) with the quasi-metric d starshaped, a starshaped subset Y of X and a bounded semi-Lipschitz starshaped function $f \in SLip_0Y$ find a bounded starshaped function $F \in SLip_0X$ such that

(10)
$$F|_{Y} = f$$
, $||F||_{X} = ||f||_{Y}$ and $||F||_{\infty} = ||f||_{\infty}$,

where $\|\cdot\|_{\infty}$ denotes the sup-norm.

Observe that if Y is a subspace of X and $f \in SLip_0Y$ is starshaped then it is possible that f be unbounded on Y.

More exactly we have:

Lemma 1 Let (X,d) be a quasi-metric linear space, Y a subspace of X and $f \in SLip_0Y$ be starshaped. If there exists $x_0 \in Y$ such that $f(x_0) > 0$ then f is unbounded on Y.

Proof. For every $x \in Y$, $x \neq 0$, the function $h:(0,\infty) \to \mathbb{R}$ defined by h(t) = f(tx)/t is non-increasing. Indeed, if $0 < t_1 < t_2$ then

$$h\left(t_{1}\right) = \frac{f\left(t_{1}x\right)}{t_{1}} = \frac{f\left(t_{2}^{-1} \cdot t_{1}\left(t_{2}x\right)\right)}{t_{1}} \leq \frac{t_{1}}{t_{2}} \frac{f\left(t_{2}x\right)}{t_{1}} = \frac{f\left(t_{2}x\right)}{t_{2}} = h\left(t_{2}\right).$$

In particular, for t > 1 and $x_0 \in Y$ with $f(x_0) > 0$ we have

$$0 < f\left(x_0\right) \le \frac{f\left(tx_0\right)}{t}$$

so that

$$f(tx_0) \ge tf(x_0)$$

for every t > 1, which shows that f is unbounded on Y.

The following theorem answers positively the question on the extension of bounded starshaped semi-Lipschitz functions. **Theorem 2** Let (X,d) be a quasi-metric linear space and Y a starshaped subset of X. Suppose that the quasi-metric d is starshaped on Y.

Let $f \in SLip_0Y$ be bounded and starshaped. In order to exist a bounded starshaped function $F \in SLip_0X$ such that

$$F|_{Y} = f$$
, $||F||_{X} = ||f||_{Y}$ and $||F||_{\infty} = ||f||_{\infty}$

it is necessary and sufficient that $f(y) \leq 0$ for all $y \in Y$.

Proof. Sufficiency suppose that $f(y) \leq 0$ for all $y \in Y$. The function

(11)
$$H(x) = \inf_{y \in Y} [f(y) + ||f||_{Y} d(x, y)], \quad x \in X$$

is starshaped on X and satisfies the conditions

$$H|_{Y} = f$$
 and $||H||_{X} = ||f||_{Y}$

(see [4,Th.2] and [5, Th.8).

Indeed, let $z \in Y$ and $x \in X$. For any $y \in Y$ we have

$$\begin{split} f\left(y\right) + \left\|f\right\|_{Y} d\left(x, y\right) &= f\left(z\right) + \left\|f\right\|_{Y} d\left(x, y\right) - \left(f\left(z\right) - f\left(y\right)\right) \geq \\ &\geq f\left(z\right) + \left\|f\right\|_{Y} d\left(x, y\right) - \left\|f\right\|_{Y} d\left(z, y\right) = \\ &= f\left(z\right) - \left\|f\right\|_{Y} \left(d\left(z, y\right) - d\left(x, y\right)\right). \end{split}$$

The inequality $d(z, y) - d(x, y) \le d(z, x)$ implies

$$f(y) + ||f||_{Y} d(x, y) \ge f(z) - ||f||_{Y} \cdot d(z, x)$$

showing that for every $x \in X$ the set $\{f(y) + \|f\|_Y d(x, y) : y \in Y\}$ is bounded from above by $f(z) - \|f\|_Y d(z, x)$, and the infimum (11) is finite.

We show now that H(y) = f(y) for all $y \in Y$.

Let $y \in Y$. Then

$$H(y) \le f(y) + ||f||_Y d(y,y) = f(y).$$

For any $v \in Y$ we have

$$f\left(y\right)-f\left(v\right)\leq\left\Vert f\right\Vert _{Y}\cdot d\left(y,v\right)$$

so that

$$f(v) + ||f||_{Y} \cdot d(y, v) \ge f(y)$$

and

$$H(y) = \inf \{ f(v) + ||f||_{Y} d(y,v) : v \in Y \} \ge f(y).$$

It follows H(y) = f(y).

We prove that $||H||_{Y} = ||f||_{Y}$.

Since $H|_Y = f$, the definitions of $||H||_Y$ and $||f||_Y$ yield $||H||_Y \ge ||f||_Y$. Let $x_1, x_2 \in X$ and $\varepsilon > 0$. Choosing $y \in Y$ such that

$$H(x_1) \ge f(y) + ||f||_Y d(x_1, y) - \varepsilon$$

we obtain

$$H(x_{2}) - H(x_{1}) \leq f(y) + ||f||_{Y} d(x_{2}, y) - (f(y) + ||f||_{Y} \cdot d(x_{1}, y) - \varepsilon)$$

$$= ||f||_{Y} [d(x_{2}, y) - d(x_{1}, y)] + \varepsilon$$

$$\leq ||f||_{Y} \cdot d(x_{2}, x_{1}) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary it follows

$$H(x_2) - H(x_1) \le ||f||_Y \cdot d(x_2, x_1)$$

for any $x_1, x_2 \in X$ and $\|H\|_Y \le \|f\|_Y$. Then $\|H\|_X = \|f\|_Y$.

We shall show that H is also starshaped on X. To this end let $x \in X$, $z \in Y$ and $\alpha \in [0, 1]$. We have

$$\begin{split} H\left(\alpha x\right) &= f\left(\alpha z\right) + \left\|f\right\|_{Y} d\left(\alpha x, \alpha z\right) \leq \\ &\leq \alpha f\left(z\right) + \alpha \left\|f\right\|_{Y} d\left(x, z\right) = \\ &= \alpha \left[f\left(z\right) + \left\|f\right\|_{Y} \cdot d\left(x, z\right)\right]_{\cdot \underline{\downarrow}} \end{split}$$

Taking the infimum with respect to $z \in Y$ we get

$$H\left(\alpha x\right) \leq \alpha H\left(x\right)$$

for all $x \in X$ and all $\alpha \in [0, 1]$, showing that the function H defined by (11) is a starshaped extension of f.

Consider the function

(12)
$$F(x) = \begin{cases} H(x) & \text{if } H(x) \leq 0\\ 0 & \text{if } H(x) > 0 \end{cases}$$

Since $F|_Y = H|_Y = f$, $||H||_X = ||f||_Y$ and $||H||_X \ge ||F||_X$, it follows that $||F||_X = ||f||_Y$. Therefore F is an extension of f with the same semi-Lipschitz constant.

Let
$$x \in X$$
. If $H(x) \leq 0$ then

$$H(\alpha x) \le \alpha H(x) \le 0$$

for any $\alpha \in [0, 1]$ so that

$$F(\alpha x) = H(\alpha x) \le \alpha H(x) = \alpha F(x)$$
.

If
$$H(x) > 0$$
 then $F(x) = 0$. Let $\alpha \in (0, 1)$. If $H(\alpha x) > 0$ then

$$F(\alpha x) = 0 = \alpha F(x).$$

If
$$H(\alpha x) \leq 0$$
 then $F(\alpha x) = H(\alpha x)$ and

$$F(\alpha x) = H(\alpha x) \le 0 = \alpha F(x).$$

It follows that the function F defined by (12) is an extension of f which is starshaped and has the same semi-Lipschitz constant as f. Since

$$\sup \{ |F(x)| : x \in X \} \ge \sup \{ |F(y)| : y \in Y \} = ||f||_{\infty}$$

it follows $||F||_{\infty} \ge ||f||_{\infty}$.

Let $x \in X$. For any $y \in Y$ we have

$$f(y) \le f(y) + ||f||_{Y} \cdot d(x, y)$$

which implies

$$\inf_{y \in Y} f\left(y\right) \leq \inf_{y \in Y} \left[f\left(y\right) + \left\| f \right\|_{Y} d\left(x,y\right) \right] = H\left(x\right).$$

If $H(x) \leq 0$ then

$$\inf_{y \in Y} f(y) \le H(x) = F(x).$$

Since $f(y) \le 0$ for all $y \in Y$ we have $||f||_{\infty} = -\inf f(Y)$ so that

$$-\|f\|_{\infty} \le F(x) \Longleftrightarrow \|f\|_{\infty} \ge -F(x).$$

If H(x) > 0 then

$$||f||_{\infty} \ge 0 = F(x).$$

Using the fact that $F(x) \leq 0$, for all $x \in X$, and the above inequalities we obtain

$$||f||_{\infty} \ge \sup_{x \in X} \left(-F\left(x\right)\right) = ||F||_{\infty}.$$

It follows that $||F||_{\infty} = ||f||_{\infty}$.

Necessity. Suppose there exists $y \in Y$ such that f(y) > 0. By Lemma 1 f has no bounded starshaped extensions to X.

References

- Cobzas, S., Mustăța, C., Norm preserving extension of convex Lipschitz functions, J.A.T. 24(1978), 555-564.
- [2] McShane, J.A., Extension of range of functions, Bull. Amer. Math. Soc. 40(1934), 837-842.
- [3] Mustăţa, C., The extension of starshaped bounded Lipschitz functions, Ann. Numer. Theor. Approx., 9(1980) 1, 93-99.
- [4] Mustăța, C., Extensions of semi-Lipschitz functions on quasi-metric space (to appear).
- [5] Mustăţa, C., Extension of convex semi-Lipschitz functions on quasimetric linear space (to appear)
- [6] Romaguera, S., Sanchis, M., Semi-Lipschitz functions in quasi-metric spaces, J.A.T 103(2000), 292-301.
- [7] Weaver, N., Lipschitz Algebras, World Scientific, Singapore 1999.
- [8] Wels, J.H., Williams, L.R., Embeddings and Extension in Analysis, Springer-Verlag, Berlin, 1975.