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FAMILIES OF PLANAR ORBITS IN ONE-VARIABLE
CONSERVATIVE FIELDS

Mira-Cristiana Anisiu and George Bozis

Abstract. We discuss a simple case of the planar inverse problem of Dynamics,
considering a one-dimension potential V = v(x). For the families which satisfy
a differential condition, the specific potentials can be obtained by quadratures.
The isoenergetic families of orbits which can be described under the action of a
potential V = v(x) are displayed too.
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1. INTRODUCTION

The inverse problem of Dynamics consists in finding the force fields, con-
servative or not, which generate the motion in a dynamical system, knowing
in advance a family of orbits. Historically, the first results are due to Newton,
who in his monumental work Principia [12] found the forces that make a par-
ticle to move on ellipses. At the end of the XIXth century, the problem was
considered again for several families of orbits by Bertrand [3], Dainelli [10] and
Jukovski [11], their results being exposed in the well-known book of Whittaker
[14]. The paper which raised again the interest in this problem was that of
Szebehely [13], where a way was sought to determine the Earth’s potential on
the basis of satellites’ movement. The book [1] contains an introduction to
the planar inverse problem of Dynamics.

Although linear in the unknown potential V (x, y), the basic equations of
the inverse problem (equations (4) and (7) below) cannot generally be solved.
Certain limiting assumptions either on the orbits or on the potential may
make the problem solvable. Such is, for instance, the planar motion of a unit
mass under the action of an one-dimension potential V = v(x). Evidently, in
this case, the two second-order ODEs of motion (equations (2) below) can be
solved to completion and the pertinent three-parametric family of orbits can
be found by successive quadratures.

Here we treat the above simple problem in the framework of the inverse
problem so that the student becomes acquainted with the relevant basic tools
and eventually compare results and also get an insight into the connection
between geometrical and dynamical aspects in Mechanics (i. e. curves in the
Oxy plane as geometrical entities and possible motion on these curves now
considered as orbits).
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2. THE EQUATIONS OF THE PLANAR INVERSE PROBLEM

The planar inverse problem aims to the finding of the potentials V = V (x, y)
which can produce the planar motion of a particle of unit mass along a given
family of curves

(1) f(x, y) = c.

The equations of motion of the particle are

(2) ẍ = −Vx ÿ = −Vy,

where the indices denote partial derivatives.
The system (2) admits the energy integral ẋ2 + ẏ2 = 2(E − V ), the total

energy E being constant on each trajectory of the system. The family of curves
(1) being given, in the case when it will appear as a family of trajectories of
the system (2), we shall denote the energy by E = E(f), emphasizing the fact
that it is constant on each member of the family.

Using the functions

(3) γ =
fy

fx
, Γ = γγx − γy,

Szebehely’s equation [13], which expresses the connection between the poten-
tial and the given family, was written in a simpler form in [5]

(4) Vx + γVy +
2Γ (E(f)− V )

1 + γ2
= 0.

The function γ is related to the slope of the curves in the family, and Γ to their
curvature. The reader can easily see that functions γ = γ(x, y) and families
f(x, y) = c are in an one-to-one correspondence. On the other hand, since
d y/ d x = −1/γ(x, y), we understand that the PDE (4) gives all potentials
V = V (x, y) which can produce as orbits all the solutions of a first order ODE
(in the solved form y′ = −1/γ(x, y)).

The inequality E(f) − V ≥ 0 expresses the fact that the kinetic energy
cannot be negative, therefore

(5)
Vx + γVy

Γ
≤ 0.

The meaning of the inequality (5) was discussed in [7]. Supposing that (i)
Γ 6= 0, (ii) all pertinent functions are sufficiently smooth and introducing the
notation

(6) κ =
1
γ
− γ, λ =

Γy − γΓx

γΓ
, µ = λγ +

3Γ
γ

,

Bozis [6] derived the free of energy equation of the second order in V

(7) −Vxx + κVxy + Vyy = λVx + µVy.



3 Families of Planar Orbits 11

In the case of families of straight lines, for which Γ = 0, the corresponding
equation is of first order and it reads

(8) Vx + γVy = 0.

The equations of the inverse problem of Dynamics are presented in detail
by Bozis [8] and Anisiu [2].

Remark 1 As it is easily seen from (4), a potential V which depends only
on one variable cannot generate families of straight lines (Γ = 0), except in
the trivial case V = const. In what follows we shall consider Γ 6= 0.

3. POTENTIALS DEPENDING MERELY ON ONE VARIABLE

We study only the case of potentials V = v(x), because V = v(y) can be
reduced to this one by interchanging the roles of the variables x, y and by
considering the family f̃(y, x) = c.

The equation (7) becomes very simple when V = v(x), namely

(9) −v′′(x) = λv′(x),

where primes denote differentiation with respect to x. In equation (9), the
function λ must depend merely on the variable x, so it has to satisfy ∂λ/∂y =
0. Using the expression of λ from (6b), we find the following necessary and
sufficient condition to be satisfied by the family γ in order that λ depends
merely on x:

(10) γΓ (Γyy − γΓxy) + Γy

(
γ2Γx − γΓy − Γγy

)
= 0.

Equation (10) is a differential condition (of the third order in γ(x, y)) satisfied
by all families γ generated by one-dimension potentials. On the other hand,
for a given λ = `(x), the potential v(x) corresponding to each family γ is found
uniquely from (9) (up to the multiplicative and additive constants c1 and c2).
It is

(11) v(x) = c1

∫
Λ(x) d x + c2,

where

(12) Λ(x) = exp
(
−

∫
`(x) dx

)
.

From (5) it follows that real motion is possible in the region

(13)
v′(x)

Γ
≤ 0,

with the energy obtained from (4)

(14) E(f) = v(x)− 1 + γ2

2Γ
v′(x).

For a given λ = `(x), the potential V = v(x) is found from (11), and we
face the direct problem of Dynamics: find the families of orbits compatible
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with a given potential. We remark that in the frame of the direct problem
pairs of one-dimension potentials V = v(x) and one-dimension families γ have
been found in [9]. Condition (10) may also be written as a PDE of the second
order in γ(x, y), i. e.

(15) γ2γxx − 2γγxy + γyy + (γx + γ`(x))(γγx − γy) = 0.

Solutions of (15) may be found in special cases. Thus, e. g.
(i) Looking for solutions γ = g(x), we find

(16) γ = ±
(

k1

∫
Λ(x) dx + k2

) 1
2

,

where Λ(x) is given by (12) and k1, k2 are new integration constants. So, all
families (16) are compatible with the potential (11).

For k1 = c1, k2 = c2 we see that the potential v(x) can create the families
γ = ±

√
v(x).

Remark 2 From Szebehely’s equation (4) it follows that the energy on all
members of a family (16) is given by E = −c1 (k2 + 1) /k1. This means that
the family is isoenergetic, and the possibility that families with this property
are traced in the presence of a one-dimension potential will be studied in
section 4.

(ii) In particular for ` = `0/x, (`0 = const.) and for functions γ of the form
γ = γ(y/x), the PDE (15) becomes

(17) (1 + γz)
..
γ + z

.
γ

2 + (2− `0)γ
.
γ = 0,

where z = y/x and dots denote differentiation in z.
For `0 = 2, a first integration of (17) leads to

(18) (1 + zγ)
.
γ − 1

2
γ2 = k1

and, for k1 > 0, a second integration leads to

(19)
2k1z − γ

2k1 + γ2
−

arctan γ√
2k1√

2k1
= k2.

Sporadic solutions of (17) may be found for other values of `0. Thus e. g.
for `0 = 3, we obtain from (17) the families γ = k0z − 1/(2z) (k0 = const.)
corresponding to the two-parametric family f(x, y) = y/(x2 + 2k0y

2) = c,
derived by the potential −1/x2.
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Fig. 1 Curves of the family in example 1 with c = 1, 3, 5

In the next examples we give planar families of curves which fulfil the differ-
ential condition (10), and we get the potentials V = v(x) under whose action
a material point of unit mass can describe the curves of these families.

Example 1. For the family

(20) f(x, y) = exp(2y) + 2x exp(y) = c

we get λ = −1/x. The one-variable potential is given by v(x) = c1x
2, and

the curves of the family can be traced all over the plane for c1 < 0, with the
energy E(f) = −c1 (f + 1). For the family (20) we have γ = x + exp(y) and
this γ satisfies, of course, the PDE (15).

Example 2. To the family

(21) f(x, y) = x/ 3
√

y2 = c

it corresponds λ = 2/x. The potential v(x) = c1/x allows the curves of the
family to be traced all over the plane, for c1 < 0, with the energy E(f) =
−9c1/(4f3). To the family (21) there corresponds γ = −2/(3z) (z = y/x)
and, since `0 = 2, this γ satisfies the equation (18) leading to k1 = 0.
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Fig. 2 Curves of the family in example 2 with c = 1, 1.5, 2

4. ALL ISOENERGETIC FAMILIES CREATED BY ONE-DIMENSION POTENTIALS

A family of orbits (1) is called isoenergetic if the constant value of the en-
ergy is the same on all members of the family, i. e. E(f) = E0. Isoenergetic
families of orbits are easier to handle, because in this case the unknown func-
tion E(f) in (4) is just a constant. Good reasons to study isoenergetic families
have been discussed by Borghero and Bozis [4], who solved to completion the
inverse problem of Dynamics for isoenergetic families created by homogeneous
potentials V (x, y).

Let us seek compatible pairs of potentials of the form V = v(x) and isoen-
ergetic families of orbits f(x, y) = c traced with total energy E = E0 = const.
As Vx = v′(x), the PDE (4) reads

(22)
2Γ

1 + γ2
= − v′(x)

E0 − v(x)
.

For the ODE (22) to admit of appropriate solutions, we must have

(23)
Γ

1 + γ2
= m(x),

i.e.

(24) Γy(1 + γ2)− 2γγyΓ = 0.

This last condition (of the second order in γ(x, y)) is the analogue of the
condition (10) and must be fulfilled by all families traced isoenergetically in
the presence of the one-dimension potential given by

(25) v(x) = E0 + c1M
2,

where

(26) M(x) = exp
(∫

m(x) dx

)
.

If m is considered to be given, then M is known from (26), v(x) is known
from (25) and we face the direct problem. All families γ(x, y) produced by
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v(x) are to be found from the first order PDE (23), whose subsidiary system
is

(27)
dx

γ
=

d y

−1
=

d γ

m(x)(1 + γ2)
.

If the first term in (27) is put equal to the third, it gives

(28) k1 =
1 + γ2

M2

and, if put equal to the second, it gives

(29) k2 = y + T (x, k1),

where

(30) T (x, k1) =
∫

d x√
k1M2 − 1

.

So, the general solution of (23) is given by

(31) y + S(x, γ) = A

(
1 + γ2

M2

)
,

where

(32) S(x, γ) = T

(
x, k1 =

1 + γ2

M2

)

and A is an arbitrary function of its argument.
In conclusion: All families γ(x, y) given implicitly by (31) are isoenergeti-

cally traced by the potential (25).
Applying for m = −1/x, we obtain successively: M(x) = 1/x, k1 = x2(1 +

γ2), T (x, k1) = −√k1 − x2, S(x, γ) = −xγ. Selecting in (31) A(u) = u, we
find that the family γ =

(
−x +

√
x2 + 4x2y − 4x4

)
/2x2 is compatible with

the potential v(x) = −1/x2, traced with total energy E = 0.

-3

-2

-1

0

1

2

3

4

y

2 4 6 8 10

x

Fig. 3 Curves of the family in example 3 with c = 1, 2, 3
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Example 3. The family

(33) f(x, y) = y +
√

x− 1

is traced isoenergetically with E = E0 by the potential v(x) = E0+3c1/4−c1x
in the region x > 1 for c1 > 0.

5. CONCLUSIONS

For a known family of curves (1) for which λ = `(x), with λ from (6b), the
potential V = v(x) which can generate this family, with suitable chosen initial
conditions, is given by (11) with Λ from (12).

All the families of curves for which λ depends merely on x satisfy the dif-
ferential condition (10), of the third order in γ(x, y).

The totality of the isoenergetic families of curves which are described under
the action of a potential V = v(x) is given by (31).
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