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Abstract. In this paper one obtains a sequential procedure for determining
the global extremum of a semi-Lipschitz real-valued function defined on a
quasi-metric (asymmetric metric) space.
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1. Introduction

For a function from a specified class, a method for seeking its extremum deals
with the problem of estimating the global maximum or/and minimum values of
the function and locating the points where the extremum is attained.

An important class of such methods is the class of sequential methods i.e. in
which the choice of each evaluation point, except for the first one, depends on the
location and the values of the function at the previous points and, possibly, on
the number n of the evaluations to be performed. In the latter case the method
is called an n-step method. In the following, a sequential method is obtained
for evaluating the global maximum and the global minimum of a semi-Lipschitz
real-valued function defined on a subset of a quasi-metric space, sometimes called
asymmetric metric space (see [7], [27]).

In order to determine the absolute maximum Mf of a real semi-Lipschitz
function f, the algorithm we propose determines a decreasing sequence of numbers
(Mn)n≥1, having the limit Mf . Each number Mn (n = 1, 2, ...) is the absolute
maximum of a special semi-Lipschitz function Un(f). This function has a very
simple analytical expression compared to the given function f (which is assumed
only to be semi-Lipschitz). For determining Un(f)(x) one requires on one hand
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the computation of the value of f at a certain point, and the values of f at the n
point from the previous step, and on the other hand the quasi-distances from the
current point x to the n + 1 points. One can see therefore that the determining
of the maximum Mn+1 of Un+1(f) requires a small amount of computation.The
absolute minimum of f is given by the absolute maximum of −f.

We present in the following the framework of the described method.
Let X be a non-empty set. A function d : X ×X → [0,∞) is called a quasi-

metric on X [21] (see also [7], [27]) if the following conditions hold

AM1) d(x, y) = d(y, x) = 0 iff x = y,

AM2) d(x, z) ≤ d(x, y) + d(y, z),

for all x, y, z ∈ X.
The function d : X ×X → [0,∞) defined by d(x, y) = d(y, x) for all x, y ∈ X

is also a quasi-metric on X, called the conjugate quasi-metric of d. A pair (X, d),
where X is a non-empty set and d a quasi-metric on X, is called a quasi-metric
space. Obviously, the function ds(x, y) = max{d(x, y), d(x, y)} is a metric on X.
Each quasi-metric d on X induces a topology τ(d) on X which has as a base the
family of balls (forward open balls [7]).

B+(x, ε) := {y ∈ X : d(x, y) < ε}, x ∈ X, ε > 0.

This topology is called the forward topology of X ([7], [15]) and is denoted by τ+.
Analogously, the quasi-metric d induces the topology τ(d) on X which has as a
base the family of backward open balls ([7])

B−(x, ε) := {y ∈ X : d(y, x) < ε}, x ∈ X, ε > 0.

This topology is called the backward topology of X ([7], [15]) and is denoted by
τ−.

Note that the topology τ+ is a T0-topology. If the condition AM1) is replaced
by the condition: AM0) d(x, y) = 0 iff x = y, then τ+ is a T1-topology. The pair
(X, d) is called a T0 quasi-metric space, respectively a T1 quasi-metric space (see
[21] and [22]).

Let (X, d) be a quasi-metric space. A sequence (xk)k≥1 d-converges to x0 ∈ X

(respectively d-converges to x0 ∈ X) iff

lim
k→∞

d(x0, xk) = 0, respectively lim
k→∞

d(xk, x0) = lim
k→∞

d(x0, xk) = 0.

A set K ⊂ X is called d-compact if every open cover of K with respect to the
forward topology has a finite subcover. We say that K is d-sequentially compact if
every sequence in K has a d-convergent subsequence with limit in K (Definition
4.1 in [7]). Finally, the set Y in (X, d) is called (d, d)-sequentially compact if every
sequence (yn)n≥1 in Y has a subsequence (ynk

) d-convergent to u ∈ Y and d-
convergent to v ∈ Y.

Observe that, if (X, d) is a quasi-metric space (d, d)-sequentially compact
and T0-separated, then it is possible to find sequences with all subsequences both
d-convergent and d-convergent, but to different limits. For example, let X = [0, 1]
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and d(x, y) = (y− x)∨ 0, x, y ∈ [0, 1]. Then d(x, y) = (x− y)∨ 0 and the sequence
( 1

n )n≥1 satisfies the property that every subsequences d-converges to 0 and d-
converges to 1. But if (X, d) is (d, d)-sequentially compact and T1-separated, then
by Lemma 3.1 of [7] it follows that if (xn)n≥1 ⊂ X is d-convergent to x0 ∈ X

and d-convergent to y0 ∈ X, then x0 = y0. This fact is essential in the proof of
Theorem 3.1 from bellow.

Definition 1.1 ([21]). Let Y be a non-empty subset of a quasi-metric space (X, d).
A function f : Y → R is called d-semi-Lipschitz if there exists L ≥ 0 (named a
d-semi-Lipschitz constant for f) such that

f(x)− f(y) ≤ Ld(x, y), for all x, y ∈ Y. (1.1)

A function f : Y → R is called ≤d-increasing if f(x) ≤ f(y) whenever d(x, y) = 0.

Denote by R
Y
≤d

the set of all ≤d-increasing functions on Y. This set is a
cone in the linear space R

Y of all real-valued functions defined on Y, i.e., for each
f, g ∈ R

Y
≤d

and λ ≥ 0 it follows that f + g ∈ R
Y
≤d

and λf ∈ R
Y
≤d

.

For a d-semi-Lipschitz function f on Y , put [21]

‖f |d = sup
d(x,y)>0
x,y∈Y

(f(x)− f(y))) ∨ 0
d(x, y)

. (1.2)

Then ‖f |d is the smallest d-semi-Lipschitz constant for f ([18]).
For a fixed element θ ∈ Y denote

d-SLip0Y := {f ∈ R
Y
≤d

: ‖f |d < ∞ and f(θ) = 0}. (1.3)

If (X, d) is a T1 quasi-metric space, then every f ∈ R
X is ≤d-increasing ([21]).

The set defined by (1.3) is a subcone of the cone R
Y
≤d

, and the functional
‖ |d: d-SLip0Y → [0,∞) defined by (1.2) is an asymmetric norm, i.e., it is sub-
additive, positive homogeneous and ‖f |d = 0 iff f ≡ 0. The pair (d-SLip0Y, ‖ |d)
is called the normed cone of real semi-Lipschitz functions on Y, vanishing at the
fixed point θ ∈ Y ([22]).

In [22] some properties of the normed cone (d-SLip0 Y, ‖ |d) are presented.
Similar properties in the case of semi-Lipschitz functions on a quasi-metric space
with values in a quasi-normed linear space (space with asymmetric norm) are
discussed in [24]. For more information concerning other properties of quasi-metric
spaces and their applications, see [7], [8], [13], [20], [26].

2. Results

Let f ∈ d-SLip0Y. A function F in d-SLip0X satisfying the inequality

F (u)− F (v) ≤ ‖f |d d(u, v),

for all u, v ∈ X and such that F (y) = f(y) for all y ∈ Y is called an extension of
f (preserving the asymmetric norm ‖f |d).
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It follows that each extension F ∈ d-SLip0X of f ∈ d-SLip0Y satisfies

F |Y = f and ‖F |d =‖ f |d. (2.1)

The existence of such an extension for each f ∈ d-SLip0 Y follows from the
following theorem proved in [18]. For the sake of completeness we include the
proof.

Theorem 2.1. Let (X, d) be a quasi-metric space, θ ∈ X a fixed element, and Y
a subset of X with θ ∈ Y. Then for every f ∈ d-SLip0Y there exists at least a
function F ∈ d-SLip0X such that F |Y = f and ‖F |d = ‖f |d .

Proof. For f ∈ d-SLip0Y let

Fd(f)(x) = inf
y∈Y

[f(y) + ‖f |d d(x, y)}, x ∈ X. (2.2)

First we show that Fd(f) is well defined.
Let x ∈ X. For any y ∈ Y we have

f(y) + ‖f |d d(x, y) = ‖f |d d(x, y)− (f(θ)− f(y))

≥ ‖f |d d(x, y)− ‖f |d d(θ, y)

= ‖f |d (d(x, y)− d(θ, y)) ≥ −‖f |d d(θ, x),

showing that for every x ∈ X the set

{f(y) + ‖f |d d(x, y) : y ∈ Y }
is bounded from below and, consequently, the infimum in (2.2) is finite.

Now we show that Fd(f)|Y = f, Fd(f) ∈ d-SLip0 X and ‖Fd(f) |
d

=‖ f |d.
For every y ∈ Y we have

Fd(f)(x) ≤ f(y) + ‖f |d d(x, y), x ∈ X,

which for x = y yields
Fd(f)(y) ≤ f(y).

On the other hand, for y ∈ Y and all y′ ∈ Y,

f(y)− f(y′) ≤ ‖f |d d(y, y′)

implies
f(y) ≤ f(y′) + ‖f |d d(y, y′).

Taking the infimum with respect to y′ ∈ Y one obtains f(y) ≤ Fd(f)(y), so that

Fd(f)(y) = f(y), y ∈ Y.

Let x1, x2 ∈ X and ε > 0. Choosing y ∈ Y such that

Fd(f)(x1) ≥ f(y) + ‖f |d d(x1, y)− ε

we get

Fd(f)(x2)− Fd(f)(x1) ≤ f(y) + ‖f |d · d(x2, y)− (f(y) + ‖f |d d(x1, y)− ε)

= ‖f |d (d(x2, y)− d(x1, y)) + ε.
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Because d(x2, y)− d(x1, y) ≤ d(x2, x1) it follows that

Fd(f)(x2)− Fd(f)(x1) ≤ ‖f |d d(x2, x1).

This means that Fd(f) ∈ d-SLip0 X, and by the last inequality

‖Fd(f)|d ≤ ‖f |d .

By the definitions of an asymmetric norm

‖Fd(f)|d ≥ ‖Fd(f)|Y |d = ‖f |d ,

so that the equality ‖Fd(f)|d = ‖f |d holds. �

The following Remarks 2.2 and 2.3 are taken from [18] and [19].

Remark 2.2. By Theorem 2.1 it follows that for every f ∈ d-SLip0 Y , the set of
all extensions preserving the asymmetric norm ‖f |d , i.e.

Ed(f) = {H ∈ d-SLip0X : H|Y = f and ‖H|d = ‖f |d} (2.3)

is nonempty, because Fd(f) ∈ Ed(f) where Fd(f) is given by (2.2).

Analogously, one proves that the function

Gd(f) = sup
y∈Y

{f(y)− ‖f |d d(x, y)}, x ∈ X, (2.4)

is in Ed(f).

Remark 2.3. Obviously, the set Ed(f) is convex, i.e. for every H1, H2 ∈ Ed(f) and
λ ∈ [0, 1] it follows λH1 + (1 − λ)H2 ∈ Ed(f). Moreover for every H ∈ Ed(f) we
have:

Gd(f)(x) ≤ H(x) ≤ Fd(f)(x), x ∈ X. (2.5)

The function Fd(f) defined by (2.2) is called the maximal extension of f , and
Gd(f) defined by (2.4) is called the minimal extension of f .

Remark 2.4. If θ ∈ Y1 ⊂ Y2 ⊂ Y and f ∈ d-SLip0Y, then for each u ∈ Y we can
easily obtain:

inf
y∈Y1

{f(y) + ‖f |d d(u, y)} ≥ inf
y∈Y2

{f(y) + ‖f |d d(u, y)}

and
sup
y∈Y1

{f(y)− ‖f |d d(u, y)} ≤ sup
y∈Y2

{f(y)− ‖f |d d(u, y)}.

Remark 2.5. Observe that Theorem 2.1 is the “nonsymmetric” analog of Mc-
Shane’s theorem [14] for metric spaces.

Theorem 2.6. Let (X, d) be a quasi-metric space and Y ⊆ X. Then

(a) Every f ∈ d-SLipY is upper semicontinuous on (Y, d);
(b) If Y is d-sequentially compact, then every f ∈ d-SLipY attains its maximum

value on Y.
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Proof. Let f ∈ d-SLipY. If ‖f |d = 0 then f(y) = constant for all y ∈ Y and this
function is upper semicontinuous. Let y0 ∈ Y and ‖f |d > 0. Then the inequality

f(y)− f(y0) ≤ ‖f |d d(y, y0)

implies
f(y) ≤ f(y0) + ‖f |d d(y, y0).

For ε > 0 and y ∈ Y such that d(y, y0) < ε
‖f |d it follows

f(y) ≤ f(y0) + ε,

showing that f is upper semicontinuous on (Y, d).
Let Y be d-sequentially compact in (X, d) and M = sup f(Y ), where M ∈

R ∪{+∞}. Then there exists a sequence (yn)n≥1 in Y such that lim
n→∞ f(yn) =

M. Because Y is d-sequentially compact there exists y0 ∈ Y and a subsequence
(ynk

)k≥1 of (yn)n≥1 such that lim
k→∞

d(ynk
, y0) = 0. By the upper semicontinuity of

f in y0 it follows:

M = lim
k→∞

f(ynk
) = lim sup f(ynk

) ≤ f(y0) ≤ M

implying M < ∞ and f(y0) = M. �

By Theorem 2.6 it follows that for Y d-sequentially compact, the functional
‖ |∞: d-SLip0Y → [0,∞) defined by

‖f |∞ = max{f(y) : y ∈ Y }
is an asymmetric norm on d-SLip0Y.

Indeed, for every f in d-SLip0Y we have ‖f |∞ ≥ f(θ) = 0. If ‖f |∞ > 0 then
there exists y0 ∈ Y such that f(y0) > 0 = f(θ). Consequently, because f ∈ R

Y
≤d

it
follows d(y0, θ) > 0, and

‖f |d ≥
f(y0)− f(θ)

d(y0, θ)
> 0.

It follows f �= 0, because ‖ |d is asymmetric norm on d-SLip0Y. Obviously,
‖f + g|∞ ≤ ‖f |∞ + ‖g|∞ and ‖λf |∞ = λ ‖f |∞ for all f, g ∈ d-SLip0Y and λ ≥ 0.

3. The sequential method

Let (X, d) be a quasi-metric space, θ ∈ X a fixed element, and Y ⊂ X with θ ∈ Y.
Suppose that Y is d-sequentially compact, and f ∈ d-SLip0Y. Let

Mf = sup{f(y) : y ∈ Y }
and

Ef = {y ∈ Y : f(y) = Mf}.
We want to find the maximum value Mf of f and a point y0 ∈ Ef .

For this goal we consider the following sequential method, supposing that
q > 0 is an upper bound for ‖f |d on Y, i.e. ‖f |d ≤ q.
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Firstly, let Z be a nonempty subset of Y with θ ∈ Z. From the proof of
Theorem 2.1, the functions

U(f)(y) = inf{f(z) + qd(y, z) : z ∈ Z}, y ∈ Y

and
u(f)(y) = sup{f(z)− qd(z, y) : z ∈ Z}, y ∈ Y

satisfy the conditions:
U(f)|Z = u(f)|Z = f |Z

and
‖U(f)|d = ‖u(f)|d = q ≥ ‖f |d on Y.

Moreover
u(f)(y) ≤ f(y) ≤ U(f)(y), y ∈ Y.

Indeed, for y ∈ Y and each z ∈ Z ⊂ Y we have

f(y)− f(z) ≤ ‖f |d d(y, z) ≤ qd(y, z)

and
f(y) ≤ f(z) + qd(y, z).

Taking the infimum with respect to z ∈ Z it follows

f(y) ≤ U(f)(y), y ∈ Y.

Analogously,
f(z)− f(y) ≤ qd(z, y),

implies
f(y) ≥ f(z)− qd(z, y).

Taking the supremum with respect to z ∈ Z one obtains

u(f)(y) ≤ f(y), y ∈ Y.

If
MU := max{U(f)(y) : y ∈ Y },

then
Mf ≤ MU .

We define now two sequences (yn)n≥0 in Y and (Mn)n≥0 in R in the following way.
Let

U0(f)(y) = f(θ) + qd(y, θ) = qd(y, θ), y ∈ Y,

i.e. U0(f) is an extension (the maximal extension) of f |{θ} with the semi-Lipschitz
constant q. Then, by the above considerations, it follows

f(y) ≤ U0(f)(y), y ∈ Y,

U0(f) ∈ d-SLip0Y.

If y0 ∈ Y is such that

U0(f)(y0) = M0 := supU0(f)(Y ),
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then
Mf ≤ M0.

Let Z1 = {θ, y0} and let

U1(f)(y) = inf
z∈Z1

{f(z) + qd(y, z)}, y ∈ Y,

be the maximal extension of f |Z1
with semi-Lipschitz constant q. Then U1 ∈ d-

SLip0Y and by Remark 2.3, it follows:

f(y) ≤ U1(f)(y) ≤ U0(f)(y), y ∈ Y,

f |Z1
= U1 (f)|Z1

= U0 (f)|Z1
.

If y1 ∈ Y is such that

U1(f)(y1) = M1 := supU1(f)(Y ),

then
Mf ≤ M1 ≤ M0.

Let now
Z2 = {θ, y0,y1}.

Supposing that, following the described procedure, we have constructed the sets

Zn = {θ, y0, y1, . . . , yn−1} and {M0, M1, M2, . . . , Mn−1}.
Put

Un(f)(y) = inf
z∈Zn

{f(z) + qd(y, z)}, y ∈ Y.

It follows
f(y) ≤ Un(f)(y) ≤ . . . ≤ U1(f)(y) ≤ U0(f)(y)

for all y ∈ Y.
Choose yn ∈ Y such that

Un(f)(yn) = Mn := supUn(Y ).

Continuing in this manner we obtain the sequences

{θ, y0, y1, . . . , yn, . . .} ⊂ Y, and (3.1)

{M0, M1, . . . , Mn, . . .} ⊂ R.

The following theorem contains the properties of these two sequences, if Y is
(d, d)-sequentially compact.

Theorem 3.1. Let (X, d) be a T1 quasi-metric space, θ ∈ X fixed, and Y a (d, d)-
sequentially compact subset of X with θ ∈ Y. Let f ∈ d − SLip0Y, q ≥ ‖f |d and
let (yn) and (Mn) be the sequences in (3.1). Then

(a) (Mn) converges to Mf ;
(b) lim

n→∞ inf{d(yn, y) : y ∈ Ef} = 0.
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Proof. (a). Since for every n ≥ 1

Un(f)(y) ≤ Un−1(f)(y), y ∈ Y,

it follows
Mn = sup Un(f)(Y ) ≤ sup Un−1(f)(Y ) = Mn−1.

Therefore, the sequence (Mn) is decreasing. Since Un(f)(θ) = 0 we have Mn ≥ 0
for all n ≥ 0. It follows that there exists M ≥ 0 such that

M = lim
n→∞Mn.

Since Y is (d, d) -sequentially compact, the sequence (yn) contains a subsequence
(ynk

)k≥1 which is d- and d-convergent to an element y ∈ Y, i.e.,

lim
k→∞

d(ynk
, y) = 0 and lim

k→∞
d(y, ynk

) = 0.

Furthermore
lim

k→∞
Unk

(f)(ynk
) = lim

k→∞
Mnk

= M.

On the other hand, by the upper semicontinuity of the function f, it follows

lim sup
k→∞

f(ynk
) ≤ f(y) ≤ Mf .

By the definitions of the extensions Un(f) (n ≥ 1) we have

Unk
(f)(ynk

)− Unk
(f)(ynk−1) ≤ qd(ynk

, ynk−1)

≤ q(d(ynk
, y) + d(y, ynk−1)) → 0, as k →∞.

It follows that for every ε > 0 there exists k0 ∈ N such that for all k ≥ k0,

Unk
(f)(ynk

)− f(ynk−1) < ε,

or equivalently,
Unk

(f)(ynk
) < f(ynk−1) + ε.

Taking lim sup as k →∞, we get

M ≤ lim
k→∞

sup f(ynk−1) + ε ≤ Mf + ε.

As ε > 0 was arbitrarily chosen, we obtain M ≤ Mf . Because the inequality
Mf ≤ M is also true, it follows that (a) holds.

(b). For the proof of (b), supposing that the sequence

(inf{d(yn, y) : y ∈ Ef})n≥1

does not converge to 0, then there exist ε > 0 and an infinite sequence n1 < n2 <
...nk < ... such that

inf{d(ynk
, y) : y ∈ Ef} ≥ ε, ∀k ∈ N.

By the (d, d)-sequentially compactness of Y, the sequence (ynk
)k≥1 contains a

subsequence (ynki
)i≥1 that converges to an element y ∈ Y such that f(y) = Mf ,

i.e. y ∈ Ef , in contradiction to the inequality

inf{d(ynk
, y) : y ∈ Ef} ≥ ε.
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The theorem is proved. �

Remark 3.2. Let Mn = max{f(θ), f(y0), f(y1), . . . , f(yn)}. Then Mn ≤ Mf ≤
Mn for every n = 1, 2, 3, .... It follows that

Mf −Mn ≤ Mn −Mn, n = 1, 2, . . . .

The last inequality is a convenient upper bound for the error Mf −Mn.

Because

Un(f)(y) = inf
z∈{θ,y0,y1,...,yn−1}=Zn.

{f(z) + qd(y, z)}, y ∈ Y

has a simple expression depending essentially on d(y, z), z ∈ Zn and y ∈ Y, it is
easy - at least in principle - to compute the number

Mn = max Un(f)(Y ).

Also
0 ≤ Un+1(f)(yn+1)− Un+1(f)(yn) ≤ qd(yn+1, yn)

i.e.
0 ≤ Mn+1 − f (yn) ≤ qd(yn+1,yn) ,

and because Mn+1 ≥ f(yn) it follows that

0 ≤ Mn+1 −Mn+1 ≤ Mn+1 − f(yn) ≤ qd(yn+1,yn).

This means that
Mn+1 −Mn+1 = O(d(yn+1,yn))

and, consequently,
Mf −Mn = O(d(yn, yn−1)).

Remark 3.3. A function f belongs to d-SLip0Y if and only if −f belongs to d-
SLip0Y and for every f ∈ d-SLip0Y, ‖f |d = ‖−f |d ([22], Corollary 1, page 59).

It follows that −f is upper semicontinuous on (Y, d) and attains its maximum
on Y, if Y is d-sequentially compact (see Theorem 2.6).

By Theorem 2.1 and Remark 2.2 it follows that the maximal extension of −f
in d-SLip0Y is

Fd(−f)(x) = inf{(−f)(y) + ‖f |d d(x, y)}, x ∈ X, (3.2)

i.e.
(−f)|Y = Fd (−f)|Y and ‖f |d = ‖−f |d = ‖F d(−f)|d .

The algorithm described above may be applied for searching the global maximum
of −f, i.e. the global minimum of f, if the set Y is (d, d)-sequentially compact,
and X is T1-separated.
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ric normed linear spaces, Houston J. Math. 29 (no. 3) (2003), 717–728.

[12] M. G. Krein and A. A. Nudelman, The Markov Moment Problem and Extremum
Problems, Nauka, Moscov, 1973 (in Russian), English translation: AMS, Providence,
R.I., 1977.

[13] H. P. A. Künzi, Nonsymmetric distances and their associated topologies: about the
origin of basic ideas in the area of asymmetric topology, Handbook of the History
of General Topology, ed. by C.E. Aull and R. Lower, vol. 3, Hist. Topol. 3, Kluwer
Acad. Publ. (Dordrecht, 2001), 853–968.

[14] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934),
837–842.

[15] A. Mennucci, On asymmetric distances, Technical report, Scuola Normale Superiore,
Pisa, 2004.
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