On the Extensions Preserving the Shape of a Semi-Hölder Function

Costică Mustăta

Abstract. We present some results concerning the extension of a semi-Hölder real-valued function defined on a subset of a quasi-metric space, preserving some shape properties: the smallest semi-Hölder constant, the radiantness and the global minimum (maximum) of the extended function.

Mathematics Subject Classification (2000). 46A22, 54E25.

Keywords. Quasi-metric space, semi-Hölder function, radiant function.

1. Introduction

Let X be a nonvoid set. A mapping $d: X \times X \to [0, \infty)$ satisfying the following conditions:

$$(QM_1) d(x,y) = d(y,x) = 0 \text{ iff } x = y,$$

 $(QM_2) d(x,y) \le d(x,z) + d(z,y),$

for all $x, y, z \in X$ is called a quasi-metric (asymmetric metric) on X, and the pair (X, d) is called a quasi-metric space [17, 18].

Because, in general, $d(x,y) \neq d(y,x), x,y \in X$, one defines the conjugate \bar{d} of quasi-metric d as the quasi-metric $\bar{d}(x,y) = d(y,x), x,y \in X$.

For example, an asymmetric norm $\| \|$ on a linear space X (see [6], Ch. IX, \S 5) or [2], where a functional analysis in asymmetric normed space is presented) defines a quasi-metric $d_{\|\|}$ through the formula:

$$d_{\parallel \mid}(x,y) = \|y - x|, \ x, y \in X.$$

Let (X, d) be a quasi-metric space. A sequence $(x_k)_{k \ge 1}$ is d-convergent to $x_0 \in X$ (or forward convergent to $x_0 \in X$) if

$$\lim_{k \to \infty} d(x_0, x_k) = 0,$$

and \bar{d} -convergent to $x_0 \in X$ (or backward convergent to $x_0 \in X$) if

$$\lim_{k \to \infty} d(x_k, x_0) = \lim_{k \to \infty} \bar{d}(x_0, x_k) = 0.$$

We say that the set $Y \subset X$ is d-closed (\bar{d} -closed) if every d-convergent (\bar{d} -convergent) sequence $(y_n)_{n\geq 1} \subset Y$ has limit in Y.

We say that a set $Y \subset X$ is d-sequentially compact (forward sequentially compact) if every sequence in Y has a d-convergent (forward convergent) subsequence with limit in Y (Definition 4.1 in [3]). Finally, the set Y in (X,d) is called (d,\bar{d}) -sequentially compact if every sequence $(y_n)_{n\geq 1}$ in Y has a subsequence $(y_{n_k})_{k\geq 1}d$ -convergent to $u\in Y$ and \bar{d} -convergent to $v\in Y$. For other properties and results in asymmetric metric spaces, see also [3,5,7,11-18].

2. Extension of Semi-Hölder Functions

Let (X,d) be a quasi-metric space, $Y \subset X$ be a nonvoid subset of X and $\alpha \in (0,1]$ a given number.

Definition 1. A function $f: Y \to \mathbb{R}$ is called d-semi-Hölder (of exponent α) if there exists a constant $K_Y(f) \geq 0$ such that

$$f(x) - f(y) \le K_Y(f)d^{\alpha}(x, y), \tag{1}$$

for all $x, y \in Y$.

For f a function d-semi-Hölder on Y denote by

$$||f|_{Y,d}^{\alpha} := \sup \left\{ \frac{(f(x) - f(y)) \vee 0}{d^{\alpha}(x, y)} : d(x, y) > 0, \ x, y \in Y \right\},$$
 (2)

the smallest constant $K_Y(f)$, satisfying the inequality (1).

A function $f: Y \to \mathbb{R}$ is called \leq_d -increasing if $f(x) \leq f(y)$ whenever $d(x,y) = 0, x, y \in Y$.

The set $\mathbb{R}^{Y}_{\leq_{d}}$ of all \leq_{d} -increasing functions on Y is a cone in the linear space \mathbb{R}^{Y} of all real-valued functions defined on Y.

One denotes by

$$\Lambda_{\alpha}(Y, d) := \{ f \in \mathbb{R}^{Y}_{\leq_{d}} | f \text{ is } d\text{-semi-H\"{o}lder} \},$$
(3)

the set of all d-semi-H"older functions on Y. This set is a subcone of the cone $\mathbb{R}^Y_{\leq_d}.$

For $y_0 \in Y$ fixed, let

$$\Lambda_{\alpha,0}(Y,d) := \{ f \in \Lambda_{\alpha}(Y,d), f(y_0) = 0 \}. \tag{4}$$

The functional $\| \cdot |_{Y,d}^{\alpha} : \Lambda_{\alpha,0}(Y,d) \to [0,\infty)$ defined by (2) satisfies the axioms of an asymmetric norm, and $(\Lambda_{\alpha,0}(Y,d),\| \cdot |_{Y,d}^{\alpha})$ is an asymmetric normed cone (compare with [18]).

Observe that $f \in \Lambda_{\alpha}(Y, d)$ if and only if $-f \in \Lambda_{\alpha}(Y, \bar{d})$; moreover $||f|_{Y,d}^{\alpha} = ||-f|_{Y,\bar{d}}^{\alpha}$.

Example 1. Let Y be a set in a quasi-metric space (X, d) and let $y_0 \in Y$ be fixed. For a number $\alpha \in (0, 1]$ one considers the function $f: Y \to \mathbb{R}, f(y) = d^{\alpha}(y, y_0)$. Then $f \in \Lambda_{\alpha, 0}(Y, d)$. Indeed, for all $y_1, y_2 \in Y$,

$$f(y_1) - f(y_2) = d^{\alpha}(y_1, y_0) - d^{\alpha}(y_2, y_0) \le d^{\alpha}(y_1, y_2).$$

The last inequality follows by the following simple lemma:

Lemma 1. Let a, b, c be real nonnegative numbers such that $a \leq b + c$. Then for $\alpha \in (0,1]$ it follows $a^{\alpha} \leq b^{\alpha} + c^{\alpha}$.

Since $d(y_1, y_0) \leq d(y_1, y_2) + d(y_2, y_0)$ and $\alpha \in (0, 1]$, Lemma 1 yields $d^{\alpha}(y_1, y_0) \leq d^{\alpha}(y_1, y_2) + d^{\alpha}(y_2, y_0)$, i.e., $d^{\alpha}(y_1, y_0) - d^{\alpha}(y_2, y_0) \leq d^{\alpha}(y_1, y_2)$.

Example 2. Let $(X, \| \ |)$ be an asymmetric normed space. For a fixed $y_0 \in X$ and $\alpha \in (0,1]$ the function $h(x) = \|x-y_0\|^{\alpha}$ is $d_{\| \ |}$ -semi-Hölder, where $d_{\| \ |}(y_0,x) = \|x-y_0\|$, $x \in X$. Using Lemma 1 it follows $h(x_1) - h(x_2) \le \|x_1-x_2\|^{\alpha}$, $x_1,x_2 \in X$, and $h(y_0) = 0$. This means that $h \in \Lambda_{\alpha,0}(X,d_{\| \ |})$.

Remark 1. By Lemma 1 it follows that if d is a quasi-metric on X, then $d^{\alpha}(\alpha \in (0,1])$ is also a quasi-metric on X. In fact a d-semi-Hölder function f (of exponent $\alpha \in (0,1]$) on Y is a d^{α} -semi-Lipschitz function on (Y,d^{α}) (see [17], for the definition of semi-Lipschitz functions).

The following theorem holds.

Theorem 1. Let (X,d) be a quasi-metric space, let Y be a nonvoid subset of X, let $\alpha \in (0,1]$, and let $f \in \Lambda_{\alpha}(Y,d)$. Further, let $\mathcal{E}_d(f)$ be defined by

$$\mathcal{E}_d(f) := \{ H \in \Lambda_\alpha(X, d) : H|_Y = f, \ \|H|_{X, d}^\alpha = \|f|_{Y, d}^\alpha \}. \tag{5}$$

Then the following statements hold:

10 The function $F_d(f): X \to \mathbb{R}$, defined by

$$F_d(f)(x) := \inf_{y \in Y} \left\{ f(y) + \|f|_{Y,d}^{\alpha} d^{\alpha}(x,y) \right\}, \tag{6}$$

belongs to $\mathcal{E}_d(f)$.

2⁰ The function $G_d(f): X \to \mathbb{R}$, defined by

$$G_d(f)(x) := \sup_{y \in Y} \left\{ f(y) - \|f|_{Y,d}^{\alpha} \cdot d^{\alpha}(y, x) \right\}, \tag{7}$$

belongs to $\mathcal{E}_d(f)$.

 \mathcal{S}^0 Each $H \in \mathcal{E}_d(f)$ satisfies

$$G_d(f)(x) \le H(x) \le F_d(f)(x),\tag{8}$$

whenever $x \in X$.

Proof. If $f \in \Lambda_{\alpha}(Y, d)$ then f is d^{α} -semi-Lipschitz on (Y, d^{α}) . By ([12], Theorem 2) it follows that the functions $F_d(f)$ defined by (6), and $G_d(f)$ defined by (7) satisfy

$$F_d(f)|_Y = G_d(f)|_Y = f, \quad ||F_d(f)||_{X,d}^{\alpha} = ||G_d(f)||_{X,d}^{\alpha} = ||f|_{Y,d}^{\alpha}.$$
 (9)

Consequently, the statements 1^0 and 2^0 are proved.

The inequalities (8) are proved in [12] for semi-Lipschitz functions (see also ([15], Remark 3), so that the statement 3^0 holds too.

The set $\mathcal{E}_d(f)$ defined in (5) is called the set of extensions of $f \in \Lambda_{\alpha}(Y, d)$ (preserving the smallest constant $||f|_{Y,d}^{\alpha}$). The functions $F_d(f)$, respectively $G_d(f)$ are called the maximal extension, respectively the minimal extension of f [see (8)].

Remark 2. In [15] one gives a direct proof of Theorem 1, by considering the function $G_d(f)$ defined by (7) and proving that $G_d(f)$ is well defined, $G_d(f)|_Y = f$ and $||G_d(f)|_{X,d}^{\alpha} = ||f|_{Y,d}^{\alpha}$ (see also [10,12]).

A natural problem is the following: If $f \in \Lambda_{\alpha}(Y, d)$ has some supplementary properties, does there exist $H \in \mathcal{E}_d(f)$ preserving these properties? Such a problem is considered in [9] for Lipschitz functions.

We shall consider two problems of such kind.

For the first one, in the sequel (X, d) is a quasi-metric linear space and $Y \subset X$ is a subset of X.

The set Y is said to be radiant if it has the following properties:

- (i) Y is nonvoid;
- (ii) $\lambda y \in Y$ for all $y \in Y$ and all $\lambda \in [0, 1]$.

Let Y be a radiant set in X, and let $f: Y \to \mathbb{R}$, and let $\alpha \in (0,1]$. The function f is said to be α -radiant if

$$f(\lambda y) \le \lambda^{\alpha} f(y), \tag{10}$$

for all $y \in Y$ and all $\lambda \in (0, 1]$.

The 1-radiant functions are called, simply, radiant.

Observe that all radiant sets in a linear space X contain the null element θ of X, and every α -radiant function satisfies $f(\theta) \leq 0$. We consider only functions satisfying $f(\theta) = 0$.

The function $f: Y \to \mathbb{R}$ is said to be α -co-radiant $(\alpha \in (0,1])$ if

$$f(\lambda y) \ge \lambda^{\alpha} f(y),\tag{11}$$

for all $y \in Y$ and $\lambda \in [0, 1]$. The 1-co-radiant functions are called co-radiant [4,8].

The function $f:Y\to\mathbb{R}$ is called α -inverse co-radiant $(\alpha\in(0,1]$ is fixed) if

$$f(\lambda y) \le \frac{1}{\lambda^{\alpha}} f(y), \tag{12}$$

for all $y \in Y$ and $\lambda \in (0,1]$. The 1-inverse co-radiant functions are called inverse co-radiant.

Obviously, every nonnegative α -co-radiant function is co-radiant, and every inverse co-radiant function is α -inverse co-radiant.

If Y is a convex set in X, a function $f:Y\to\mathbb{R}$ is called α -convex $(\alpha\in[0,1])$ if

$$f(\lambda x + (1 - \lambda)y) \le \lambda^{\alpha} f(x) + (1 - \lambda)^{\alpha} f(y), \tag{13}$$

for all $x, y \in Y$ and $\lambda \in [0, 1]$ (see [1]).

If $\theta \in Y$ and Y is convex, then every convex function $(\alpha = 1)$ on Y with $f(\theta) = 0$ is radiant, and every α -convex function on Y such that $f(\theta) = 0$ is α -radiant, because

$$f(\lambda x) = f(\lambda x + (1 - \lambda)\theta) \le \lambda^{\alpha} f(x) + (1 - \lambda)^{\alpha} f(\theta) = \lambda^{\alpha} f(x),$$

for all $x \in Y$ and $\lambda \in [0, 1]$.

A quasi-metric d on a quasi-metric linear space X is called positively homogeneous if

$$d(\lambda x, \lambda y) = \lambda d(x, y), \tag{14}$$

for all $x, y \in X$ and $\lambda \geq 0$. Such a quasi-metric is for example $d_{\parallel \parallel}$, generated by an asymmetric norm $\parallel \parallel$.

The following result holds.

Theorem 2. Let (X,d) be a quasi-metric linear space with d positively homogeneous, let Y be a radiant subset of X, let $\alpha \in (0,1]$ and let $f \in \Lambda_{\alpha}(Y,d)$. Then the following statements hold:

10 If f is α -radiant, then $F_d(f)$ is α -radiant.

20 If f is α -co-radiant, then $G_d(f)$ is α -co-radiant.

 3^0 If f is inverse co-radiant, then $F_d(f)$ is inverse co-radiant.

Proof. Let $f: Y \to \mathbb{R}$ be radiant, and $f \in \Lambda_{\alpha}(Y, d)$. Let us consider the maximal extension $F_d(f)$. Then for all $\lambda \in [0, 1]$ and $y \in Y$,

$$F_{d}(f)(\lambda x) \leq f(\lambda y) + \|f\|_{Y,d}^{\alpha} d^{\alpha}(\lambda x, \lambda y)$$

$$\leq \lambda^{\alpha} f(y) + \lambda^{\alpha} \|f\|_{Y,d}^{\alpha} d^{\alpha}(x, y)$$

$$= \lambda^{\alpha} [f(y) + \|f\|_{Y,d}^{\alpha} d^{\alpha}(x, y)].$$

Taking the infimum with respect to $y \in Y$ one gets

$$F_d(f)(\lambda x) \le \lambda^{\alpha} F_d(f)(x),$$

for every $x \in X$, showing that $F_d(f)$ is α -radiant.

Now, let $x \in X$, $\lambda \in [0,1]$, and $f \in \Lambda_{\alpha}(Y,d)$ be α -co-radiant. Then, for every $y \in Y$, by considering the minimal extension $G_d(f) \in \mathcal{E}_d(f)$ one gets:

$$G_d(f)(\lambda x) \ge f(\lambda y) - \|f\|_{Y,d}^{\alpha} d^{\alpha}(\lambda y, \lambda x)$$

$$\ge \lambda^{\alpha} f(y) - \lambda^{\alpha} \|f\|_{Y,d}^{\alpha} d^{\alpha}(y, x)$$

$$= \lambda^{\alpha} [f(y) - \|f\|_{Y,d}^{\alpha} d^{\alpha}(y, x)].$$

Taking the supremum with respect to $y \in Y$, one obtains

$$G_d(f)(\lambda x) \ge \lambda^{\alpha} G_d(f)(x), \ x \in X,$$

and the statement 2^0 is proved.

Finally, if $f \in \Lambda_{\alpha}(Y, d)$ is inverse co-radiant on the radiant set Y, then for every $y \in Y$ and $\lambda \in (0, 1]$, and for the maximal extension $F_d(f)$ one obtains:

$$F_{d}(f)(x) \leq f(\lambda y) + \|f\|_{Y,d}^{\alpha} d^{\alpha}(\lambda x, \lambda y)$$

$$\leq \frac{1}{\lambda} f(y) + \lambda^{\alpha} \|f\|_{Y,d}^{\alpha} \cdot d^{\alpha}(x, y)$$

$$= \frac{1}{\lambda} [f(y) + \lambda^{\alpha+1} \|f\|_{Y,d}^{\alpha} d^{\alpha}(x, y)]$$

$$\leq \frac{1}{\lambda} [f(y) + \|f\|_{Y,d}^{\alpha} d^{\alpha}(x, y)].$$

Taking the infimum with respect to $y \in Y$ it follows

$$F_d(f)(\lambda x) \le \frac{1}{\lambda} F_d(f)(x), \ x \in X,$$

and the statement 3^0 holds.

Another property preserved by extensions is the global minimum (maximum) of a function $f \in \Lambda_{\alpha}(Y, d)$.

Let (X,d) be a quasi-metric space, and let $Y \subset X$ be a nonempty subset of X. An element $y_0 \in Y$ is called a global minimum (maximum) point of $f \in \Lambda_{\alpha}(Y,d)$ if

$$f(y_0) \le f(y) \ (f(y_0) \ge f(y)),$$

for all $y \in Y$.

Theorem 3. Let (X, d) be a quasi-metric space, let Y be a nonvoid subset of X, let $y_0 \in Y$, let $\alpha \in (0, 1]$, and let $f \in \Lambda_{\alpha}(Y, d)$. Then the following statements hold:

10 If Y is d-closed, then $y_0 \in Y$ is a global minimum point for f in Y if and only if y_0 is a global minimum point of $F_d(f)$ in X.

2º If Y is \bar{d} -closed, then $y_0 \in Y$ is a global maximum point for f in Y if and only if y_0 is a global maximum point of $G_d(f)$ in X.

Proof. 1⁰ Let $y_0 \in Y$ be a global minimum point of $f \in \Lambda_{\alpha}(Y, d)$. For every $y \in Y$ we have

$$F_d(f)(y) = f(y) \ge f(y_0) = F_d(f)(y_0).$$

If $x \notin Y, Y$ being d-closed, there exists $\delta > 0$ such that $d(x, y) > \delta$ for all $y \in Y$. Consequently,

$$F_{d}(f)(x) = \inf_{y \in Y} \{ f(y) + \|f\|_{Y,d}^{\alpha} d^{\alpha}(x,y) \}$$

$$\geq \inf_{y \in Y} \{ f(y) + \|f\|_{Y,d}^{\alpha} \delta^{\alpha} \}$$

$$= f(y_{0}) + \|f\|_{Y,d}^{\alpha} \delta^{\alpha} \geq f(y_{0}),$$

so that for every $x \in X$, $F_d(f)(x) \ge f(y_0) = F_d(f)(y_0)$.

Conversely, suppose that $y_0 \in X$ is a global minimum point for $F_d(f)$ in X. If we would show that $y_0 \in Y$, then, as $F_d(f)|_Y = f$, it would follow that y_0 is a global minimum point for f in Y.

Case I: $||f|_{Y,d}^{\alpha} = 0$.

In this case there exists $c \in \mathbb{R}$ such that f(y) = c for all $y \in Y$. It follows $||F_d(f)||_{X,d}^{\alpha} = 0$, so that $F_d(f) = const$ on X. Since $F|_Y = f$ we must have $F_d(f)(x) = const$, for all $x \in X$.

Case II: $||f|_{Y,d}^{\alpha} > 0$.

Let $y_0 \in X$ such that $F_d(f)(y_0) \leq F_d(f)(x)$, for all $x \in X$. Since $F_d(f)(y_0) = \inf[f(y) + ||f|_{Y,d}^{\alpha} d^{\alpha}(y_0, y)]$, for every $n \in \mathbb{N}$ there exist $y_n \in Y$ such that

$$f(y_n) + d^{\alpha}(y_0, y_n) \|f\|_{Y,d}^{\alpha} < F_d(f)(y_0) + \frac{\|f\|_{Y,d}^{\alpha}}{n^{\alpha}}.$$

The inequalities $F_d(f)(y_0) \leq F_d(f)(y_n) = f(y_n)$, imply $f(y_n) + \|f\|_{Y,d}^{\alpha} d^{\alpha}(y_0, y_n) < f(y_n) + \|f\|_{Y,d}^{\alpha} n^{-\alpha}$, so that $d(y_0, y_n) < \frac{1}{n}, n \in \mathbb{N}$, i.e., $d(y_0, y_n) \to 0$. The sequence $(y_n)_{n \geq 1}$ in Y is d-convergent to y_0 , and since Y is d-closed, $y_0 \in Y$.

 2^0 Let $y_0 \in Y$ be a global maximum point of $f \in \Lambda_{\alpha}(Y)$.

Then for every $y \in Y$,

$$G_d(f)(y) = f(y) \le f(y_0) = G_d(f)(y_0).$$

If $x \notin Y, Y$ being \bar{d} -closed, there exists $\eta > 0$ such that $\bar{d}(x,y) > \eta$ (i.e. $d(y,x) > \eta$) for all $y \in Y$. Therefore

$$G_{d}(f)(x) = \sup_{y \in Y} \{ f(y) - \|f|_{Y,d}^{\alpha} \bar{d}^{\alpha}(x,y) \}$$

$$= \sup_{y \in Y} \{ f(y) - \|f|_{Y,d}^{\alpha} d^{\alpha}(y,x) \}$$

$$\leq \sup_{y \in Y} \{ f(y) - \|f|_{Y,d}^{\alpha} \eta^{\alpha} \}$$

$$\leq f(y_{0}) - \|f|_{Y,d}^{\alpha} \eta^{\alpha} \leq f(y_{0}).$$

It follows that $G_d(f)(x) \leq f(y_0)$, for all $x \in X$.

Conversely, suppose that $y_0 \in X$ is a global maximum point for $G_d(f)$ in X.

Case I $||f|_{Y,d}^{\alpha} = 0$. In this case, because $f = G_d(f)|_Y$ and $||G_d(f)|_{X,d}^{\alpha} = ||f|_{Y,d}^{\alpha} = 0$ it

follows that f and $G_d(f)$ are equal with the same constant.

Case II $||f|_{Y,d}^{\alpha} > 0$.

Let $y_0 \in X$ such that $G_d(f)(y_0) > G_d(f)(x), x \in X$. Since

$$G_d(f)(y_0) = \sup_{y \in Y} [f(y) - ||f|_{Y,d}^{\alpha} d^{\alpha}(y, y_0)],$$

for every $n \in \mathbb{N}$, there exists $y_n \in Y$ such that

$$f(y_n) - ||f|_{Y,d}^{\alpha} d^{\alpha}(y_n, y_0) > G_d(f)(y_0) - \frac{||f|_{Y,d}^{\alpha}}{n^{\alpha}}.$$

The inequalities $G_d(f)(y_0) \geq G_d(f)(y_n) = f(y_n)$, imply $f(y_n) - \|f\|_{Y,d}^{\alpha} d^{\alpha}(y_n, y_0) > f(y_n) - \frac{1}{n^{\alpha}} \|f\|_{Y,d}^{\alpha}$, so that $d(y_n, y_0) < \frac{1}{n}, n \in \mathbb{N}$, i.e., $d(y_n, y_0) \to 0$. This means that the sequence $(y_n)_{n\geq 1}$ is \bar{d} -convergent to y_0 . Since Y is \bar{d} -closed, $y_0 \in Y$.

Remark 3. By Theorem 2.6 in [14], it follows that every $f \in \Lambda_{\alpha,0}(Y,d)$ is lower semicontinuous on (Y,d^{α}) and attains its minimum on Y, provided that Y is d^{α} -sequentially compact. Also, every $f \in \Lambda_{\alpha,0}(Y,d)$ is upper semicontinuous on (Y,\bar{d}^{α}) and attains its maximum value on Y whenever Y is \bar{d}^{α} -sequentially compact.

If Y is $(d^{\alpha}, \bar{d}^{\alpha})$ -sequentially compact and (X, d^{α}) is a T_1 -topological space, every $f \in \Lambda_{\alpha,0}(Y,d)$ attains both the global minimum and the global maximum on Y. Moreover, the sequential method for the calculation of the global extremum (maximum and/or minimum) of f, ([14], Th. 3.1) is applicable.

Acknowledgements

I would like to thank the referees for the valuable suggestions in improving the structure of the paper.

References

- Breckner, W.W.: Hölder continuity of certain generalized convex functions. Optimization 28, 201–209 (1994)
- [2] Cobzaş, S.: Functional analysis in asymmetric normed spaces, arXiv:1006. 1175v1.
- [3] Collins, J., Zimmer, J.: An asymmetric Arzelà-Ascoli theorem. Topol. Appl. 154, 2312–2322 (2007)
- [4] Doagooei, A.R., Mohebi, H.: Optimization of the difference of ICR functions. Nonlinear Anal. Theor. Method Appl. 71, 4493–4499 (2009)

- [5] Flecther, P., Lindgren, W.F.: Quasi-uniform spaces. Dekker, New York (1982)
- [6] Krein, M.G., Nudel'man, A.A.: The Markov moment problem and extremum problems, Nauka, Moscow 1973 (in Russian), English translation. American Mathematical Society, Providence (1977)
- [7] Künzi, H.-P.A: Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topology. In: Aull, C.E., Lowen, R. Handbook of the history of general topology, pp. 853–968. Kluwer Academic Publishers, Dordrecht (2001)
- [8] Martinez-Legaz, J.E., Rubinov, A.M., Schaible, S.: Increasing quasi-concave coradiant functions with applications in mathematical economics. Math. Oper. Res. 61, 261–280 (2005)
- [9] Matouškova, E.: Extensions of continuous and Lipschitz functions. Canad. Math. Bull. 43(2), 208–217 (2000)
- [10] McShane, E.T.: Extension of range of functions. Bull. Am. Math. Soc. 40, 837–842 (1934)
- [11] Mennucci, A.: On asymmetric distances, Tech. Rep. Scuola Normale Superiore, Pisa (2004)
- [12] Mustăța, C.: Extension of semi-Lipschitz functions on quasi-metric spaces. Rev. Anal. Numér. Théor. Approx. 30, 61–67 (2001)
- [13] Mustăța, C.: A Phelps type theorem for spaces with asymmetric norms. Bull. Stiinţ. Univ. Baia Mare, Ser. B. Matematică-Informatică 18, 275–280 (2002)
- [14] Mustăţa, C.: On the approximation of the global extremum of a semi-Lipschitz function. Mediterr. J. Math. 6, 169–180 (2009)
- [15] Mustăţa, C.: Extensions of semi-Hölder real valued functions on a quasi-metric space. Rev. Anal. Numér. Théor. Approx. 38, 164–169 (2009)
- [16] Phelps, R.R.: Uniqueness of Hahn-Banach extension and unique best approximation. Trans. Am. Math. Soc. 95, 238–255 (1960)
- [17] Romaguera, S., Sanchis, M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theor. 103, 292–301 (2000)
- [18] Romaguera, S., Sanchis, M.: Properties of the normed cone of semi-Lipschitz functions. Acta Math. Hungar 108, 55–70 (2005)

C. Mustăta

"T. Popoviciu" Institute of Numerical Analysis

P.O. Box 68-1

Cluj-Napoca, Romania

e-mail: cmustata2001@yahoo.com cmustata@ictp.acad.ro

Received: May 2, 2011.

Accepted: September 12, 2011.