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On the Extensions Preserving the Shape
of a Semi-Holder Function
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Abstract. We present some results concerning the extension of a semi-
Holder real-valued function defined on a subset of a quasi-metric space,
preserving some shape properties: the smallest semi-Ho6lder constant, the
radiantness and the global minimum (maximum) of the extended func-
tion.
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1. Introduction

Let X be a nonvoid set. A mapping d : X x X — [0, 00) satisfying the following
conditions:

(QMI) d(x,y) = d(y,a:) =0 iff z =y,
(QMy) d(z,y) < d(z,2) + d(z,y),
for all z,y,z € X is called a quasi-metric (asymmetric metric) on X, and the
pair (X, d) is called a quasi-metric space [17,18].

Because, in general, d(x,y) # d(y, ), z,y € X, one defines the conjugate
d of quasi-metric d as the quasi-metric d(z,y) = d(y, z),z,y € X.

For example, an asymmetric norm || | on a linear space X (see [6], Ch.
IX, § 5) or [2], where a functional analysis in asymmetric normed space is
presented) defines a quasi-metric dj through the formula:

dy(z,y) =y —=|, =,y € X.
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Let (X,d) be a quasi-metric space. A sequence (xj)r>1 is d-convergent
to zg € X (or forward convergent to zp € X) if

klirn d(xg,zr) = 0,

and d-convergent to zo € X (or backward convergent to z € X) if

Jim d(zg, z0) = Jim d(wo,z1) = 0.

We say that the set Y C X is d-closed (d-closed) if every d-convergent (d-con-
vergent) sequence (Y )n>1 C Y has limit in Y.

We say that a set Y C X is d-sequentially compact (forward sequentially
compact) if every sequence in Y has a d-convergent (forward convergent) sub-
sequence with limit in Y (Definition 4.1 in [3]). Finally, the set Y in (X, d) is
called (d, d)-sequentially compact if every sequence (y,),>1 in Y has a subse-
quence (Yn, )r>1d-convergent to u € Y and d-convergent to v € Y. For other

properties and results in asymmetric metric spaces, see also [3,5,7,11-18].

2. Extension of Semi-Holder Functions

Let (X,d) be a quasi-metric space, Y C X be a nonvoid subset of X and
a € (0,1] a given number.

Definition 1. A function f :Y — R is called d -semi-Holder (of exponent «)
if there exists a constant Ky (f) > 0 such that

f(x) = fly) < Ky (f)d*(z,y), (1)
forall x,y €Y.

For f a function d-semi-Holder on Y denote by

. (f() ~ F()) V0
f ‘= sup { o d
H ‘Y,d do‘(x,y)
the smallest constant Ky (f), satisfying the inequality (1).

A function f : Y — R is called <g-increasing if f(x) < f(y) whenever
d(z,y) =0,z,y € Y.

The set deof all <g-increasing functions on Y is a cone in the linear

(z,y) >0, z,y € Y}7 (2)

space RY of all real-valued functions defined on Y.
One denotes by

Ao (Y,d) == {f € RY_ |f is d-semi-Holder}, (3)

the set of all d-semi-Holder functions on Y. This set is a subcone of the cone
RY .
For yg € Y fixed, let

Ao o(Y,d) = {f € Aa(Y,d), f(yo) = O}. (4)
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The functional || |§,d : Aqo(Y,d) — [0,00) defined by (2) satisfies the axioms
of an asymmetric norm, and (Aq0(Y,d), || |y 4) is an asymmetric normed cone
(compare with [18]). B

Observe that f € A,(Y,d) if and only if —f € A,(Y,d); moreover
1£1¥.a = I1=f13.a-
Ezample 1. Let Y be a set in a quasi-metric space (X,d) and let yp € Y be

fixed. For a number « € (0,1] one considers the function f : Y — R, f(y) =
d*(y,yo0). Then f € Ay 0(Y,d). Indeed, for all y1,y2 € Y,

f(y1) = f(y2) = d*(y1,90) — d* (Y2, y0) < d*(y1,Y2)-

The last inequality follows by the following simple lemma:

Lemma 1. Let a,b,c be real nonnegative numbers such that a < b+ c. Then
for a € (0,1] it follows a® < b* + c“.

Since d(y1,y0) < d(y1,y2) + d(y2,90) and a € (0,1], Lemma 1 yields
d*(y1,90) < d*(y1,y2) +d*(y2, o), 1-e., d*(y1,90) — d*(y2,50) < d*(y1,9y2).

Ezample 2. Let (X,|||) be an asymmetric normed space. For a fixed
Yo € X and o € (0,1] the function h(z) = ||z —yo|® is d) |-semi-Holder,
where d|| (o, 7) = ||z — yo|, © € X. Using Lemma 1 it follows h(x1) —h(z2) <
|21 — 22|" 21,22 € X, and h(yo) = 0. This means that h € Ay 0(X,d) ).

Remark 1. By Lemma 1 it follows that if d is a quasi-metric on X, then
d*(a € (0,1]) is also a quasi-metric on X. In fact a d-semi-Holder function
f (of exponent « € (0,1]) on Y is a d®-semi-Lipschitz function on (Y,d*)
(see [17], for the definition of semi-Lipschitz functions).

The following theorem holds.

Theorem 1. Let (X,d) be a quasi-metric space, let Y be a nonvoid subset of
X, let a € (0,1], and let f € Ay(Y,d). Further, let E4(f) be defined by

Ea(f) :={H € Aa(X,d) : HIy = [, [H|x 4= I/17.a} (5)

Then the following statements hold:
19 The function Fy(f): X — R, defined by

Fa(f)(a) = il {F(0) + 113 (@) } (6)

belongs to Eq4(f).
2L The function G4(f) : X — R, defined by

Ga(f)(w) = sup { F(») = /154 4" (v, 2) } (7)

yey

belongs to Eq4(f).
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' Each H € E,(f) satisfies
Ga(f)(x) < H(z) < Fa(f)(x), (8)

whenever x € X.

Proof. If f € A, (Y,d) then f is d*-semi-Lipschitz on (Y, d®). By ([12], Theo-
rem 2) it follows that the functions Fy(f) defined by (6), and Gg4(f) defined
by (7) satisty

Fa(Dly = Ga(Dly = £, IIFa(Hlx.a = 1Ga(H)lxa=fl3a- (9)

Consequently, the statements 1° and 2° are proved.
The inequalities (8) are proved in [12] for semi-Lipschitz functions (see
also ([15], Remark 3), so that the statement 3° holds too. O

The set E4(f) defined in (5) is called the set of extensions of f € A, (Y, d)
(preserving the smallest constant || f |§ 4)- The functions Fy(f), respectively
Ga(f) are called the maximal extension, respectively the minimal extension of

[ [see (8)].

Remark 2. In [15] one gives a direct proof of Theorem 1, by considering
the function Gy(f) defined by (7) and proving that Gu(f) is well defined,

Ga(fly = f and [|[Ga(f)[x g = 174 (see also [10,12]).

A natural problem is the following: If f € A,(Y,d) has some supplemen-
tary properties, does there exist H € £;(f) preserving these properties? Such
a problem is considered in [9] for Lipschitz functions.

We shall consider two problems of such kind.

For the first one, in the sequel (X,d) is a quasi-metric linear space and
Y C X is a subset of X.

The set Y is said to be radiant if it has the following properties:

(i) Y is nonvoid,;
(i) My eYforalyeY andall A e[0,1].

Let Y be a radiant set in X, and let f : Y — R, and let « € (0,1]. The
function f is said to be a-radiant if

Fy) <X f(y), (10)

for all y € Y and all X € (0,1].

The 1-radiant functions are called, simply, radiant.

Observe that all radiant sets in a linear space X contain the null ele-
ment 6§ of X, and every a-radiant function satisfies f(0) < 0. We consider only
functions satisfying f(6) = 0.

The function f:Y — R is said to be a-co-radiant (o € (0,1]) if

f(hy) > A% f(y), (11)

for all y € Y and A € [0,1]. The 1-co-radiant functions are called co-radiant
[4,8].
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The function f : Y — R is called a-inverse co-radiant (o € (0, 1] is fixed)
if
FO) < 5 fw), (12)
for all y € Y and A € (0,1]. The Il-inverse co-radiant functions are called
inverse co-radiant.
Obviously, every nonnegative a-co-radiant function is co-radiant, and
every inverse co-radiant function is a-inverse co-radiant.
If Y is a convex set in X, a function f : ¥ — R is called a-convex
(a €]0,1]) if
fAz+ (1= XNy) <A f(z)+ (1 =2 f(y), (13)

for all x,y € Y and X € [0, 1] (see [1]).

If 0 € Y and Y is convex, then every convex function (« = 1) on Y with
f(0) = 0 is radiant, and every a-convex function on Y such that f(6) = 0 is
a-radiant, because

fQz) = fx + (1= N)0) < A%f(z) + (1 = A)*f(0) = A" f(x),

for all z € Y and A € [0, 1].
A quasi-metric d on a quasi-metric linear space X is called positively
homogeneous if

d(Az, Ay) = Ad(z,y), (14)

for all z,y € X and A > 0. Such a quasi-metric is for example d| |, generated
by an asymmetric norm || |.
The following result holds.

Theorem 2. Let (X,d) be a quasi-metric linear space with d positively homo-
geneous, let Y be a radiant subset of X, let o € (0,1] and let f € A, (Y,d).
Then the following statements hold:

1° If f is a-radiant, then Fy(f) is a-radiant.
D If f is a-co-radiant, then G4(f) is a-co-radiant.
L If f is inverse co-radiant, then Fy(f) is inverse co-radiant.

Proof. Let f : Y — R be radiant, and f € A,(Y,d). Let us consider the
maximal extension Fy(f). Then for all A € [0,1] and y € Y,

Fa(f)(Az) < fy) +1f15,4d% (Az, Ay)

< XYf(y) + A fIT g d (2, y)
A[f () + 1f15. 4 d% (2, y)].
Taking the infimum with respect to y € Y one gets

Fa(f)(Az) < A*Fa(f)(x),
for every z € X, showing that Fy(f) is a-radiant.
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Now, let z € X, A € [0,1], and f € A,(Y,d) be a-co-radiant. Then, for
every y € Y, by considering the minimal extension G4(f) € E4(f) one gets:

Ga(f)(Az) = f(Ny) = | fly,q 4% (Ay, Az)
> AN fy) = AV fIY g 4 (y, 2)
= Xf @) = 1f13,4 4% (y, 2)]-
Taking the supremum with respect to y € Y, one obtains
Ga(f)(Ax) > A*Ga(f)(2), = € X,

and the statement 2° is proved.
Finally, if f € A,(Y,d) is inverse co-radiant on the radiant set Y, then for
every y € Y and X € (0,1], and for the maximal extension Fy(f) one obtains:

Falf)(@) < FO) + 171500 O, Ny)
< SFW) A 15 0 )
F) + AT 15,40 )

[f () + I fly,qd (@, ).
Taking the infimum with respect to y € Y it follows

Falf) () < s Fal)(w), w € X,

and the statement 3° holds. O

IA
>l > =

Another property preserved by extensions is the global minimum (maxi-
mum) of a function f € A,(Y,d).
Let (X, d) be a quasi-metric space, and let Y C X be a nonempty subset

of X. An element yy € Y is called a global minimum (maximum) point of
f €AY, d) if

flyo) < fly) (Fwo) = f(y)),
for ally € Y.

Theorem 3. Let (X,d) be a quasi-metric space, let' Y be a nonvoid subset of X,

letyo €Y, let a € (0,1], and let f € A, (Y,d). Then the following statements

hold:

1° If Y is d-closed, then yo € Y is a global minimum point for f in'Y if and
only if yo is a global minimum point of Fq(f) in X.

L IfY is d-closed, then yo € Y is a global mazimum point for f in'Y if and
only if yo is a global mazimum point of G4(f) in X.

Proof. 1° Let yg € Y be a global minimum point of f € A, (Y, d). For every
y € Y we have

Fa(f)(y) = f(y) > f(yo) = Fa(f)(yo)-
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If x ¢ Y,Y being d-closed, there exists 6 > 0 such that d(z,y) > 0 for all
y € Y. Consequently,

Fa(f)(z) = yilelf,{f(y) +1f15,ad% (@, 9)}
)+ 1710)
Fo) + I1f13,48% = f(%o),

so that for every x € X, Fy(f)(z) > f(yo) = Fa(f)(yo)-
Conversely, suppose that yo € X is a global minimum point for

Fy(f) in X. If we would show that yo € Y, then, as Fy(f)|,, = f, it
would follow that yg is a global minimum point for f in Y.
Case I. ||fly,=0.
In this case there exists ¢ € R such that f(y) = cforall y € Y. It
follows || Fu(f)|%.4 = 0, so that Fy(f) = const on X. Since F|y, = f
we must have Fy(f)(x) = const, for all x € X.
Case IL: || f|y4 > 0.
Let yo € X such that Fy(f)(yo) < Fa(f)(x), for all x € X. Since
Fq(f)(yo) = inf[f(y) + ||f|;d d*(yo,y)], for every n € N there exist
yYn € Y such that

Y

Flu) 4 (o, ) 1120 < Fal (o) + V0V

The inequalities Fy(f) (o) < Fa(f)(yn) = f(yn), imply f(yn) +
1£15,0d% Mo, yn) < fyn) + Iy gn" so that d(yo,y) < y,n € N,
ie., d(yo,yn) — 0. The sequence (yn)n>1 in Y is d-convergent to yo, and
since Y is d-closed, yg € Y.

20 Let yo € Y be a global maximum point of f € A,(Y).
Then for every y € Y,

Ga(f)(y) = f(y) < flyo) = Ga(f)(mo)-

If ¢ Y,Y being d-closed, there exists n > 0 such that d(x,y) > n
(i.e. d(y,x) > n) for all y € Y. Therefore

Ga(f)(x) = Zgg{f(y) —If5.q4d%(z.y)}

= sup {£6) ~ 115 0%, )}

ye

< sup {£(y) = I£15.47"}

yey
< f(yo) = IfIyan™ < f(yo)-

It follows that G4(f)(x) < f(yo), for all x € X.
Conversely, suppose that yg € X is a global maximum point for
Ga(f) in X.
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Case I [|fly., = 0.
In this case, because f = Gq(f)|y and [|Ga(f)|% 4= fly4 =0 it
follows that f and G4(f) are equal with the same constant.
Case 11 || f]y., > 0.
Let yo € X such that G4(f)(yo) > Ga(f)(z),z € X.
Since

Ga(f)(yo) = sup[f () = If1y,4 4° (¥, v0)];

yeY

for every n € N, there exists y, € Y such that

F0) — 7120 4 o) > G o) — L1

The inequalities G4(f)(yo) > Ga(f)(yn) = f(yn), imply

Fn) = 11524 Wnsy0) > F(yn) — 7= [fly.ar s0 that d(yn, o)
< 1 n e N, ie., dyn,yo) — 0. This means that the sequence

n’

(Yn)n>1 is d-convergent to yo. Since Y is d-closed, yo € Y. O

Remark 3. By Theorem 2.6 in [14], it follows that every f € A, 0(Y, d) is lower
semicontinuous on (Y, d®) and attains its minimum on Y, provided that Y is
d*-sequentially compact. Also, every f € A, o(Y,d) is upper semicontinuous
on (Y,d*) and attains its maximum value on Y whenever Y is d®-sequentially
compact.

If Y is (d, d®)-sequentially compact and (X,d*) is a Tj-topological
space, every f € A, (Y, d) attains both the global minimum and the global
maximum on Y. Moreover, the sequential method for the calculation of
the global extremum (maximum and/or minimum) of f, ([14], Th. 3.1) is
applicable.
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