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VEOTOR MINIMIZATION PRINCIFPLES WITH AND
WITEOUT THE AXION OF CHOICE
by A. B. Németh

0; At the beginnings of investigations about some conoeptusl

problems of the set theory 1% have become clear by the results

dns o ZOEN, ZERMEID, HAUSDORFF, KURATOWSEI end others that the
existence of the mininel elements in some semiordered sets, the
existence of the fiwxed points of some mappings as well as the
famuous axiom of choice are related questions, It is the merit
of BOURBAEI the pointing out acourately this intercomnection in
(B) (see almo (DBeh) I, 2). For intuitionistic's sake it is of a
major importance when the considered ordering principles snd the
related fixed point results work without any refersnce to the

-

axiom of cholce., This question have Leen investigated independent-—

ly from the classiocal literature in some epplication oriented
papers of CARISTI and KIBK (EC) and BREZIS and BROWDER (BB)
(see also (E)). The relation with the results in (B) was pointed

aut then by BRJNDSTED (BE), The mentionsd results have a construc-

tive character and in them a real valusd "comparation” funotion
plays a fundamental role, When this is changed into an npmtdr
with values into an ordered vector space, then as have observed
EISERFELD and LAKSEMIXANTHAM (EL) there sppear some problems of
a conceptually new feature. ln_h-_.np.wm in (N2) an ordered
vector space variant of EEELAND's minimimation principle (E)

the later being olosely related te the vesult in (BB). Our note
aims to complete the peper (F2) showing the relation of the main
result of ite with the classical ordering primciples ((B) and
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(DBch) 1.2) ms well as with the yecently developed constructive
ordering principles and fiwved point theorems ((KO), (BR), (BB)
and (1)) :

After the polnting aut of the role of humm'l theoren
(one of the equiva’enis of the exiom ¢f cholce quoted pomewhere
as ZORN's theoren; for our terminology see (DSch) I; 2.6) in the
proof of Theorem 12.1 in (N2) we show that the monconver vector
minimization principle comprised by the theorem is eguivalent

with the regularity of the come inducing the considered order re-

lation. Then is showed that for E a Fréchet space (an essential
part of) the guoted result can be a.m'.a from an ordered vector
space variant of the MIB—BEWB ordering prinociple. The note
ends with showing that onr denumerable crdsring prl.nui.plo does
not work when E isn't metrisable,

We observe finally that TURINICI have recently presented in
(1) an abstract variant of BREZIS-EROWDER's principle whioh, for
the case of E being n-tnnbl;. can £".80 be adapted fov a
vector space variant like that presented here.

We sball use for sll the notions and ths terminclegy ae a
referense materisl the paper (N2),

1. Evez if cne perhaps did not be expliocitely st ted, it is
koorn that the following oaxdering principle is an eguivalent of
the axiom of cholce,

l.l. Let (X, <) and (Y, <) be two ordered gets and let F be
4 _mongvone map frow X %o Y in che sguee that w and v ip X, ugv
implies T(w) < F(v). 1L every %otally ordeped set in 7 has g
. kewsx tound, Sien thepe exlets g v in X guch that for every
s<v it bolds F(s) = i'(v).
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¥e observe that ordsr relation or ordering means throughout

a reflexive, trangitive and anilsymmetrie zelatisa.

The above principle plays a fundsmemisl role in our next con-

‘giderations. Hence we shall supply here a proof of ite equivalence
with the following theorem of HAUSDORFF, which is one of the equi-
wvalents ef the axiom of choice (see (DSch), I. 2.6).

»

1.2. Every ordered jet counteins g meximal totelly opdered set.

We provy first that 1.2 implies 1l.1l. ¥or let we consider tLe
relatica < on F(X) dsfined as follows: F(u) < F(v) 1if F(u) £ P(v)
and ug<v Iinultﬂlduly. Then <{ ie an ordsr reletion on F(X).
Let Z bo a maximal < -tetally ordered subset of F(X) which exists
by 1.2, If we considar

I o={xex: M€},

then X will be a totally ordered set in X. By the hypothesis in
1.1, X, has a lower bound v. Assume that s<v. By the monotoni-
eity of ¥ we bave F(x) < F(v) £ r(:} and hence F(s) 3 F(v)< F(x)
rorﬁoz'::ml ° BinaaZilluﬂ.nl-{-azdmdlﬁmr(I).
we have F(v) € Z and it is the infimum of Z with respect to < .
Prom the maximality of Z, P(s)< P(v) implien ¥(s) = l'(vr),

that is, the assertion in 1.1 ‘follows.
Oonsider now the implication 1.1 1.2, Let X be an arbitrary

ordered set. Consider the family °(X) of pamts of X with the
order relation < defined as fellowss 'A< Bif B C A, Denote by
T(X) the subfemily of ©(X) of totally ordered subsets in X. Let
us consider T7(X) to be ordered by the relation < inducel from
(@(x), Define the mapping |
T —>Pm

%o be the inclusion., Them F is obviously monotone, Consider the
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a8 renge epace Y an ordered locally convex Hausdorff space E,
I.-I.nt the ordering in B be induced by a alogsd normal cone W, The

¥ bound regular subcome K of W has the role to reslise tha conneco-
tion between the order relation in E and the topology of the do-~
main of adlnttion of an operator F from the nonveid set V to By
assuning that V 1s s complete K metric space. (Por the considered
notions see the peragraphs 1, 2 and 6 in (N2)), Let ¥ be a W sub-
monotone operator from V to B (see for definition 11.3 in (N2)).
Denote by r the K metric on V and let £ be an arbitrary positive

real, Then we have the following assertion:

- 2¢1. Usine the above introduced notations,if we put F(p) < ¥(q)
ig the capge when
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totally ordered subfemily {4 ' 1€I} 4n "‘3"(13 and p&?; = z\«{:- '
Then A is a member of { (X) am.rorma'qandvinl'thmh
some A, containing u end v end hence these alma.nt_s are comparable
with respect to the ordering in X, Now, A‘_)Ai and henoe 1(.41
Tor every i. That is, every totally ordered subset in T (x) hag
. a lower bound. Thus we have checked the condition of 1.1 and bence
this can be applied to comclude that there exists a T in T(I)
such that for every Z< V, % in T (L.0., for every tutall}
ordered set Z iu X such that % OV) it follows that F(2) = P(V),
But Z = P(2Z) and Vv = F(V) by definition. In conclusion we have
for every totally ordered set % in X which contains V that Z = v,
This shows that V is a maximal totally ordered set in X,

Q.E.D,

1.3. Obsexrve that if we Gonsider only Y to be an ordered sot
and put u<v (u,v 1n X) 1f ouly F(u) < F(v), then for the case ¥
an injection, 1,1 becomes a tantnioéy. (When P isn't an injection
the relation £ induced in X by this way is not generaliy an op-
dering.) Howsver, a similar procedure spplies in the cases consi-
dered next, where the domain of P isn't apriori ordered, but the-

F(q) - ¥(p) - £ »(p,q) € W

end define < in V considering p <q if F(p) < r(@, then in the
Sondition ¥ has g lower bound, it follows that every totally
oxdered set jn V has g lower bound,

Indeed, if ‘Fo ia a totally ordered set im V, it follows thai
F(V,) is a 4 totally ordered in F(V). Since r(vo; has a W lower
bound in B, we can use the method in the proof of Theorem 12.1
in (N2) to conclude that the filter of lower sections in Vo 18

Te the order relation on the range of F ie constructed by mean of convergent to a limit v, and from the submonotonity of F, v<u
the topological structure of its domain, and this structure is for every u in vn' that is 7. bas a l.om bound,
subsequently used for verifying the hypothesis in 1,1, s Qe.E.D.
el 2.2. Lf we accep} the axiom of choice, then the general
2. 48 we have remarked above, the ordering principls 1.1
ik ordering princivle 1.1 yill imply, in conditions of 2.1, the
applies to situations when the ordering in X does not be apriordi ;
. existence of an element v in V such thaty
umuaumh-mmuthmmummmr ,
(2.1) F(v) - B(w) - € 2(v,w) # ¥ _whenever w e V~{v},

-lnliht‘lopnlnnhlo Inth;-unmniu Mﬂnﬁnmﬂtﬁl‘ :
mmnmmmmmamwmm il
tdmzyuamaubmu’x.htu-mnmm '

‘




Let we cousider the order -.latisn < defimed sm P(V) and
the oxder velailem < defined om V at 2.1. Thes all the condi-
mﬁx.zm-wmammuz.l.
l-oﬁm.ﬂm-vhtmﬂn!umshtnnl v
umur(a)-r(ﬂ._untu-vuruhm

(2.2,-1 Kv) - ¥w) - £ x{v,w) € ¥,
mmmmmummmnrunnau
w<v which by the cendition on v implies P(w) = :l('r). Bames by
(2.2), ~Ex(v,w) € ¥ and them 2(v,w) = 0,

QeBolly

s.htnsmpnmw'thmmm
minizisation principle comprised in 2.2 1s squivalest in seme
-mouthmumﬂnnthnru-lmnmmu!.
More precigely, e have the assertioa ;

5-1-M'mm_v.m:_ﬁ_my.m
Mml-m!wiow-
2avion prinoiple 2.2 holds fer every complote I metyic goaca V
M'wh'*lmim
bounded Xf and only if K 1p ¥ bound peculer.

mupmarm-um:.nuufutmwua.z.
For the converse, let us suppose that K does not be ¥V bound pe-
gular. Then by Oriterion 6 ia (N1) (see also Oriterien 7.1 ia

(H)J.Mﬁmnuummu-tehlmntm

sequence (x.) in K which is W om bounded and for which X1

=% dnine
- x, #7 for uofa’fi?l_nﬁ*m:uv by putting r(z,x,)e

=z, - x..ﬂmnfnu{h,k].n-m{h,k},.mnfum-
murcmlmmuu;um-mmmum

= 161 =

F i V> by putting P(x) = =x, Them ¥ 4in ¥ lower boundod ( sin-
® ¥ = {x,} is ¥ oxder bounded from abeve). Beceuse V i3 dlgere-
%6, 7 is trivially ¥ submonotons, '

Pat £= 1/2 ﬂmﬂm%hhmmuhhtlm
Than
Hxg) = W) = § wmymy) o oxy ¢ 3, = Ky - 1) = R, - ) €
% have ia comslugion fer every v (=x ) im V that there exists
seme w (mx, with m>m) ia V~{v] sush that the relatiom (2.1) failc,

d QeZ.D,

3.2. In (M1), Prepositien 14, we have givem a charecterisza-
tisa of a ¥ bound Pegular suboons I of the cons W by means of
the so called near to minisality preperty of the W lower boundad
ssts. Vo observe the paralielim iz fom and in oconsent between
the asmtisned result and the assartisa 3.1.

4, In preof of Theorem 12.1 in (N2) as well as in the ocutlin:
of the prest of 2.2 above we have used the theorem 1.2 EAVEDORF?,
The erdered set ¥ censidered at 2 has a special structure, hence
is maturel the guestion | whem can be aveid the reference to 1.7
or other equivalent conditions im the proef eof 2,2, The mocel fo;
the erdering primeiple 1.1 ean be ccnsidered to be the BREZIE-
BROWDER oﬂm principle (EB) which for the special case of I
being the resl mmbers can be used for the proof of 2.2 and it
furnishes this presf without amy reference to the axiom of cholce
or amy other equivalemts ef its, The preof im (EB) is purely
constructive, and thip is snother adventage. Hence this prin-
eiple is somstimes oonsidered as to be a comstrustive version



- 262 -

e . :

of Z0RN's lemma (E). 4n inguctive op denomerable version of
latter result can be 80t already in (B), g

In (n)_ we have proved some denumerable Criterions for
o Tegle-
X :oml even in nop metrizabls locally comvex Bpaces. The prop.
em nlvhltunrmtnnmzupnﬂidmmb'u-dto du
Produce

& prool for 2,2, or aimilarly, in order to deduce the rine
staten : "
ent of Theorem 12,1 of (¥2) from an ordered vector spac
generalis y :
peprs a:::a of the B]IPZIB—B]DWDE ordering prineciple . OQupr
W that this cap be done when the orderea locall
F

convex
space E ig metricable, while our comstruotion
for & more general case, I L

“Le Lot ¥ be o metrisable gng oom
_ lltﬁ.lmuy-amm

F(w) = P(v). :
'.By I‘hac; .
- ren 3 of MCARTHUR in (H.? in the gbove conditiong x.is
' hormal cons. Denote by q & (real) metrio which generates
opology of E, Consider % in V be given and put
4 = sup fq(rm).l'{x,)) 'asx ?,

4 is finite 8lnce F hag 5 & lower bound and k i
(see Proposition II, 3,4 in (P)), 1¢ 4 :

=0
the condition in 3,1, 1o not, consides i

ns X, Buch that

Assume x,_....,xn_ were de ; .
1 . termined ang put

-m-

(4.1) ‘Il = Bup IQ(’(‘Q:’(E_I)) (] I-‘In‘?-_} .
B%-bmmbmﬂﬂv-h. If not, thﬁuhnonﬁwﬂh

€ Xy and
(4e2) - -;' <q(F(x)y¥(x,_3)) € 4,
If this procedure emds for some.x,, then x = v will satisfy the
condition. If not, we have determined s decressing sequence (xn)
in V which satisfies (4.2) for each n, Since ¥ is monotone, (F(x,.)
is a decremseing, E lower bounded sequence which converges eince
K 1s regular. Now, (4.2) shows that 4 —> 0. The sequence (x,) bas
a lower bound, say v in V. Buppose w<v. Biuce wevex,, 1t follows
that q(¥(v),F(x, _,)) <& end o(F(w),F(x, ,)) <4 for every n.
Heance

(F(v),F(w)) < q(P(v),F(x, _4)) + o(P(w),F(x, _,)) <24 ,
wherefron q(F(v),F(w)) = O and the proof is complete. "

i : Qe B. D,

4,2, The method of proof im 4,1 iu similar with the argument
in (BB), The same argument ocan be adapted in order to produce an
abstract varient of this principle similar to that due to TURINICI
(T), Theorem 3, when E replaces R,

h By resonings similar to those in the proofs of 2,1 and 2.2
we can deduce (of course, without ud.n; 1.2) the assertion 1

4.3, Let K be a olosed resular cone of the Fréchet space E

and let (V,z) be a ssquentislly comlete K metric mase. Supo
F: V>3 ip g K submonptone and K lower bounded oper

Zox every positive el pumbex ¢ thore ds a v in V such that
B(v) - X(w) - £x(v,w) £ yhonever weViv}
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4% We olserve thet 4.3 does mot be the Zull statement of 2.2

for the specis® case of E metrisable and complets. This becauss
the method of the proot does not work for this genersl sase,

We shell show in ths following example that 4,1 does not hold
for a partioculsr ¥ which isn't metrizable,

4.5 Exgmple, Mponsinautnﬂmmw.
Oonsider the lcoally convex Hausdorff space E® of sll resl valusd
functions defined on 5, emdowed with the direot product topology,
Let lf cone of the non negetive functions in RB. e hvo seen
at 8.5 of (N2) that R} is regulsr. Let us consider the following
set in lif '

j:EIE Rfli(l)gltoruohs.mmmd‘d“n
8 with x(8) > 0 is et most denumerable .

it xlsxza:...s;rhs... ¢ X, in A for every m, than there
enstnmyin.lauchththng;ytnx each n 1 it cgn be gtonto
be the function with the value 1 on all the elements s for which
there exists at least an m such that x,(8) > 0, and with the value
0 elsewhere, The set A has the Property that for every y e 4 there
exists y'e 4 such that y<y' and T iy

Oonsider now V= -A, and ¥ | Y-> X %0 be the identity mapping,
Then all the conditions of 4.1, except B being metrizable, are
satisfied. From the sbove observation about A it follows that the
conclusion of 4.1 does not hold,

The method of the proof of Theorem 13.2 in (N2) cam be
used in order to deduce from the assertion 4.3 the following
generalization of a fixed point theorem dus to EISERFELD and
LAEEEMIX ANTHAM (EL)

H2(w,n) € (o) - F(2(n)) "
942V, xhare ¥ 4s s X submenctons ooerator from V so_
« Ihep ? hae & fixed ppint,

This mesertion uapmum case of Theorem 13.2 in (N2)
or W s K and E a Fréchet spece. We have pointed it aut since
$a proof oan be dome without referring to the axiom of choice.
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SUR LES METHODES ITERATIVES DE TYPE INTERFOLATOIRE A VITESSE
DE CONVERGENCT OPTIMALE
par
ION PAVAIOIU et IOAN EERB

Dane cet article nous étudions une classe de méthodes itéretives
pour la résolution des équations de la forme:
(1) £(x) =0 ,
oif £3 I—>RE est une fonotion réelle d'une variable réelle et I
o8t un intervalle de l'axe réel,

Dénignona par Ty Xye eee 9Xp 0 9 B+ 1 points distincts de
1'intervalle I et par "‘1, "Cz, see '“n-rl s B +#1 nombres ne-
tarels tels que:

o meN, .

Il est bien connu que quele gque solent les nombres ;2 s d =0,
1y coe 3% =13 121, 2, .co yn¢l , 11 existe un seul polyndme
B, de deg.l.i an plus m qui v‘ri.'.t:l.e les conditions:

(5) n](.:)(xi’) = ’i | ] d = o' 1’ dom xi - 1 ' 1 = 1. 2, w8 'n‘l-l.
Le polyndme H, déterminé par les cond.i.tinnl (3) a la forme:

-1 "'-:.-1 =" Toah (k)
; 8 x) T w (x)
(4) H,(x) g vy [ s

J=0 k=o ki jl e (x) J:a-.:i (:":l.) i

o n+l
(5) \ W (x) = T‘T (x - x;) "

Bi on suppose que la tonction £ admet une dérivée d'ordre m+l
sur l'intervalle I et ai ;r,a_ = “"U)'I("‘i) 0 i =05 15 sae "fi -1
i =1, 2y, ¢as yn+4l , alors H; , le polyndme d'Hermite de la fono-

tion f , relativement aux nmoeuds X;y 8ux ordres de nﬁltipl:l.cité




