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SEUERTTIAL REGULARITY AND THE DIRECTIONAL DIFPERENTIABILITT
02 CONVEX OPERATORS ARE EJUIVALENT

by
A.B, Bémeth
O, Introduction. A rsgularity—tyﬁé property of an ordered topo-
logical vector space is a property which from the ponotonity and
order boundendess or topological boundendess of an arbitrary net or
sequence concludes its convergence‘or fundamentality. In some addi-
tional hypotheses a property of this kind implies the directional
differentiability of some nonlinear operators (see e.gz. (B) or (N1))
and hence, as 1t was observed in (Ni), also the subdifferentiability
of the convex operators as well as the weak Hhhnﬁﬁénach extension
property of sublinear operators. In the present note we shall show
that directional differentiability of the convex operators actually
characterizes the sequentially regular spaces.

1. Definitions and results. Let E be a real vector space ordered

by the (acute) cone K., The operator F from the vector space H 1o B
is called gconvex if for every u and v in H and every real number
t in the interval [0,1] it holds the relation

F(tu + (1=t)v) £ tF(u) + (1-t)F(v),
where £ stands for the order relation induced by the cone K in B.

Let G be an operator from H to E. The episraph of G is by defi-
nition the subset of the Chartesian product H X E given by
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epi G = {(u.x) 1 G(uw) s x}.

It is easy to check that the operator F : H—>E 1is convex if and
only if epi F is a convex set in the vector space H X E.

Suppose now that E is a locally convex space. Then E and equiva-
lently its positive cone K is called pormal if it has a neighbourhood
basis consisting of sets U with the property U = (U+K) N (U-K).

The ordered locally comvex space.E and equivalently its poaitive
cone K is called (sequentially) regular (see e.g. (Ml)) if every
decreasing net (sequence) in K is convergent.

We observe ihat the term locally convex ordered regular space
is unsed by various authors and papers in slightly different senses.
fie adopt here the above definition for the sske of simplicity. It
coincides with that used by MCARTHUR (M1) when the cone K is closed.
ZORWEIN (B) uses for (sequentially) xqgular.closqd.con.a the term

(countably) Daniell.

Consider the operator G from the vector space H to -the ordersd
locally convex space E. If for some u and h in H there exists the
linit :

G'(uzh) = L +~L(G(usth) - G(u)) (% in ©,222,

then 1t is called the directional derivative of G at u in the
direction h. -

If F is a convex operator from the vector space H to the locally
convex ordered regular space E, then it has directional .derivative
at every point u and in any direction h (see e.g. (B) Proposition
3.? (¢)). This follows from the Iobsemt_.ton that fﬁr fived uw and h

tre function 4 defined by

= Jo5a

(L . )= t7H(ECarth) - F(u))

is increasing with t in R\{0} and bounded from below on (0, +=)
according the convexity of F. If only sequential regularity of B
is postulated, then the normality of E is also used in proving the
existence of the directional derivatives of a convex operator (see
e.g. (B)). The normality can be assumed to be a mild condition on
& cons since ihe mogt of important ordéred topological vector spaces
have noml positive cnr;u. In some -au's—as regularity and sequential
regularity are equivalent (N2). On the other hand i} is koown that
in a Fréchet space every closed regular cone is normal (see (M2),
Theorem 3). However, we can svold the normality assumption in the
proof of the result in the title. To show that this circumstance
is consistent we show that there are ordered regular normed spaces

~which are not normal. We shall adapt for this an example due to

BRECKNER and ORBAN used for other purposes in (F01), Remark 2.4.3.

Let E denote the vector space of all polynomials with real
coefficients defined on the imterval [-1,0], equiped with the uni-
form norm. Let us consider the cone K defined by

E = {x =3 IU'J(O) 20,1 non-negatve in‘teger} ~

The cone K 1s regular since if (x,) is a decreasing sequence in K,
then it is necessarily a sequence of polynomials of a given finite
order, say m, and according the ordering introduced by I, their
coefficients form decreasing non-negative sequences of real numbers,
Since all the coefficients of the terms of order> m are 0, the
sequence (xn) tends uniformly to a polynomial with non-negative
coefficiants and the regularity follows.

To prove .thn't K is not a normal cone, consider the sequences

(xp) and (y,) defined by -
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cﬁ_fj i and yn(tJ - '%E (t+l)<B, tE=1,0] .

2n i=0
O2¢ Bas 0 & x) = ¥, for sach n € . The sequenca (}‘n) tends uniferamly
bo 0, but (x,) does not. This contradicts a well knoym criterion

of normality (see (P), Proposition II. 1.3 or (E01), T‘r.eo:i:'em h.1)

The ginm of the present note is to show that the direction:1
dexlvability of the convex operators with values in an ordered

locally convex space characterizes the sequentially regular spaces.

Yors precisely we shall prove the following

THBOREM. Let B be an ordered locally convex!space. Then T is
ESoquentially reculer if and only if every comvex ovgrator defincd
on s veetor space gnd gak;gg. values in E has directional dsmivati-
ve at avégy _point and in every direction.

The necesslty of the theorsm is in fact known and follows from
the monotonity of the operator Yd-efinéd in (1). The only problem
in this direction is that we must use only sequential regularity to

conclude the existence of directional derivativas,

It is immediate that we can state the theorem considering di-
rectional derdvability of the convex operators defined on the

vector space R only.

2. The proof of the thesorem. We prove first the necessity, that
is that if E is sequentially rezular then every convex opcrator

¥ from the vector space H to £ has directional derivative at every
point u and in every direction h. Consider the function f’ definsd
on R\{0} by (1). Since Y is increasing with t and lower bounded
on (0, ®&2), the seguence (%2(1/n)) decreases for m=><= and is

lower bounded. Since B is sequentially rezular,
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(2) ve lin ‘f’.('l}n}'
n-»>oo : 3
exists. We shall show that tl;.mo(‘ﬂ(t) also ;aztuts and equals v.
If we assume by contradiction that the filter of lower sectiens
utu = -f_(tﬂ (t) 1 t to'g » 1,0 does no:t converge to v, we can get

a naishbourﬁuod U of 0 in E such that for every n there exists a
tg 0<% <1/n such that :

(5) ?(tn) o é U.

Now, we can put together the sequences (1/n) and (t,) in order to
get a decreasing sequence (st in (0, &) which converges to 0.
Then (Lf’(sm)) is decreasing for m= o< gnd lower bounded. It must

be convergent since E is sequentially regular. But this contradicts

(2) and (3). Bence
F'(uzh) = 1lim t-l(F(u+th) - F(u))
£MO s

exigta,
To-prava the sufficence, i.e., that directional derivability .
of the convex operators implies sequential regularity, we proceed

by contradiction. We shall give indeed & constructive proof of the

. following proposition i

If the positive cone K in E contains a decreasing sequence of
elements which is not convergent, then there exists a convex ove-

rator from R to F without directional derivative at O € R in the
direction 1 € R.

in essential role in our comstruction has the assertion :

(a) If K contains a decreasing sequence which is not comvercent,

then it contains a decreasing sequence (:%J for which it exists &
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Ssequence (t)g;m rs with the property O <tn-41 for each n,
such that
| 1 & taXyy REN,
and (x;) is pot convergent.

Indeed, if (y,) is a decreasing sequence in K which is not con-

vergent, then if we put
b Ei.‘l Jjp» nEN,
then (x;) will satisfy the condition of the assertion (a).

(b) Let Cr,',) be & sequemce with the property ssserted in (a).
Then there exicts a strictly decreasing sequence .(a ) of positive
Zecal numbers a, guch that 1im a =0 and go as to bave

(8)  (ap y-sp)(ayX -a,,1%, 1) € (a-a, 1 May_ %, 3-8 x)

for every n > 2.

We put ) = 2, &, = 1 and shall show that if aj,...,a,, 232

were choosen, the'n a,,) can be determined in order to have

0<a < nin i2'l'n+3, ’ni

(5) g 2l :
%n*n 8, 1-8,.1 8p-1%p-1
Indeed, accnrd.‘l.ng the gpecial feature of (xn) there exists 0 < t
< 1 such that X, <t X , and hence, in order to realise (5) it
suffices to show that there exists arbitrarily small positive solu-
. tion in a 4 of the inequalit'y
S Ml 5 ¢ o,
8017841 3y Bl
But this inequality is equivalent with

1(
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. 1"' At g (1=t ;) o
+ .
8n-1"%p-15,

where the right hand side term is a positive real number, Hence

85,3 can be choosen to satisfy our requirements. Now (5) implies

~ 2 Sp-1 — 8
i € T e ¢ T aana,

wherefrom it follows the relation (4).

(e) Let us define the operator P ‘: R E by

) it  t<0,

P
©) ey = { ol (A% Bne1%ne1) * Bn1%nerr PE@nep080e0% 2,

“n” %ne1
(t-1)(2x)-x,) + x, if 1&(1,~)

where (x ) gnd (a,) are the sequences satisfyins _the conditions ir
(b). Then the operator ¥ is convex.

Let us define the affine operators Fn BER=PRL R =01 2o o
with F (t) = 0, t € R,

F,(t) = (1-,-1:;_(2::1-—_12) + x,_;, t =R,

and

- t=-a
TV = =it (apfranann) * ana¥,s b SR,

for n>2. The operators J.Pn are obviously convex, hence the epigraphs’

epi J?nz ;(t,x)ER‘KE: Fn('t,') g’x], néh'\o‘i(ﬁ.‘

are convex.

We shall show that

(7) (0,2,,,(t)) €ept B, if ¢ < (- >=a_ ;)
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(6, B (1)) > (4,8, (1)) 7 oo (5,5 (1)),
and

. il Since t €[a,,qsa,) for k >>1 and t €fl,+) for k = 1, we have
(8) (%, F () €epi B, if t€[a, ,°) k+1" %k

F(t) = F, () and the above relation yields

forn=1,2,.e. - Indeed, we have
(6, F()) > (%,F (%)),

s %1%l | 202 %mel"tne%ne2)
Fo(t) = B (%) = ( "ﬁ_l - 1%:1_%2 B42) (t-ap,q)- that is,

t,F (% 1P,
According the relation (4), (t,F(t)) €epi P

% T ®ne1%nel | 2041%04l T 2ne2%ne2 %0
20" %nel 241" %ps2 |
'

and Leuse : : ' = (8.2, (8 L (5,7,(8)) for t&fay,y, ).
F () ~F 4(8)30 for t3a .

| Buppose now that ©.&fay_y,a) if & >1 and tefl, o) if k = 1,
! and if k < m. The relation (8) can te written as
i

a Using this relation successively for n = k, ... , m, and taking
an

into account that t >a ., with O = ky.uesl; we get

FF“) =P () L0 for t <a ..

From the second relation we have (7) while from the first it (6,F(£)) < (8,F,_1(t) < .0 < (t.Fk{t))

8)e
follows ( ) and since F(t) = Fk(t)' we have
#e shall show that :

oo (,2,(8)) < (£,F(t)),

(9) Qpi F = f\ epi Fm £
“ _that is, (%,F(t)) € epi F).

i
To this end, we verify first that '
t : fle have also ('I'..Fo(t)) = (t,0) < (t,F(t)) since by the defi-

epl FCepi ¥, m21l. nition of ¥, F(t) > 0 for every t. Henceforth it follows that
. -~
Consider the order relation < in the vector space R X E induced epi F < "\ epl F.
m=0

by the cone }0}<K, with K the positive cone in E. Then the rela-
' i3, ¢ s If for some t in R and some x in E we have (t,x) & épi F, then

by the defimition of ¥, (t,x) #epl F withm =0 if t €0, m = k
if t+€[a,q,8) and k> 1 and m = 1 if t £[1, =2). That is,

oo :
Suppose that t écaml.ak) if k >1 and that t€ |1, ) if k = 1. (t,x) € M epi =y

tion (7) can be written as
(t,F,1(8)) > (£,P () for t & (-Soa ).
Let k > m. Then using successively the relation above for

and this co letes the proof of the relation (9).
n=m, n4l, ... , k-1, we get, since t <an+1' the relations Gt .



- 132 -

The relation (9) shows that epi F is a convex set and hence

T is a conveXx operator.

(d) The operator ¥ defined by (4) does not have divectional
derivative al the point O € R in the direction 1 € R.

We have tb ghow that
lim t"H(F(t) = F(0))
t 0

does not exist. Indee;d, we have a) W0 forn >ee, F(0) = 0 snd

F(anJ 2 ‘:‘nxn' and hence
agl(F(a,) - F(0)) = x, .

By hypothesis the sequence (xn} is not convergent and our
assunption follows,

The ob;tained result, which constitutes the proof of the propo-
sition stated at the beginning of this paragraph, proves that 11‘
an ordered locally convex space E 1s not aéquantially resular,l then

it exists a convex operator with values imn this space which does

not have directiomal derivative at some point and in some direcilon.
Hence if every convex operator with values in E has directional
derivatives at every point and in any direction, then the space

E must be sequentially regular.
QeEsDs

Remarks. We observe that in (N1) an other notion of directional
derivability is used that in (B) is called sminhorability. The
above construction can be adapted also for that case in oxder
to conclude that sequentially chain c_ﬁ-mﬁletness of and ordered
voctor space and the 4mnOWability of the convex operators with
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'ﬂilues in thiu.spaca are equivnlenft.

If we postulate that K contains a topologically bounded decrea-
sing sequence which is not convergent, then we can assert that the
npami-.ur F constructed above is also continucus on R. The single
problem 1n this case is to verify the continuity of F at 0. This
follows from the local convexlty of E and from the fact that
F(a,) = a x converges to O when n =80, for (x,) a bounded sequ~
ence. The same cunnlnsion; follows al:s:é'ﬁhan we guppose to E have
the boundendess property. We remind that an ordered popolegical
vector.space have the boundendess property if every ordsr bounded
set in it 1s topologically bounded. This conditlon is less restric-
tive than nommality ((BO1) Remark 2.4.3). In this case the continaity
of P follows also from a more general result im (BO2). We have
also that the boundendess property is necessary to a space be
sequentially regular ((N3) Lemma 4.4), l
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