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ENOWN AND NEW EQUIVALENT FORMS OF THE ARCHIMEDIAN
PROPERTY OF ORDERED VECTOR SPACES

As B, Németh

The Archimedian property of the ordered vector spaces, ita
equivalent or weaken forms become important in some recent
results on vectorial optimization (see e.g., (¥) , (N1) (B)
(N2) etc.). This suggests us to gather the various equivalent
forms, to estabilish new equivalences and to present them
together in order to facilite further references,

The Archimedian property involves in its statement two

elements of the space, hence it is typleally finite dimensional:

. 1t holds for the whole space if and only if it holds for its

finite dimensional subspaces. It is in fact a geometrical
property concerning straight lines. The Archimedian property is
equivalent with the lineally closedness of the positive cone of
the ordered vector space. The two different approaches :
Archimadian property and the lineally closedness subzist in the
literature perhﬁpﬂ since the first concernms with vector spaces
ordered by cones while the second term is used merely in the
case when the vector spaces are ordered by wedges (see e.g. (5Y),

(L), (®) etec.).
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e shall explicitely state and prove the above eguivalence,

as used implicitely by us in comments in (N3) o A new

1 characterization of Archimedian orde
A weak subdifferentia=—

yhich W
sequentia red vector spaces
is then given which will be used in (N5).
haracteristic for Archimedian

operty is also ©
so considered implicitely in

bility-like PT
ordered vector spaces which was al

(H4) and will pe explicitely presented here.
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and (ii) tWe W whenever
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wedse if (1) W+ W<W
The wedge W 1induces a reflexive and

v-ueW.,

called a
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the multiplication with non-negative reals.

Lo
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n vector spaces

.0 antisymnetrical.
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€ p“oblems concerning order structures Q
jder only orderings induces by wedges (see

anach theorem and its equivalences

In som
it is natural to cons

the generaliged Hahn-B
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(8%) 5 (D)o
ors to sublinear operators (8) and (B) , etSels

operator
, get M in Y is called lineally closed if its intersec—

2
ight line in Y determines a subset
y of this line

Lion with an arbitrary stra
this line which is closed in the usual topolog
As an immediate conseguence of
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this definition we observe that if M is lineally closed then

jnduced by K is then -
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£ s
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. space

(¥, 3ENY_) being Archimedi
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.Lf a aetr oL the form ibx i t-> 0; Wlbh X >,-0
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t >0 , it follows that ¥
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+ and hence it must hold ¥y <0 .
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1t in Proposition 3 was used in (83)
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by J.M. Borwein and
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Proof. Consider a straight line A\ ang

Suppose that (7;K)

» If it is empty or
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then it is a point ip Pl
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the
he' assertion in Proposition 4 was implicitely used in

i % 1 { n+ n) ﬁin"'l} i ne€eyN ;
i]..l e 8 d in hﬂ remarxr . ;
CU!ILm.en-Ls i C ) aﬂd . X

e has an infimum as far as the condition in the Proposition holgds,
in ¢ g : : 1 o2
: Since decreases to 0 wit “4nd since B :
PROPOSITION. The ordered vector space (¥3K) s 3 11m) L. Bend minde x 15 in K,
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if and only if for every increasing sequemce (x;) | 8¢t 1E 1 £>03 has the sane tntizun.
Archimedian if and only 1 i e il s - Using now Proposition 3 it follows that the ordered vector space
which is bounded from above there exists inf §x 5 - X, - (Y3K) is Archimedian and the proof 1is complete
Ve # then they must be 0 . .
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. : Elely A et ) be :
Proof. Suppose that (¥3;K) is Archimedian and } (xn Let X be a real vector space., The operator P ¢ X == (YiE)
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= = n and consider an ! = ) . e 2
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e 3 - ;
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for each x in X , Bach supporting operator of P is obviously

also a bounding ocperator for P . The converse implication
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gpaces. L<UI"
pve th [+3 ver 410 cation uppo e that X is j—n
Lo P e the on rae mplica 4l sup 8
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K . Considzr the ssguence - .

is
oA B Archimedian if
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and only if each bounding operator to each
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th values in (¥;k) is slsoc.a supporting

gublinear gperator wi

+his sublinear O eratol.

operator of

Proogf, Suppose that (I;K) 18 Archimedian and 1let P : X
a sublinear operator with a bounding operatoT A .
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— (Y;K) be

That is, we have for some

Ax + 7y <P

in X . Det we fix x for the moment and put X
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3 L (P(x) - Ax) + -]-_-1'75 (=3)

T

¥
+

se-ment in K « Since (L;K) 1is prchimedian, it
by Proposition 4 thet K 18 lipeally closed. Hence Lhe
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¢ means that
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wap arbitrarily chosen, .the obtained melation shows

porting operator for P

izt A i a aup
lication we ghall show that if

yepify the converse imp
then it can be constructed a

Wo
35 not Archimedian,
which has & bounding operator W

(I3h)
hich is

ublinear operatoT

sl

doA

not a supporting operator too

Assume H i . L | 4 =}
( ) 18 no C edlsn Then ther
th{it Y:K t Archim d 'ha aTe avs od

soma a in K nd sQms t N
a =1 i
b in b 4 such 1.1-11.9, ta>Db {0
= I

equivalent
ntly, a tb) for each t+> 0 , but b
define the ope ' | et
i B perator P : R->(Y;K) by putting P(t) = t(a-1
. and P(t) = -ta 4 gt
= - 18 % €0 . Let
D e ' o Lot we see that P igp
- is obviously positively definite. To vepri
- '] x '] ¥ - . e-‘ ; ; r
additivity it suffices to show that \ Eowt.
P(t
( 7+ 132) < P(tlJ + P(‘ta}
for t. <0
1 and ¥, >0 . If &, + 6,20 ¢
= (t; + t,)(a-b) , P 3 F Uaae VTRRENT RS F t,) =
3 ' 2 » (“Ll) = -tja , Pkl = % .r_
ence it holds ; M,
P(t, + t,) =
tte) = hka= 0] + 1 :
1 )+ fa(a - b) £-ta + t,(a -~ b) = P($,)+P(t.,)
> = Pt )4P(15,).
It % - |
1+ 1:2{0 y Tthen we have P(t, + t.) L
by nd = =Lt + T,)a ond 4

1 = =

P(t, + t.,) »
1 = =t.a = 1t -
2 1 08 £ -tia €-tya + t,(a - b) = P(t) + B(
)+ B(t,),

Let the linear operator A : R—>Y

| % be defined by A
We shall show that ned by At = ta.

P(t) > At - a

ioI gach t in R « It is auf ci to qfy 1 ralatd
lcient © verif ]
Il1ly he relati

1 t 35 0 We have fo + the 1 -5
or ' a r >'O 12 relations

A = tla = = %t - I
( .) (cl b) = a tb } ta - A - At
=] — B8
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—tb 2 -a for cach t=>0 by nypothesis.

then obviously

p(t) = ~ta >tapta - 8= At - @ .

is a bounding operator for P . Assule

Tn conclusion, A
erator of P 4 1e €e

supporting op

that

that it is also a

P(t) &= AV

e o ) R Je have then for t =1 the relations

Tor Vel

L e PQ1) > A1) = &

The obtained contradiction

n it follows that b £0

+hereli1o

.ammletes the Pmc‘f’
Q. E. D.
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