#BABEŞ—BOLYAI" UNIVERSITY

FACULTY OF MATHEMATICS

133 S-44-25 RESEARCH SEMINARIES

SEMINAR ON

FUNCTIONAL ANALYSIS AND NUMERICAL METHODS

Preprint Wr. 1 , 1986

CLUJ-NAPOCA ROMANIA Col. 133 /5-44-25

BOOTEST AND STREET, ST

CORTENTS

1.	Mira-Gristiana Anisin , On Caristi's theorem and	
	successive approximations	1
2.	Doing Bradesnu , On the convergence and stability of	
	the Galerkin method for a differential equ-	
	ation	11
3.	Adraian Diaconu , Couples itératifs. Méthodes itératives	
	obtenues à l'aide des couples itératifs	27
4.	C. Iancu, T. Opreiu, I. Păvăleiu , Inverse interpola-	
	ting splines with applications to the equa-	
	tion solving	67
5.	Costică Mustăta . On the extension of Lipschitz Func-	
	tions	83
6.	A.B. Németh , Known and new equivalent forms of the	
To di	archimedian property of ordered vector spaces.	93
7.	A.B. Németh , A necessary condition for subdifferentia-	
	bility of convex operators	104
8.	Ion Păvăloiu , La convergence de certaines méthodes	
	itératives pour resoudre certaines équa-	
	tions opérationnelles	127
9.	Ion Păvăloiu , Sur l'estimation des erreurs en conver-	
	gence numérique de certaines méthodes	
	d'itération	133
10.	Dumitru Ripeanu , Sur la longueur de certains interval-	
Er/	les d'interpolation pour des classes d'équa-	
	tions différentielles linéaires du seconde	
	erdre	137
11.	Ioan Serb . On the medulus of convexity of L spaces	175

REFERENCES AND MALE STATEMENT OF THE STA

- 1 COBZAS, S., MUSTATA, C., Norm Preserving Extension of Convex Lipschitz Functions, J.A.T. 24 (1978), 236 - 244.
- 2 DUNHAM, C.B., Chebyshev approximation with a null space,
 Proc. Amer. Math. Soc. 41 (1973), 557 558.
- JOHNSON, J. A., Banach Spaces of Lipschitz Functions and

 Vector-Valued Lipschitz Functions, Trans. Amer. Math.

 Soc. 148 (1970), 147 169.
- 4 Mc SHANE, E.J., Extension of range of functions, Bull. Amer.
 Math. Soc. 40 (1934), 837 842 .
- 5 MUSTATA, C., Best Approximation and Unique Extension of Lipschitz Functions , J.A.T. 19 (1977), 222 230 .
- 6 ROY, A.K., Extreme Points and Linear Isometries of Banach

 Space of Lipschitz Functions, Canad. J. of Math.

 20 (1968), 1150 1164.
- 7 SIMCER, I., Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale, Edit. Acad. R.S. România, București, 1967

(an arrange of the party of the second second of the second secon

((11) dotyling seil) [6] 5 x

"BABES-BOLYAI" UNIVERSITY, Faculty of Mathematics Research Seminars Seminar on Functional Analysis and Numerical Methods Preprint Nr. 1, 1986, pp. 93 - 103.

Valuation the Liet at heat of the dotte now he

KNOWN AND NEW EQUIVALENT FORMS OF THE ARCHIMEDIAN PROPERTY OF ORDERED VECTOR SPACES

the latest to be a serious of Lily he

A. B. Németh

sede with and ow it of

The Archimedian property of the ordered vector spaces, its equivalent or weaken forms become important in some recent results on vectorial optimization (see e.g., (F), (N1) (B) (N2) etc.). This suggests us to gather the various equivalent forms, to estabilish new equivalences and to present them together in order to facilite further references.

The Archimedian property involves in its statement two elements of the space, hence it is typically finite dimensional: it holds for the whole space if and only if it holds for its finite dimensional subspaces. It is in fact a geometrical property concerning straight lines. The Archimedian property is equivalent with the lineally closedness of the positive cone of the ordered vector space. The two different approaches:

Archimedian property and the lineally closedness subzist in the literature perhaps since the first concerns with vector spaces ordered by cones while the second term is used merely in the case when the vector spaces are ordered by wedges (see e.g. (SY), (D), (F) etc.).

DOLLAR TO VISCORY . PRINCEY TAXIOR DESANT

which was used implicitely by us in comments in (N3). A new sequential characterization of Archimedian ordered vector spaces is then given which will be used in (N5). A weak subdifferentiability-like property is also characteristic for Archimedian ordered vector spaces which was also considered implicitely in (N4) and will be explicitely presented here.

The non-empty subset W in the real vector space Y is called a wedge if (i) W + W \subset W and (ii) tW \subset W whenever $t \in R_+ = [0, \infty)$. The wedge W induces a reflexive and transitive relation in Y if we put $u \leqslant v$ when $v - u \leqslant W$. The relation is translation invariant and invariant with respect to the multiplication with non-negative reals.

The wedge K in Y is called a cone if in plus (iii)

L \(\lambda(-K) = \{ \} \) 0 \}. The order relation in Y induced by K is then also antisymmetrical. The vector space Y ordered by a cone is called an ordered vector space and it will be denoted by (Y;K).

In some problems concerning order structures on vector spaces it is natural to consider only orderings induces by wedges (see e.g. the generalized Hahn-Banach theorem and its equivalences (SY), (D), (EN), the directional minorability and support operators to sublinear operators (F) and (B), etc.).

A set M in Y is called <u>lineally closed</u> if its intersection with an arbitrary straight line in Y determines a subset of this line which is closed in the usual topology of this line identified with the real axis. As an immediate consequence of this definition we observe that if M is lineally closed then

(YZ) . 3.e see) segment to belebro ordered by redges (see e.g. (SY)),

 $t_0u + (1-t_0)v \in M$ whenever $tu + (1-t)v \in M$ for every $t < t_0$ (or every $t > t_0$) in a neighbourhood of t_0 .

The ordered vector space (Y_1K) is called Archimedian if for any v in K and u in Y from the relation tv > u for every t > 0 it follows that $u \le 0$. It is immediate that we have the following equivalent forms of the property: v > tu for every t > 0 implies $u \le 0$, or , v > nu for every $n \in N$ implies $u \le 0$.

1. PROPOSITION. The ordered vector space (Y;K) is

Archimedian if and only if for each subspace Your of Y with

dim Yo = 2 the ordered vector space (Yo;KAYo) is Archimedian.

<u>Proof.</u> Suppose that (Y;K) is Archimedian and take x in $K \cap Y_0$ and y in Y_0 for which it holds $y \leqslant tx$ for every t > 0. This means that $tx - y \in K \cap Y_0 \subset K$ for every t > 0. Thus $y \leqslant 0$. But $y \in Y_0$ and $y \in -K$, hence $y \in Y_0 \cap (-K) = -(Y_0 \cap K)$, that is $y \leqslant 0$ which shows that $(Y_0; K \cap Y_0)$ is Archimedian.

Suppose now every subspace in Y of dimension 2 is Archimedian with respect to the induced order. Suppose that $y \le tx$ for some x in K and y in Y and for every t > 0. Consider the subspace $Y_0 = sp\{x,y\}$ of Y. Then we have $tx - y \in Y_0$ for every t > 0 and since $tx - y \in K$ for every t > 0, we have $tx - y \in K \cap Y_0$ for every t > 0. The space $(Y_0; K \cap Y_0)$ being Archimedian, it follows that $y \in -K \cap Y_0 - K$, that is, $y \le 0$, which shows that (Y; K) is Archimedian.

consistent of a second Q. E. D.

2. LMARA. If a set of the form {tx: t>0} with x>0 in an arbitrary ordered vector space has an infimum, this infimum must be 0.

Proof. Suppose that $y = \inf \{ tx : t > 0 \}$ for some x > 0. This shows that $y = \inf \{ tx : t > 0 \}$ for some x > 0. The proof of the set $\{ rx : r > 0 \}$ and hence 2y < y.

Q. E. D.

3. PROPOSITION. The ordered vector space (Y;K) is

Archimedian if and only if for every x in K there exists

inf {tx: t>03.

al (MrT) summa torget has

Proof. If (Y;K) is Archimedian and $y \le tx$ for some x in K, some y in Y and for every t > 0, then $y \le 0$. This shows in fact that $0 = \inf \{tx : t > 0\}$.

Suppose now that for each x in K the infimum inf $\{tx: t>0\}$ exists. From Lemma 2 it follows that this infimum must be 0. Now if we have $y\leqslant tx$ for some y in Y and every t>0, it follows that y is a minorant of the above considered set and hence it must hold $y\leqslant 0$. This shows that (Y;K) is Archimedian.

Q. E. D.

The result in Proposition 3 was used in (N3) and (N4) and was observed by the referee of (N3), by J.M. Borwein and independently by the author in (N2).

4. PROPOSITION. The ordered vector space (Y;K) is
Archimedian if and only if K is lineally closed.

Proof. Consider a straight line \triangle and suppose that (7;K) is Archimedian. Consider the set $\triangle \cap K$. If it is empty or if coincides with \triangle then the intersection is a closed set in the topology of \triangle . Suppose that $\triangle \cap K$ is not empty and does not coincide with \triangle . Let $x \in \triangle \cap K$. If x is the single element of the intersection, then it is a point in \triangle and hence is closed. If not, it is an interval in \triangle . Let y be an endpoint of this interval. We have to show that $y \in \triangle \cap K$. If y = x we are done. If not, from the convexity of $\triangle \cap K$ it follows that for every x in (0,1) one has x in (0,1) one has x in (0,1) and hence x in (0,1). But then x in (0,1) and hence x in (0,1) is Archimedian, it follows that x is lineally closed.

Suppose now that K is lineally closed and let x in K and y in Y have the property that $y \le tx$ for every t > 0. Consider the line $\{sx + (1-s)(-y) : s \in R\}$. Then the set

$$\left\{ \frac{t}{1+t} x + \frac{1}{1+t} (-y) : t > -1 \right\}$$

will be an open semi-line of it and we have by hypothesis

$$u(t) := \frac{t}{1+t} x + \frac{1}{1+t} (-y) \in K$$

for every t>0. Since K is lineally closed and the involved coefficients are continuous functions of t at t=0, it follows that $u(0) \in K$. This means that $-y \in K$, that is, $y \leqslant 0$. This shows that (Y;K) is Archimedian.

A D. Ha Men Calming

The assertion in Proposition 4 was implicitely used in the comments in (N3) and will be used in the remark after Lemma 1 in (N5).

5. PROPOSITION. The ordered vector space (Y;K) is Archimedian if and only if for every increasing sequence (x_n) which is bounded from above there exists inf $\{x_{n+1} - x_n : n \in \mathbb{N}\}$. If the above type infima exist, then they must be 0.

<u>Proof.</u> Suppose that (Y;K) is Archimedian and let (x_n) be an increasing sequence having as upper bound the element u.

We have obviously $x_{n+1} - x_n > 0$ for every n and consider an arbitrary lower bound v of the set $\{x_{n+1} - x_n : n \in \mathbb{N}\}$.

Then

$$x_2 - x_1 > v$$
 $x_3 - x_2 > v$
 $x_{n+1} - x_n > v$

And the second s

and adding these relations we get

$$u - x_1 \ge x_{n+1} - x_1 \ge nv$$
.

That is, we have $nv \le u - x_1$ with $u - x_1$ in K and for every n in N. Then since (Y;K) is Archimedian we get $v \le 0$.
This shows that

$$0 = \inf \{ x_{n+1} - x_n : n \in \mathbb{N} \}$$

To prove the converse implication suppose that x is in K. Consider the sequence $(-\frac{1}{n}x)$. It is increasing and bounded from above by 0. Hence the set

$$\left\{ (-\frac{1}{n+1} + \frac{1}{n}) \ x = \frac{1}{n(n+1)} \ x : \ n \in \mathbb{N} \right\}$$

has an infimum as far as the condition in the proposition holds. Since $\frac{1}{n(n+1)}$ decreases to 0 with n and since x is in K, it follows that the set $\{tx:t>0\}$ has the same infimum. Using now Proposition 3 it follows that the ordered vector space (Y;K) is Archimedian and the proof is complete.

Q. E. D.

Let X be a real vector space. The operator $P: X \rightarrow (Y;K)$ is called <u>sublinear</u> if it is positively homogeneous, that is, if P(tx) = tP(x) for every x in X and every $t \ge 0$, and if it is subadditive, that is, if $P(x_1 + x_2) \le P(x_1) + P(x_2)$ for any x_1 and x_2 in X.

The linear operator A: X > Y is called a bounding operator for P if there exists some y in Y such that

$Ax + y \leq P(x)$

for each x in X. The linear operator A: $X \rightarrow Y$ is called a supporting operator of P if

Ax < P(x)

for each x in X. Each supporting operator of P is obviously also a bounding operator for P. The converse implication characterizes the Archimedian ordered vector spaces. More precisely we have:

6. PROPOSITION. The ordered vector space (Y;K) is

Archimedian if and only if each bounding operator to each

sublinear operator with values in (Y;K) is also a supporting operator of this sublinear operator.

Proof. Suppose that (Y;K) is Archimedian and let P: X--> (Y;K) be a sublinear operator with a bounding operator 1. That is, we have for some y in Y the relation

$$Ax + y \leq P(x)$$

for every x in X . Let we fix x for the moment and put tx in place of x in the above relation with an arbitrary t >0. Then it holds

$$\frac{t}{1+t} (P(x) - Ax) + \frac{1}{1+t} (-y) : t > 0$$

142 + 2 (2)2 × 4 24 is a line segment in K . Since (Y;K) is Archimedian, it follows by Proposition 4 that K is lineally closed. Hence the limit point of the above line segment for t -> - must be in E . This means that

$$P(x) - Ax \in K.$$

Figure 1 and 1 an

Since x was arbitrarily chosen, the obtained relation shows that A is a supporting operator for P.

To verify the converse implication we shall show that if (Y;K) is not Archimedian, then it can be constructed a sublinear operator which has a bounding operator which is

not a supporting operator too.

Assume that (Y;K) is not Archimedian. Then there exists some a in K and some b in Y such that ta > b (or equivalently, $a \geqslant tb$) for each t > 0, but $b \not \leqslant 0$. Let us define the operator $P: R \rightarrow (Y;K)$ by putting P(t) = t(a-b)for t > 0 and P(t) = -ta if t < 0. Let we see that P is sublinear. It is obviously positively definite. To verify its subadditivity it suffices to show that

$$P(t_1 + t_2) \leq P(t_1) + P(t_2)$$

for $t_1 < 0$ and $t_2 > 0$. If $t_1 + t_2 \ge 0$ then $P(t_1 + t_2) =$ $= (t_1 + t_2)(a - b)$, $P(t_1) = -t_1a$, $P(t_2) = t_2(a - b)$ and hence it holds

$$P(t_1 + t_2) = t_1(a - b) + t_2(a - b) \le -t_1a + t_2(a - b) = P(t_1) + P(t_2)$$

If $t_1 + t_2 < 0$, then we have $P(t_1 + t_2) = -(t_1 + t_2)a$ and then

$$P(t_1 + t_2) = -t_1 a - t_2 a \le -t_1 a \le -t_1 a + t_2 (a - b) = P(t_1) + P(t_2).$$

Let the linear operator A: R -> Y be defined by At = ta. We shall show that

- Heldelberg - Equ Tork , 1975for each t in R . It is sufficient to verify the relation for t ≠ 0. We have for t>0 the relations

$$P(t) = t(a - b) = ta - tb > ta - a = At - a$$

since $-tb \ge -a$ for each t > 0 by hypothesis. If t < 0 then obviously

P(t) = -ta > ta > ta - a = At - a.

In conclusion, A is a bounding operator for P . Assume that it is also a supporting operator of P , i. e. , that addiness. It is obviously positively definite. to verify its

P(t) > At a work of apolitics of walling the

for every t in R. We have then for t = 1 the relations

$a - b = P(1) \ge A(1) = a$

wherefrom it follows that $b \leq 0$. The obtained contradiction completes the proof.

REFERENCES

- (B) LORJEIN, J. M., Subgradients of convex operators, Math. Operationsforschung u. Statistik, ser. Optimization, 15 (1984) , 179 - 191 .
- (D) DAY, M. M., Normed Linear Spaces, Springer-Verlag, Berlin - Heidelberg - New York , 1973.
- (EN) ELSTER, K. -H., NEHSE, R., Necessary and sufficient condition for the order-completeness of partially ordered vector spaces, Math. Nachrichten 81 (1978), 301 - 311.

- (F) FEL DMAN, M. M., On the sufficient conditions of the existence of supporting operators to sublinear mappings (Russian) Sibirsk. Mat. Z: , 16 (1975), 132 - 138 .
- (N1) NEMETH, A. B., Near to minimality in ordered vector spaces. Mathematica (Cluj), 23 (46) (1981), 239 - 245 .
- (N2) " , Monotone sequence property and the directional minorability of convex operators are equivalent, Proc. Nat. Conf. on Optimization, Cluj-Napoca , 1984.
- (N3) " -, On the subdifferentiability of convex operators, to appear in Journal of London Math. Soc.
- " , On some universal subdifferentiability properties of ordered vector spaces, "Babes-Bolyai" Univ. Faculty of Math. Research Seminars, Preprint nr. 1 , 1985 , 93 - 116 .
- (N5) , A necessary condition of subdifferentiability of convex operators, this volume .
- (SY) SILVERMAN, R. J., YEN, TI, The Hahn-Banach theorem and the least upper bound property, Trans. Amer. Math. Soc., 90

profession towns in will be the seattle down the tobactes on one miliat cate There are the comment that are a representations of a

promption of an (fig. cleared of betchtines were gody amilband on

exercic dosp of thico ware to ermitberide to constain eds

oversion consecution the considered ordered forced specialist and the second

I he maintenance of small-color tours out or reclavings at placeau property considered by Fel'dean (F), as this was shown in [83].