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DOMINATION OF CONES AND SUBDIFFERENTIABILITY OF CONVEX OPERATORS }

by A. B. Mémeth

Vector spaces with two cones or two different orderings were
already considered by M, A, Krasnosel'skii in his monograph ((K)).
They play an important role irn meny problems concerning positive
operators, nonlinear operators and vectorial optimizetion. In
these applicetions appeared the notion of dominetion of cones.

Dominetion is also important in some constructions due to
M. M. Fel*dmen ((F)) end recenly developed by J. M. Borwein ((B))
in order to exhibit examples of ordered vector spaces in which
Every convex operstor is subdifferentisble, but which lack the
chain completeness property. This technique is also used in the
present note for the investigetion of the subdifferentiability
of 8 convex operstor when the positive cone of the space dominates
8 cone with good properties. The obtained results furnish examples
where subdifferentisbility takes place in some restricted sense
and give indicetions on the properties of a positive cone for which
the subdifferentisbility of convex operstors falls.

In order to simplify the exposition we shall consider only
spaces with pointed (proper) positive cones. This context is rich

enough to include the most important situstions which csn appear,

)

This note is in final form and no version of it is eor will be,
submitted for publication elsewhere.
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Throughout this note the wector spsces will be considered
ever the reals.

The subset Q 4in the wector space Y 1ig called a cone if
(1) QeQcQ, (11) £0 Q. whenever t & R, 1= [0,+oc) , end
(111) Q@ N({-Q) = {0I . we shell suppose ‘that cones are nontrivial
(# 0 ) but we shall adeit FOi ss & subcone of s cone. By
putting

ugw if v-ueQgQ,

the econe Q@ induces » reflexive, transitive and sntisyametrical

erder reletion in Y related te the lineer srructure by the

preperties

vgv imnlies w+z € vz Yz eY and ugv impies rtusrv Vter,.

The obtoined object : the space Y with this order relatien 1s
called an erdered vecror space, while Q is termed ms its positive
£one. The eet M in Y hes's lower bound z if z<x, Vxem,
Similarly, w dis an infimum of ‘M if 1t 1s a lower bound of M
end z <w for any other lower bound =z « Infima are unigque,

An ordered vector space is ‘said to have the chain completeness
preperty if every decressing trensfinite sequence which hae & lower
bound admits an infimum. If ‘the ordsred VECLor space is endowed
with & lecally convex Heusdorff wecror space topology snd if every
decreasing transfinite sequence with ® lower bound is convergent,
then the respective space is called r_;gM. If the positive cone
of & reguler ordered vector space is closed, then it is chain
complete (see s.g. ((P)), Corollery 11, 3, 2) ,

An ordered vecror space is called larticially complete (condits-
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onally order complete) if all the subsets in the pPositive cone
sdmit infims,

If Y 48 en ordered vector space we shall adjoin an abstract
maximal element oo (infinity) to Y end shell d.'unntu the
resulting object by Y* u Yy Ufoel . Infinity setisfies t oo « oo
1f: t290.% 200 083 8" oo yeee Vyevr,

We -hllll next frequenly desl with rwo cones in Y which induce
two different orderings but always one of thes contains the other,
hence wa can consider the adjoint infinities to be identicel. When
necessary, we distinguish the order relation induced by @ by
writing < g - The simple notation Y° means that the positive
cone is indifferent,

An operstor F from the vector Space X to Y° is called

convex if
Flrx, + (1-t)x,) < tF(xy) o (1=1)F(x,)

whenever X1 %, lie i1n X and ¢t (= [0.1] e We shal)l use the
term Q-convex when this distinction is necessery, . A
Let L(X,Y) stand the set of linear operators from X to Y .

The subdifferential of F et X, X ie defined by
——————Clal

° Fx,) t= A € L(xX,y) ; FIx) = Fxg) € Ax - x) ,V x e x}.

The elements of B F(:a) are the so-called subgradients of F at
Xy, = We use slso the notstion 'O QF{"o) end the term (Q-subgradient
when necessary,

If P and @ are cones in. Y with P cQ , then P-'cnrwu
Gperarors sre obviously also Q-convex and P-subgradients are
Q-subgredients too,

We define the domain of an operator F : X=—»Y" by
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dom F :=ix € X : F(x)e Y] .,

The intrinsic core , icr M , of @ set M in X is the algebreic
interier of M relatively to the linesr manifold it spans,

The intrinsic cere of the domain of F : X-=»Y" will be denoted
icr F . The operastor F is said subdifferentisble af x € X 1t
] F(x ) A F + It 1s called simply subdifferentiable if O Fix) g p

for eny x 4imn der F .,

1;.0eminstien snd facisl structure

Let us ssy that a convex cone P dominates the cenvex cone Q

or Q 1is dominsted by P if
(P~jol)+0cvpPr.

(Remember our sgresment to consider only cenes different fros §03.)
In the impertant spplications of dominsting cones one has alse

a2 Q. .If P is the (nonempty) interior, the (nonempty) algebraic
core or the (menempty) quesi-interior (:(Sch)) of QU then we are

in this last situstien, tm{u we have
(PdQ) (PNfo})+QcPce.

It turme out that the conditien (PdQ) 1is intimerely releted
to the facial structure of the cone Q . Hence we shall give seme
notiens snd some besic fects relsted to this etructura.

The subcone R of Q is called ite face if it wverifies the
reletion R = (R-Q) /A Q . The cone Q . is iteelf » face. A face
of Q differsnt from Q 1is celled proper. The femily of fecee
ef Q forme @ complere lattice of sete if the lettice operations
are defined by L\Kd- Q R, @nd y‘k«- <9¢R> where
(M> denotes the intersection of ell the faces of ' Q centaining

1o¥

M . The face <u> (the minimel face centaining x or the face

engendered by x ) can be represented in the fora

(x)-{ve(::ap:-o.yg!ur].
The epen fsce of x € Q 1is the set defined by
"Px) = fyee:I a>o, P20 AxSyS uxt,

From this definition it fellows that if ye dP(’) then P (y) =
- dJ(:) » wherefrom it follows that twe different open faces are
disjoint. The only open face being a atnbllton is d‘-‘(ﬁ) = fol ,
Since obviously x¢ q—’[:) » Q is the union of disjoint open feces,

From the definition of (x> it follows that

(1) Pux). e {xy . Y xeQ

and the eguality mey hold if snd only if x = 0 ,

Open faces in finite dimensional cese sre the interiors of feces
with respect te the linesr manifoldes they span.

We shsll sey that the open face CP of Q bounds the open
tace ¥' of o ut Pre and Ve, since PaPix) ftor
every x e ¢) + by (1) one has that CPC(‘,q:])-nd hence CP bounds
iteelf whenever (‘-‘P>ﬁ Qi «

In the follewing essertion which charscterizes the cenes in the

relation (PdQ) , and in its proof, faces will mean throughout

feces with respsct to the cone [ 5

1. PROPOSITION, Let P and Q be conee in the vector space

PC Q . In order te have (PdQ) it ie sufficient, snd under the
additional hypothesis that Q is finite dimensional, it is also
—_——YPE_Tals that ——fIoNAl, it 18 also

necessary that the following conditions hold trus :
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(1) @\ P centains enly paints in proper fasces of Q .
(1) It x€ P snd (P (x)> 4 Q , then P 'conesins all

the open faces that bound {x) .

Proof. To show the sufficiency of the cenditions we have enly
to check thet 1f x€ P ~{0] and ycQ, then x + ycrP .

If €< P is in no proper fece of . Q , then if x + y , y& Q
would be in some proper face, this face weuld comtein (x + y> .,
But x € (x + y> wince x{u X + y . This contradiction, tegether
with, PC Q esnd the condition (i) show that x + y €P .

Let (x> be a proper face of Q . If x + y does not lie in
sny proper fece of Q it sust be an element of P by (1).

Let x + y be in s proper face of . Q . Then (P(xney)>=
e{(x + y># Q . From the obvious inclusions

P 1) < (xye e + YL Piren)>

1t follows thet (P (xey) bounds (D(x) and hence by (11) 1t helds
X + yelqbfnoy)c: P . This proves the sufficiency.

Let Q be finite dimensionsl ; we show the mecessity of (1)
end (41).

Assume thet (1) doee not hold. Then there exists x& Q \ P
which is in no proper fece of Q and hence it is in the interier
of . Q with respect to the unigue lecally convex Hsusderff topology
of Q=Q.Let yEPN{O}. Then z = x =ty Q 1f £>0 4s
small enough. Hence x = ty + 24 P with ty& P~ i0} end z €
&€Q , so we cannot have (PdQ) . ’

Awsume now thset (11i) doee not hnh'i. Let .vc P~{01 with the
property that P does not contain the open fece CP which bounds
4)”} . Let x € ‘iP ~P . Then since q:’ is convex and open in
qD - ‘P end gince y 1is in the boundary of ‘:P in this mpace,
we have z := x - ty€ P for t> 0 smsll enough. But = then
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we heve x = z + ty with ty€ P\f0} end z€ Pc g, end
hence (PdQ) canmot be ‘true.

' Qa E. D.
2. COROLLARY. If Q 41s finite dimensionsl snd it is e rojscting
It ds finite dimensional snd it is s p
gone from O of s strictly convex set M with O €M, then (PdQ)

holds fer every subcone p of Q such that F = § , whare the

closure is taken with respect teo the locally convex Heuedorff
yector spsce topology oef Q = Q . In particulsr, if dim P = 2 and
F 1s cone, then we have (PdF) .,

Ea.ilf?ﬂ'.':a’!:'.'sl.:E.&!'.‘!!L'HY.::3!.2!.&22!!5.292.'.322::

Let F : X=>Y° be » convex cperstor. The linearity set L(x,)
of F at X, dom F 4is @ meximal subset of dom F which containe

x, ©nd has the property thet

Ynen ,VY Xpo vee oX € L(x,) Y the coe E € R, T ot w1

(2)
it helds the relatien Fltyx) +.uae tx ) = tlF(:I)o...unF(xn).

A meximel set conteining X, @nd heving the property (2)
exists since sny family of sets with the property (2) totally
erdered by inclueion has a maxims)l element : it is simply the
union of the members of this feaily, Though L(l.) ie not wniquely
determined by X, « This can be seen considering Y " = R* with
the usual ordering and F RZ—>R" hm-ri.ng the graph the lower
half of @ circulsr cone's shell determined by 8 plane

a through the vertex of the cone. Then the projection

parallel te R
in Rz of an arbitrery generator of this surfsce is » lingerity
set of F end sll these linesrity sets heve s common point : the

projection of the vertex.



110

4. LEMMA. The linesrity sets of » Convex operstor sre convex.
—_— “SX opsrator sre convex.

Proof. (See alsoc the first part of the proef of Theorem 2.2
L{xﬂj

X, € dom F , Suppese Y1 ¢ Yo € L(xoj.

in ((B)).) Let F be a convex operastor and let be a

linearity set of F at
We have te prove that yi= ®y; + (1--)y2 ie in L(:ﬂ) &8 soon as

s €.Jo,1[ & F:r BRY Xyo see ox, L(x,) @end any far Tpe sen ot €
€ R, with Ec t, =1

one has
n n
Fityy + Eltix’) - F[t.-lyl + "'o“'"h'z - Eltixi) =
n
" teF(Y;) + £ (1-8)F(y,) » L taF(xy) 2> tF(sy) « (1-a)y,) »

n
tF(xg) = LoFly) » =

T, F(xg)
o i e

n
——
iml

(=

since Y1 Yo Xje eoe X, € L[xa} and to" l.fl-s). Eyrenns LF Y

are non-negative and add to one. In consequence
) n n
Flty + ¥ t,x t.F + t.F
o & i 1) 2 o (y) E} i (31} .

The converse of this relstion follows from the convexity of F ,
Hence we muat have equality in the sbove relation which shows, by
the maximality of L(r.o}. that vy GL{#OJ .

: Qs ES~Dy
5. PROPOSITION. Let us suppose that p Bnd Q are cones in

Y with the Property (PdQ) . If the P-gonvex operator F: XYY"

has the property that for X, € dcr F

dieat A of F st x, such thet °

there exists & Q-subgra-
_— . fts s —l0

(3) AX = Ax_ = F(x) e A Vxeu:n) .'

then A is also » P-subgradient of ¢ £ i A Py

(-]

for some A€ B oF(%s)

Ad4

In particuler, if F is Q-subdifferentisble and (3) holds

and each X, € ter F , then F is

P-subdifferentiable too.
Proof. Let us show first thet if A <'9 QFxo} hes the property

(3), then A€ 0 QF(x] . \Q‘ Xg L(xo) - To this end consider an
x € L(x,) end add the relation F(x,) = F(x) = Ax, + Ax = 0 to

Fy) = F(x,) = Ay + Ax, € Q ., ¥ y € X , which express the hypothesis

that A< ?oF{:OJ .
Suppose thet vy ¢ L(x,) « Then there exist Ko see oX € Lix,)

n
end ‘ﬂ. tl' 5w .t"i R+ with Eo t.i. - 1 such that
n n
(4) tF(y) + h}:i tF(xy) = F(z oy + ;Z“:l:l;i}e P~ io}

since F is P-convex by hypothesis. It follows in particular thet

n n t
= i
t.€ 10,1[ . and hence l-t, = 2 t, A0 .5Since 2 =1
im=] im] o
and since l.{:o) is convex, then for the slement of L(xoj defined

n t
by x = = T:%"‘i we have
i=] o

n n

1‘2:_'1 tF(xg) = (L=t ) i?'-_'1 ;—:o Fx,) = (1=t) F( :%—1 I;i‘—oxi)-(l-tof(x).
Using this relation (4) becomes
(5) tF(y) + (1=t )F(x) - F{;oy + (x-tnjx}e_rx{o] -
We have shown sbove that A & o gF(x) . hence _
Rty + (1=t,)x) = F(x) = A(tyy + (1=t )x) + Ax & Q &
‘By adding ‘this ralation to (5) we obtain

Bly) = F(x) - Ay + ax € (P~ §0}) + QP ,
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Add te l'ln. ralatien ehe varisnt

P(x) = F(x ) =hx + Ax =0
of (3) to comelude that

Fiv) - Fix ) Iﬂ"*“.‘ P

- Aceording te the srbitrerymess of y ¢ L(x,) -end te the rslstion
(3) we conclude that A€ BFFII.).
Qs €. D,

€. Remork. If Y ordered by Q s letticiully cemplete then
every ecavex eperster frem an arbitrary wvector epace to Y° hes
subgradients ot every peint of Lte intrinsic core which fulfil the
conditisn im Prepesition 5. This follows fres Theores 1.4 an ((B))s
Hence every P-convex sperater where P satisfies (PdQ) is
F-subdifferentiable by Prepesitien S, This is the content of Thesres
2.2 in ((B)). Origimeted in ((F)), this methed furnishes exemples

of spmces heving the so called subgradient property (erdered vecter
spaces in which every cenvex eperater is subdifferentiable) witheut

the chain completensss preperty.
7. PROPDSITION. Let the sones P wend Q 4in Y  sstisfy (RdQ),

If for the P /8X aperater F ; X—>Y" it helde 4‘3 QF(‘l"l AP
8 linesrity

for some vy € ger L(x.) and x € icr F with Lix,)
st of F centeiming X s then it follows that ° PF(lni kP .
In particuler, if F i Q-subdifferentisble end every linsarity

set of F has non-smpty_intrinsic core, then F is also

P-gubdi fferentiable ,

Preaf. Let . A be @ Q-subgradient at Yy € fer L-(:a). We shall

see firet that

(8) Alx = y) = F(x) = F(y) , V YEL(x,) .

A3

Bince y € der Lix,) and xe L(x,) there exists ¢ € lo,1[ euech

that y * t(n-y) e L(x,) « From the relstion Y = %y + tx-y)) «

* Xy - 2(x=y)) we deduce using the convexity of L(x ) that
S
F(Y) = %F(y + t(x=y)) + ¥F(y - t(x-y)) or ite equivalent ferm

(7) Fly + t(x-y)) = F(y) = =(F(y » ty=x)) = F(y)) .

From the condition A e BOF(V} one has A(t(x-y)) & Flyst(x=y)) =
- F(y) @end Alt(y=x)) < F(y=t(x~y)) = F(y) which together with
(7) dmply

(8) TA(X « y) = F(y + t(x~y)) - F(y) «

Since from the cenvexity of L(x,) 4t followe F(y + t(x-y)) =

= F((1-%)y + tx) =« (1-t)F(y) + tF(x) » (B) yields (6). :
Put x = X, 1in (6) and subtrect the obtained relation fres

() to obtein

(9) Ax = %) = R)'=F(x,) Y xei(a,) .

By the seame Way @8 it was done in the proof of Prepesitien 6, it
€sn be seen that A € ofFlY) .¥ ye L(x,) ®nd hence, in parti-
cular, A g auffno) » This, together with (9), implies that the
conditiens of Propesition 6 are fulfilled for A , end hence
sceording this prepesition . AE ? "F(no} .

Q. E. D,

B. COROLLARY, Let us consider the cones P and - Q poesessing

the property (PdQ) . Then gvery Q-subdifferentieble P-convex
—2_propert —_—tver ————_—arentiseble ——
operator from a finite dimensicnal spsce to Y 4s 8lso P-sub~
differentisble.

In perticuler, 4f P 4is finite dimensionsl and P < ¥ domi-
netes F (the clesure of P in the locally convex Mausdorff
hal bl ] ————-O8ure of —— Y tonvex Hausdorff

Yepolegy of P - P) ond if & is 8 cone, then every P-convex
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operstor from a fimite dimensionsl wector &psce to Y" is

P-subdi fferentisble.

Proef. The first part of the sssertion follows directly from

Preposition 7 since every convex set in s finite dimensional space

has nenempty ‘Aintrinsic core.
Y erdered

It P is finite dimensional and F is & cone, then
by P hass the chsin completsness property since P is regular.
Since P dominates F by hypothesis, it holds (PdF) . Thus

every P-coavex operster (which is sleo F-convex since P < F) 1s

F-subdifferentisble by the theorss of Fel®dman ((F)) , hence 1t

is alsc P-subdifferentisble by the first pesrt of eur proaf.
Q. E. D.
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