"BABEŞ—BOLYAI" UNIVERSITY FACULTY OF MATHEMATICS AND PHYSICS RESEARCH SEMINARS 133 S-44-39

al Amalysis beliliar at the Panulty of Mathematics and

SEMINAR ON MATHEMATICAL ANALYSIS
Preprint Nr. 7, 1988

CLUJ-NAPOCA ROMANIA

ARVERS TO THE TENTS OF THE RESIDENCE THE PROPERTY.

EDANIERS.

the Property are I. 1988, contains thenty papers written in

the last two rears by the combern of the Security Senters to instrumentes and instrumental Amelical Amelical Security of the Claimantes and Physics of the "Mabor-Dolyat" University is Claiming. Somether

tendents introlled out affects shafent strong out

canadianal employers and Operator theory : two papers.

agolfres places wit to beinglesemon was suspen seed to troil

Professor dr. Icen Engenn

l terrape went i neuropes bee playing it we

Porcious of a complex contains a one pagers.

Apprendication theory a two papers.

.meeting words a applicant income.

Jane 9, 1988

. requi and : multipaining Enlightmoiries

Preface	3
KASSAY G. and KOLUMBAN 1. : Implicit function theorems	
for monotone mappings	. 7
MOCANU C. : Nonlinear averaging operators of Cesaro type	25
MOCANU P.T., RIPEANU D. and SERB I.: On an inequality	
concerning the order of starlikeness of Libera transform	
of starlike functions of order	. 29
LUNGU N.: Necessary and sufficient conditions for con-	
tinuability of solutions of Liénard-type systems	
MURESAN M.: Sufficient conditions for existence and	
uniqueness of the periodic solution	
VORNICESCU N.: Almost periodic solutons for a system	
of two differential equations	45
TOADER GH. : An exponential mean	51
GAL S. Gh.: Approximation of real-valued functions by mo-	
notone sequences of polynomials	55
MUSTATA C.: M-ideals in metric spaces	65
BLAGA P.A. and MUNTEAN I.: Classifications of some sets	
of real functions on a vector space	75
ANISIU M.G.: Fixed points of retractible mappings with	
respect to the metric projection	87
GAL S.Gh. and MUNTEAN I.: Dini theorems for sequences	
which satisfy a generalized Alexandrov condition	97
MUNTEAN I.: Some extensions of Dini convergence theorem	103
EMETH A.B.: The Dini theorem and normal cones in Banach	
spaces	113

BALAZS M. and GOLDNER G.: Monotone enclosure for convex	
operators 125	
DIACONU A.: Sur quelques procédé itératifs de type	
Aitken-Steffensen 131	4
MITREA A.I.: On the convergence of some numerical differen-	
tiation formulas	
PXVXLOIU I.: Délimitation des erreurs dans la résolution	
numérique des systèmes d'équations	
POTRA T.: Regarding the convergence in the finite-	
element approximation	
POSTOLICA V.: Existence results for the efficient	
points in locally convex spaces ordered by supernormal cones	
and conically bounded sets	
Volume of the Alexander of the Control of the angelon	
two differential equations	
TO ADDRESS OH : An exponential mean	
Oil S- Whit Approximation of real-valued functions by mo-	
28 A company of the second seco	
. 20 assage statum of sinchi-E t.O ATITUM	
afon emmy to mentionallisement and Manualli box and ACLIE.	50
. It The transfer appear a page return a ne englished lays	
After agaington elditonates of retains bears Dis Ulaina	
TE analysis of the metric projection of the second	
CAL S.On. and MUNTEAN 1-1 Dink theorems for sequences	
The antiety a constraint lieuandres conditions	
MINTELL Lat Some extendions of Dini convergence theorem 103	
deemed of seems larged bas mysocal feet and t.S. & HTD	
Eff avancant and a service and	

- 14. MARKK, J.: On pseudo-compact spaces. Proc. Japan Acad. 35 (1959). 120-121.
- 15. NEMETH, A. B.: The Dini theorem and normal cones in Banach spaces. This Preprint, pp. 113-124, 1988.
- 16. RAHA, A. B. and SRIVASTAVA, S. M.: Spaces for which Dini's theorem holds. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 275-278.
- 17. RADULESCU, S. and RADULESCU, M.: Theorems and Problems in Mathematical Analysis (Romanian). Bucharest: Ed. Didactică și Pedagogică 1982.
- 18. ROYDEN, H. L.: Real Analysis. Second Edition. New York: Macmillan Comp. 1968.
 - 19. SEMADENI, 2.: Banach Spaces of Continuous Functions. I. Warszawa: Polish Sci. Publ. 1971.
 - 20. SIMIRAD, C.: Sur les solutions périodiques et presque-périodiques des équations différentielles du premier ordre. An. Științ. Univ. "Al. I. Cuza" Iași Sect. Ia Matem. 24 (1978), 51-56.
 - 21. STEEN, L. A. and SEEBACH, J. A. Jr.: Counterexamples in Topology. Second Edition. New York: Springer-Verlag 1978.
 - 22. ŽIKOV, V. V.: Dini's theorem for monotonic sequences of almost periodic, almost automorphic and recurrent functions and questions connected with it. (Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh. 22 (1967), 12-16.

University "Babes-Bolyai" Faculty of Mathematics and Physics Str. M. Kogalniceanu 1 3400 Cluj-Napoca, Romania

This paper is in final form and no its version will be submitted for publication elsewhere. and contergraphes an Stilnt, thit, "Al. I. that leet Sect

A STANDARD F. S.: On the so called opening (were apply agents), all

colon therasand mot all inclose

"BABES-BOLYAI" UNIVERSITY and wood a serveres and succe tank tub Faculty of Mathematics and Physics Research Seminars Seminar on Mathemotical Analysis Preprint Nr. 7, 1988, pp. 113-124

THE DINI THEOREM AND NORMAL CONES IN BANACH SPACES

of concernment linear furtherests as ascongregate piles or nice out.

THEOTER 1. Let M. Spend shi the Mann South S. Ther

weak convergence anniesests, wecomedenal charles an

Abstract. It is shown that the Dini property does not imply the normality of comes in Banach spaces. A necessary and sufficient condition in order to a cone in a Banach space be normal is to week convergence of series with terms in the cone imply their unconditional convergence. The criterion does not work in not complete normed spaces. And and all to send of the

1. Introduction and the main result. The Dini theorem on monotone convergence of continuous functions [3] has the following abstract form in normed spaces:

THEOREM. Let K be a normal cone in the normed space E and $x_i \in K$, $i = 1, 2, \dots$ If the series $\sum_{i=1}^{\infty} x_i$ is weakly convergent, then it is norm convergent.

In fact this formulation follows from a more general state-land ment in locally convex spaces (Theorem V.4.3 in [7]) which in turn is equivalent with a classical Dini type theorem (see) V.4.4 in [7]). of there exists a convenient consession and the

DEFINITION. The cone K in the normed space E is said to have the Dini property if from the weak convergence of a series with terms in K it follows its norm convergence.

Thus normal cones in normed spaces have the Dini property.

But what about the converse : does the Dini property imply the normality of the cone ? It is rather simple to see that the answer is negative even for closed cones in Benach spaces (see section 3).

The main result of our note is the following

THEOREM 1. Let K be a cone in the Ranach space E . Then the following assertions are equivalent :

- (1) K is normal;
- (ii) For each series $\sum_{i=1}^{\infty} x_i$ with $x_i \in K$, i = 1, 2, ... weak convergence implies its unconditional convergence.

The completeness of E in this theorem is essential. This will be shown in the final section of the note.

The idea of this note occurred when discussing on the paper [5] in this volume of I. Munteen, whom the author express his gratitude.

2. Terminology. The set K in the vector space E is called a cone if it is convex, it is invariant with respect to multiplication with positive reals and if $K \cap (-K) = \{0\}$. The cone K induces an order relation \leq in E considering $u \leq v$ when $v-u \in K$.

If E is a normed space then the cone $K \subset E$ is called normal if there exists a universal positive constant b such that whenever one holds $0 \le u \le v$, then it follows $\|u\| \le b\|v\|$. An equivalent definition (see [4] § 2) says : K is normal if if there exists a universal constant d > 0 such that from $u, v \in K$. $\|u\| = \|v\| = 1$, it follows $\|u * v\| \ge d$. We shall also use the following slight modification of this definition : K is normal if for any given positive numbers a_1 and a_2 .

 $a_1 < a_2$, there exists a positive constant c, such that from u, $v \in K$, $a_1 < \|u\| < a_2$, $a_1 < \|v\| < a_2$ it follows $\|u+v\| > c$. The <u>dual</u> K' of the cone K is the set in the space E' of continuous linear functionals on E given by

A classical lemma of M.G. Krein asserts that :

If K is a normal cone in the normed space E, then

E' = K"- K' . (See Lemma 1 in Chapt. V , § 3 of [7].)

Let $\ensuremath{\mathsf{E}}$ be a normed space and $(\ensuremath{\mathsf{x}}_n)$ be a sequence therein. The formal sum

$$\sum_{n=1}^{\infty} x_n$$

is called a series. The series (1) is said to be (norm) convergent, when $\lim_{n\to\infty}\sum_{i=1}^n x_i$ exists. It is called unconditionally convergent if every series $\lim_{i=1}^n x_i$ with G a permutation of indices, is convergent. The series (1) is called subseries convergent if every subseries $\lim_{i=1}^n x_i$ of its is convergent. The similar notions for the case when the convergence is in the sense of the G (E.E.) topology of E are : weakly convergent, weakly unconditionally convergent and weakly subseries convergent respectively.

3. The Dini property does not characterize the closed normal cones in Banach spaces. The assertion in this subtitle becomes likely if we remind that there exist infinite dimensional Banach spaces in which weak and norm convergence of a sequence to an element are equivalent. According to a result of Phillips the space ℓ^1 of absolute summable real sequences has this property

represented to the form f a g = h with g, hight . From the

(see Corollary II. 2.2 in [2]). In such a space every cone possesses obviously the Cini property. The only thing we have to do is to show that some such space contains closed not normal cones. This follows from the following general result:

LEMMA 1. In every infinite dimensional Banach space there exist closed not normal cones.

<u>Proof.</u> A classical result due to Banach asserts that every complete normed space contains a normed basic sequence, i.e., a sequence (x_n) with $\|x_n\| = 1$, $n = 1, 2, \ldots$ such that every element x in the linear span $[x_n]$ of the sequence has a unique representation in the form of a convergent series

(2)
$$x = \sum_{i=1}^{\infty} a_i x_i$$
, $a_i \in \mathbb{R}$, $i = 1, 2, ...$

(see e.g. [8] . Theorem 1.2, p. 49). Let we consider the vectors

$$u_n = x_{2n-1}$$
 and $v_n = -x_{2n-1} + \frac{1}{n+1} x_{2n}$, $n = 1, 2, ...$

From the linear independence of the terms in a basic sequence it follows that all the vectors \mathbf{u}_n and \mathbf{v}_n are linearly independent and hence

(where cone M denotes the set of all linear combinations with non-negative Scalatrof elements in M) is a cone. Let we see that $K = K_1$ (the closure of K_1) is a cone too. Assume the contrary: there exists an $x \in K$, $x \neq 0$, such that $-x \in K$. Consider the representation (2) of x. We have $a_1 \neq 0$ for some $a_1 \neq 0$ for some $a_2 \neq 0$. Then P projects $a_1 \neq 0$ for $a_2 \neq 0$. Then P projects $a_1 \neq 0$ for $a_2 \neq 0$. Then P projects $a_1 \neq 0$ for $a_2 \neq 0$.

arece [of scooling summable real securences has the oversery

Ko - cone [u1,v1....u1,v1]

and $P(x) \neq 0$. Denote by (x^n) and (y^n) respectively sequences in K_1 which converge to x, respectively to -x. Since $P(x^n) \in K_0$, and $P(y^n) \in K_0$ and since P is continuous and K_0 is closed, it follows that $P(x) \in K_0$ and $-P(x) \in K_0$, which is impossible since $P(x) \neq 0$.

Thus K is a closed cone. It is not normal since u_n , $v_n \in K$, $\|u_n\| = 1$, $1/2 \le \|v_n\| \le 1$ and $\|u_n + v_n\| = \frac{1}{n+1} \|x_{2n}\| = \frac{1}{n+1}$, $n = 1, 2, \dots$

4. A summation criterion for normal cones in Benach spaces.

THEOREM 2. Let K be a cone in the Banach space E . Then the following conditions are equivalent:

- (1) The cone K is normal ;
- (11) For the series

(5) $\sum_{i=1}^{\infty} x_i$ leaves and a year sended

with $x_1 \in K$, i = 1,2,..., every one of the following conditions implies each other:

- (a) The series (3) is weakly convergent ;
- (b) (3) is weakly unconditionally convergent;
- (c) (3) is weakly subseries convergent;
- (d) (3) is convergent ;
- (a) (3) is unconditionally convergent;
- (f) (3) is subseries convergent .

Proof. To verify that (i) implies (ii) it is sufficient
to see that if K is normal, then condition (a) implies (f).

Denote by x the weak sum of (3). Since K is normal, by Krein's lemma every continuous linear functional f can be

represented in the form f = g - h with $g, h \in K^*$. From the hypothesis on (3) we have $\sum_{i=1}^{\infty} g(x_i) = g(x)$ and $\sum_{i=1}^{\infty} h(x_i) = h(x)$. Since the last two series are numerical series with non-negative terms, we have obviously $\sum_{i=1}^{\infty} g(x_{(i)}) = g(x)$ and $\sum_{i=1}^{\infty} h(x_{(i)}) = h(x)$ for every permutation o of indices. Hence

$$f(x) = g(x) - h(x) = \lim_{n \to \infty} \sum_{i=1}^{n} g(x_{G(i)}) - \lim_{n \to \infty} \sum_{i=1}^{n} h(x_{G(i)}) =$$

$$= \prod_{i=1}^{n} \left(\sum_{i=1}^{n} (g(x_{\leq(i)}) - h(x_{\leq(i)}) \right) = \prod_{i=1}^{n} \sum_{i=1}^{n} f(x_{\leq(i)})$$

which shows that (3) is weakly unconditionally convergent. From the Dini theorem it follows that (3) is unconditionally convergent.

By the completeness of E , unconditionally convergence implies subseries convergence (see IV. § 1 p. 78 in [2]). Thus we get (f) fulfilled and this condition implies each other.

To show that (ii) implies (i) it suffices to see that if κ is not normal, then some condition (a) - (f) does not imply some other.

Assume that K is not normal. Then for any n there exist the elements \mathbf{x}_n , \mathbf{y}_n in K with the properties

$$\|x_n\| = \|y_n\| = 1$$
 and $\|x_n + y_n\| < \frac{1}{2^n}$.

Let we consider the elements in K defined by

$$z_{2k-1} = \frac{1}{2^n} x_n$$

$$z_{2k} = \frac{1}{2^n} y_n$$

$$z_{2k} = \frac{1}{2^n} y_n$$

$$z_{2k} = \frac{1}{2^n} x_n$$

Conore by x the whek was of (3), Since X is normal, by

Krein's least every continuous linear functional f can be

Let we show that $\sum_{i=1}^{\infty} z_i$ converges. Consider the sum of the form

$$\sum_{i=p}^{q} z_i , p \leq q ,$$

There exist the non-negative integers k, r, s, t such that

$$p = 2^{k+1} - 2^2 + r$$

$$q = 2^{k+6} - 2^2 + t$$

with $0 \leqslant r \leqslant 2^{k+1}$ and $0 \leqslant t \leqslant 2^{k+s}$. If s=1 then $t \geqslant r$ and

(4)
$$\sum_{i=p}^{q} z_i = \sum_{i=2^{k+1}-2^2+r}^{2^{k+1}-2^2+r} z_i .$$

If s = 2 and $t \ge 1$, then

while if t = 0 the second sum lacks. If $s \geqslant 3$ and $t \geqslant 1$, then

(6)
$$\frac{q}{1-p} z_1 = \frac{2^{k+2}-2^2}{\sum_{i=2^{k+1}-2}^{2+r} z_i} z_1 + \frac{2^{k+s}-3}{\sum_{j=k}^{2}} \frac{2^{j+3}-2^2}{\sum_{i=2^{j+2}-2}^{2+1} z_i} z_1 + \frac{2^{k+s}-2^2+t}{\sum_{i=2^{k+3}-2}^{2+s} z_i} z_1$$

while when t = 0 the last sum lacks.

Let we do first an estimation :

$$\| \frac{2^{j+3}-2^2}{\sum_{i=2^{j+2}-2^2+1}^{2^2}} z_i \| = \| \frac{1}{2^{j+1}} x_{j+1}^{i} + \frac{1}{2^{j+1}} y_{j+1}^{i} + \cdots + \frac{1}{2^{j+1}} x_{j+1}^{i} + \frac{1}{2^{j+1}} y_{j+1}^{i} \|$$

$$= \| x_{j+1}^{i} + y_{j+1}^{i} \| < \frac{1}{2^{j+1}} .$$

We have similarly the estimations :

$$\|\underbrace{\sum_{i=2^{k+1}-2^2+r}^{2^{k+2}-2^2}}_{i=2^{k+1}-2^2+r} \neq_i \| < \frac{1}{2^k} + \frac{1}{2^k}$$

$$\|\frac{2^{k+1}-2^{2}+t}{\sum_{i=2^{k+1}-2^{2}+t}} z_{i} \| < \frac{3}{2^{k}} .$$

Putting together these estimates, we have in case (4):

$$\|\sum_{i=0}^{q}z_i\|<\frac{3}{2^k}$$

in case (5) the estimate

$$\| \sum_{i=p}^{q} z_i \| \leq \| \sum_{i=2^{k+1}-2^2+r}^{2^{k+2}-2^2} z_i \| + \| \sum_{1=2^{k+2}-2^2+1}^{2^{k+2}-2^2+t} z_i \| \leq \frac{2}{2^k} + \frac{2}{2^{k+1}} = \frac{3}{2^k}$$

and finally, in case (6) :

$$+ \sqrt{\frac{2^{k+9}-2^2+1}{\sum_{j=k}^{2k+9}-2^2+1}} z_1 \parallel < \frac{2}{2^k} + \frac{k+3-3}{\sum_{j=k}^{2}} \frac{1}{2^{j+1}} + \frac{2}{2^{k+9-1}} < \frac{5}{2^k} .$$

The obtained estimations show that if $p\to\infty$ (and hence $k\to\infty$) the norm of the sum $\sum_{i=p}^{q}z_i$ tends to 0. That is, the series $\sum_{i=1}^{\infty}z_i$ converges.

By an appropriate rearrangement of terms of the series

it becomes a series of the form

$$\frac{\frac{1}{2} \times_{1} + \frac{1}{2} \times_{1} + \frac{1}{2} \times_{1} + \frac{1}{2} \times_{1} + \dots + \frac{1}{2^{n}} \times_{n} \times_{n} + \dots + \frac{1}{2^{n}} \times_{n} \times_{n}}{2^{n} \text{ terms}} + \frac{\frac{1}{2^{n}} \times_{n} + \dots + \frac{1}{2^{n}} \times_{n}}{2^{n} \text{ terms}} \times_{n} \times_$$

which is obviously nonconvergent since of the next accountings of

$$\left\|\frac{\frac{1}{2^n} \times_n + \dots + \frac{1}{2^n} \times_n}{\sum_{n \text{ terms}} \| = \| \times_n \| = 1 .$$

Thus we have constructed a series

with the terms z_i in K which is convergent but it is not unconditionally convergent. This shows that if K is not normal, then condition (d) does not imply condition (e) and the proof is complete.

Proof of Theorem 1. From the proof of Theorem 2 follows directly the proof of Theorem 1. Indeed, the implication (i) \Rightarrow \Rightarrow (ii) in Theorem 1 is a consequence of the implications (a) \Rightarrow \Rightarrow (b) \Rightarrow (e) in Theorem 2, while (ii) \Rightarrow (i) of Theorem 1 can be proved exactly in the way of the proof of implication (ii) \Rightarrow \Rightarrow (i) in Theorem 2, with the remark that convergence of a series implies its weak convergence.

Remark. From the above proofs we see that the Theorems 1 and 2 are in fact equivalent. We decided to include the most detailed formulation of Theorem 2 in order to exhibit also other aspects of the problem.

Pemark. Going back to the original formulation of Dini [3] of his theorem, it says that if we consider the series

(7) of materials
$$\sum_{n=1}^{\infty} u_n(t)$$
 and $\sum_{n=1}^{\infty} u_n(t)$.

where (i) $u_i : [a,b] \rightarrow R$ are continuous and non-negative functions defined on the interval [a,b] in R : (ii) (7)

converges pointwise to a function u(t); (iii) u; $[a,b] \rightarrow \mathbb{R}$ is continuous, then it follows that (7) converges uniformly to u. Theorem 2 asserts among others that this statement can be slightly strengthened; we can masert that every subseries $\sum_{n=1}^{\infty} u_n(t)$ of n=1 of (7) converges uniformly to some continuous function. In this classical context the obtained improvement is immediate and hence quite inessential. The interest of Theorem 2 is that it shows that this formulation is in some sense the best possible which we can expect; it is equivalent with the normality of the cone of the non-negative functions in the Sanach space C[a,b] of continuous functions defined on the interval [a,b].

5. Theorems 1 and 2 do not hold in noncomplete normed spaces.

To prove this we remind that the cone k in the normed space E is called regular if every monotone order bounded sequence in E is convergent.

LEMMA 2. If K is a regular cone in the normed space E.

then the conditions (a) - (f) in (ii) of Theorem 2 are
equivalent.

Proof. We have to show that (a) implies (f). Consider the series $\sum_{i=1}^{\infty} x_i$, $x_i \in K$, $i=1,2,\ldots$ having the weak limit x. Then by the proposition V.4.2 in [7] x is the supremum of the set $\left\{\sum_{i=1}^{n} x_i : n \in \mathbb{N}\right\}$. It follows then that for each subseries

of his theorem, it says that if we consider the series

functions defined on the inversel and an entire (7)

the sequence

$$\left(\sum_{i=1}^{n} x_{k_i}\right)_{n=1}^{\infty}$$

is monotonically increasing and bounded above by x . Since

K is regular this sequence converges, wherefrom the convergence of subseries. That is, we get (f) fulfilled and the lemma is proved.

We have given in [6] an example of a noncomplete normed space E with a closed regular and not normal cone K. (Our construction exploited an idea of Breckner and Orbán in [1].) For that space the condition (ii) of Theorem 2 holds by Lemma 2 while condition (i) is obviously false.

Remark. From Theorem 2 and Lemma 2 follows in particular that every regular cone in a Banach space is normal, which is a result due to Krasnosel'ukii (see [4], Theorem 1.6 p. 34).

REFERENCES

- [1] Breckner, W., Orben, G., Continuity Properties of Rationally s-convex Mappings with Values in an Ordered Topological Linear Space, Univ. "Babes-Bolyei" Faculty of Math., Cluj-Napoca, 1978
- [2] Day, M.M., Normed Linear Spaces, Springer-Verlag, Berlin, 1973.
- [3] Dini, U., Fondamenti per la teorica della funzioni di variabili reali, Ed. Nistri, Pisa, 1878.
- [4] Krasnosel'skii, A.M., Positive Solutions of Operatorial Equations (Russian), Fizmatgiz, Moskow, 1962.
- [5] Muntean, I., Same extensions of Dini convergence theorem, this volume, pp. 103-112, 1988.

- 6 Negeth, A.S., Simultaneous transformation of the order and of the topology by nonlinear operators, "Sabas-Colyai" Univ. Faculty of Math. Research Seminars, Preprint nr. 1, 1984, 135-158.
- [7] Schaefer, H.H., Topological Vector Spaces, Macmillan, London, 1966.
 - [8] Singer, I., Bases in Banach Spaces II , Ed. Acad. R.S.R.. București & Springer, Berlin, 1981.

A.C. Németh

Institutul de Matematică 3400 CLUD-NAPOCA Romania

This note is in final form and no version of it is or will be submitted for publication elsewhere.

thing the state has about he mil books y face against as was a

Linear Space, Enty. "Babes-Solvet" Faculty of Harm.

the sat its tepremettaffee sprager of year tracemented . if their vortabili realt, Ed. Mistri, Piss, 1878. [4] Kreenogel'sell, Adv. Peeling Columbus of Coerugation

a contract to fore extensions of the conservers theorem.

Equations (Autoion), Firmaters, Nockow, 1962,

is appearably increasing 1988, 105-112, 198, and the proposed the second state of the

"3.803-30EXXI" UNIVERSITY Faculty of Mathematics and Physics was to the war all of BA meter Seginar on Mathematical analysis Preprint Wr.7, 1988, pp. 125 - 130.

MONOTONE ENCLOSURE FOR CONVEX OPERATORS (**:- t::) (* **:- ' ::) [*:: t::] [*: t::] [*:

the hypothesis se chising a

M. BALÁZS, G. COLDNER - TELEFOR OF THE STATE OF THE STATE

1. Introduction. In order to solve approximately the equation of form

(1) where P : X -> Y, X and Y being locally convex ordered spaces (PLC spaces), J. Vanderghaft [9] adapted Newton's well known method [5], obtaining an increasing sequence which converges to a solution of (1). By using the divided difference [6], we construct a decreasing sequence, and in this manner, the approximated solution is enclosed in a "decreasing" sequence of intervals. For our considerations we use the definitions and properties of the PLC spaces given in [9] and improved in [3], and the properties of the divided differences given in [1].

. We note that for equations in Banach spaces there are several results concerning the monotone enclosure (see e.g.[2], [7], [8], etc.).

The next leams will be used in the proof of our result. 1.1. LEMMA. Let X and Y be PLC spaces, DSX 3 convex subset and the mapping P : D → Y with [x',x",x"';P]>0 for all x', x", x"' in D. Then:

- (i) the mapping P is (o)-convex;
- (ii) for all x0,x1,x2 in D with x1 &x2 we have the inequality $[x_0,x_1;P] \leq [x_0,x_2;P]$.