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THE DINI THECREM AMD NORMAL CONES IN ®ANACH SPACES

By A.B. Németh

Zbstract. It is shown that the Dini property does not imply
the normelity of conee in Benech speces. /A neceesary snd suffi-
cient condition 4in order to & cone in & Esnach spece be normal
is to week convergence of series with terme in the cone imply
their unconditionsl convergence, The criterion does not work in

not complete normed speces,

1. Introduction end the main recult, The Cini theorem on
[3] hss the

monotone convergence of continuous functions

following abetrsct form in normed specee ;

THEOREM. Let K be a normel cohe in the formed spece E

. o= -
and Xg€ Ky L = 1,2,04s o 1f the serdes 2_1 Xy Aie weakly
ptiind SEREEESNERS 4 LR LT

convercent, then it is norm convercent,

 —

in fact this formulation follows frem 8 more general state=
ment in locally convex spaces (Theorea V.4,3 in [71 ) wh@cﬁ
in turn is equivelent with a classicel Gini type theorem (see

Ved A4 dn 171 ).

DEFINITION. The cone K * in the normed space E 4s seid

tc have the Dini property if from the weak convergence of a

series with terme in K 1t follows its norm convergence,

Thus normel cones in normed speces have the Dind pProperty.
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Sut what about the converse : does the Cini property imoly the
normality of the cocne ? It is rather simple to see that the
answer is negative even for closad cones in BaonscH spaces (ses

saction 3),
The main result of our note is the fellowing

THEOREM 1. Let

K be 3 cone in the Panach space € , Then

the following assertions are equivalont

(1) K is normal i

o

fE_ % XD R, €K 01 e 1,2,..,
-

weak convergence implioe its unconditianal converoence,

(1) For each ceries

The completeness of E in fhis theoren is essential, This
will be shown in the final section of the note,

The idea of this note occurred when discussing on the
paper [5] in this volume of I. Munteon, whom the author exprees

his gratitude,

2. Terminology. The set K in the vector space E 4g
called a cone if 4¢ is convex, it ig invariant with respect to

multiplication with positive reals and if MN(-K) « {87 ,

The cone ¥ induces an ordat.rplation &y cdiy B considering
U sv when veue g ,
If " E 1e & normed space then the cone K c £ is czlled

nornal 1f thera exists a universal positive constant b asych

that whenever one holds 0 <u<gyv, then 1t follows jull g byvy,
An squivalent definition (see [4] § 2) says 1 K is naraal

if 1f there exists a universal constant d = 0 such that froa

U, V EK , Jui = fvih = 1 , it follows huswil = d . We chell

also use the following alight modificaticn of this definition

K 1is normal {f for any given positive numbers 8, and 2, .

119

#) < a, , there exists s positive constant ¢ « such that from

U, v € kK , 8 < Muii < 85 4+ 83 < Vil <e, it follows jusvi > ¢ .
The dual Kk* is the set in the space E°*

of continuous linear functionale on € given by

of the cone K

Co B s 1!&E'tf{x);o.‘v’8€&}.

A clessical lemma of M.G. Krein asserts that

1f K ia 3 nornal cone in the normed space E , then

E' = K™= K® . (See Lemma 1 in Chept. V , § 3 of [7].)

Let € be s normed epace and (x,) be s sequence therein.

The formal sum
& = »
o 221 *n
is called a geries. The series (1) is said to be (norm) convergent,
- ; ="

when lia 7 Xy exists, It ts called unconditienally convergent

neoco {ia]l oo
if every series El xd.(” with o

is convercent. The cseries (1) is celled subseries convergent 4if
L ol v -
& i
tel Ky

notions far the cose when the convergence is in the sense of

fhe S (E,E*) ctopology of E are ¢ weskly corvergent , weakly
unconditionclly 62nvergent and weakly subgeries convergent

respectively.

8 pernutation of indices,

every subseries of its is convergent. The similar

1. The Dini property does not characterize the closed normel

£ones in Sanach spaces. The assertion in thie subtitle becomes

likely if we reminc that there exist infinice dimensional Eansch
spaces 1in which weok and norm convergence of »a sequence to an
element sre squivolent. According to 8 result of FPhillips the

space Ll of absolute summable regl secuences has this property
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possesses obvicusly the Cini proparty. The only thing we have

to do.1s to show that Qome such space ‘contains closed not normal

in;v IT. 2.2 in [Z] ). In such a space every cone

cones. This follows from the following general result i

LEFKMA 1. In every infinite dimensional & ach space there

axist closed not normal cones,
= 2° Cl08ec Ot normal cones

Proof. A classical result due to Banach asserts that every
complete normed space containe a norned basic sequence, l.e., @
sequenge (xnj with uxnﬂ - 1 ,n=1,2,.s. such that every
element x in the linear gpan [x;] of the sequence has @ unique

represantation in the form of a convergent series

=2
(2) %X = ".Z-l ai xl [] atéa . 1-1.28'.. L

(see e,g. [B] « Theorem 1.2, p, 49), Let we considar the vectors

u, = X2na1 and Voo “Xon.1 * F%T Xpn o N =, 1,2,... .

From the linear independence of the terms in a basie sequencs
it follows that all the vectors u, and v, ore linearly

independent and hence
Ky = cone ful,vl.uz,vz....l

(where cone M r~notes the set of all linear combinations with
non=negative Scalacsof elements in M) is a cone. Let we see
that K = Ei (the closure of Ky ) is a cohe too. Assume the
contrary : there exists an x e K s X £ 0 4 such that -x ek ,
Consider the representation (2) of x . we have niaﬂ g for

some io « Tenote by P the projection onto the space

{29 g | o
S A2 e 217 . Then P projects Ky onto the cone

‘ .

HUEr

Koy = cone [ul‘vl""'"io'vt 1 -
o

and P(x) # 0 . Denote by (x.) and (y") respactively s-quencalink;

which cenverge to x , respectively to ex , Since P{x"} € Ko .

snd P(y") ¢ K, and since P 1e continuous and Ko 18 closed,

it Tollows that P(x) & Ko, =nd -P(x) e K, « which is impossible

sincea PR(x) £ o0 .,

Thus K 1s & closed cone. It is not normel since Uie ¥V, €K,

lugh m X s M2 <Hv i 1 end ™ L L 7SN [ Sy

R = Inzgn.a .

4. A sumnation criterior. for normal cones_in Benech speaces,
THEQREH 2. Let Kk be a cone in the Banach space E , Then

the fgllon!ﬂg conditions ere esquivalent ;

(L) Tha cone K s normsl i

(i) For the series

(3) 2
i=]

with X, €E K, 1'- 1.203:¢4 avery ﬁne of the following concitions
inplies esach other':

(8) The series (3) is weakl; convsrgent ;

(B) (3) is wegkly ynconditionally convercent ;

{e) (3} 3= weakly subseries convergent ;
() {(3) is convergent j

(e} (3) i= unconditionally convercent ;

(f) (3) iz subeseries convergent ,

Proof. To verify that (1) implies (11) 1t is sufficient

1

to see that i1f K s normal, then conditien (=) implies (f),
Denote by x the weak sum of (3)« Since K 4s normal, by

Krein®s lemma every continuous linear functional f can be
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represented in the form f = g = h with ge W €K' ., From the
e o
hypothesis on (3) we have f:‘ 9(xy) = g(x) and ZZ h(x,) =

h(x). 51nel the Il-t two series are numerical serias uith none

negative terms, we have obviously

E? “‘ﬁsit;) = h(x) for every permutation 6 of indices, Hence
1 .

‘—-1 g('ﬁ(’.)) = g(x) and

d n n
MR T RO = e 2 atngay) - e E o) -

n n
" el (Z (0xgy)) = hixggy)) = odga &5 ey

which shiows that (3) e uaatly unconditionally convergent. From
the Dini theorem 1t follen- that (3) is unconditionally convergent,
By the coapleteness of E e Unconditionally convergeénce
implies subseries convergence (see IV, §'il p, 78 4n [2] ). Thus
e get (f) fulfilled and this condition implies each other,
To show that (i1) implies (1) it suffices to see that if kK
is not noermal, then some condition (a) = (f) does not imply
some other, _
Assume that K 4s not fnormal, Then for any n thers exist

the elements X . Yo in K with the properties
Wxall = lly ) =1 and ) x syl < L
n. n n’n 2n

Let we consider the elements in K defined by

1
Eokal ;ﬁ Xn
2" 2 <k g 2",
1
o .- '.e_nyrl

N = Ilzgooo .

. o .

Let we show that 2 Z, converges. Consider the sum of
i=1 " 3

ths form

Zl Z, piLg
i-p

There exist the npon=negetive integers k, r, s, t such thaet

p = kel o2, r 5

2&45_22 et

SR | 1

a =

with 0 < r < 2k+l and Oit<2k+s.rf & = 1 then t >r ang

q 2k+1-22+t 00 ol
(4) e 21 = zi . '

i 1 e2%4 102,

If s =2 end ¢t > 1 , then

- 2k+2_22 k+2 a2 t "
(5) = =S T 2 T ¥ 2 Ly, 0
A 1e28*1_ 02, 125252

while 4f t = 0 the second sum lacke. If s> 3 pand ¢ = 1, then

q ,k..z 22 k’z“"’ 2j+3-22 zk-os_zz‘t
(5) 2= zl = z, 4 =1 21 + > L z‘
t=p E 102, I=k  1a23*2 52, 12K%€ 52 )

while when t = 0 the last sum lacks.
Let we do first an estimetion 1
+3 2
2%M‘:2‘ z, |l = Bisng. Py &) PR e TR Yoy !
J k—;——z gl i23¢ j+l 23¢I Jedy -2 234! =1 230! j#{J

1a2342.22,4 ¢ e
23°2  cerms

: 1
"Rpat Hal < Sy

e have similarly the estimations ;

2k¢-2_.,2 i
& : ke
f e gl <%+ X
1‘2 * -21.". = T
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4 2k“-32‘t i} < 1 X 1
B 3 Siesel Skes-1 *
fuck®8 22,y
ke 3
G z, | < .
“1-5-‘ -22+f 3 -;E

Putting together these estimates, we have in case (4) i

g < 2§74
i=p B ;E

in case (5) the estimate

k2 2 a2 2,
q 2 -2 4 =2t {-2 2 .
" 2 Zl “ é PI E 31 ?I * I 2 Z’_H ;E * ZE-TI
=P 1a2%*1.22,, 1225222, ,

and finally, in caee (6) 1

k+2_2 T 234302

N2 mg) ) S-SR ey StSag. e eyl s
1=p g S22 | i, e e

k+s_.2

i 2 G o ! 2 5

422

w3 A T J*1 ' Tlkes=1 oK

=TT 3N 2 jok 2 %

The obtained estimaticns show that 1f p — == (and hence

k — o<) the norm of thes sum E; z, tends to O , That is,
o i=p v
>z, converges,

i=1

By en appropriate reerrangement of terms of the seriess

the series

; 1
. ——
2" rers
1 LN
* 2_|'| vn tanut ;‘H yn t s

eSS

2" terms

144

which is obviously nonconvergent since
)

1 1 £ :
ﬁ;: 7'\”_ LA TS - xn Nisms B Rn R | »
\ o z i
2!1 tarme

Thue we have constructed & seriss
e
12_-1 1
with cthe terme Zy0 dn K which i convergent but it 1s neot
unconditionzlly convergent, This showe that if Kk is not normel,
then concition (d) cdoes not imply conditien (e) and the

proof is complete,

Froof of Theorem 1. From the preof of Theorer 2 follows

directly the proof of Theorem 1. Indeed, the inmplication {i)=
=>(4i) 4n Theorem 1 is & consequence of the implications (a)=
=(b)==(e) 4in Theorcn 2, while (11)==(1) of Theoren 1l cen
Le nroved exactly in the wey of the proof of implication (11)—
=>(1) din Theorem 2, with the remerk thet convergence of s
series impliee ite weok convergence,

Lenerk. From the ebove proofs we see thet the Theorems 1
and 2 arz in fect equivalent, We decided to include the meost
deteiled formuleation of Theorem 2 in order to exhibit alse

other sepecte of the rreblem,

fennrk. Coing back to the originsl formulstion of Ding 3]

of his thoorem, it saye that if we consider the series
: xE i
(7) 5:1 u,(t)
where (i) Ug 1 (6] == R are continuvoue and non=negetive

functions defined on the intervel [s,b] in R ; (11) (7)
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converges pointwiss to 3 function wu(t) ; (1i4) u ; .5l —r
is continuous, then it follows that (7) converges unifoaraly to wu

Theoren 2 asserts awong others that this statement can be slightly
o

strangthened 3 we can assert that evary subseries ;:1 ukqi‘} of
(7) converges uniforaly to some continuous funetion, In this
classical context the obtained improvement is immediate snc hence
quite inessential. The interest of Theorem 2 is that it showe
that this formulation is in 8sqome sense the best possible which

We can expect i it ts equivalent with the nermzlity of the cene
of the non-negative functions in the Sanach space G [a,b] of

continuous functions dafined on the intervel f2,b]

5, Theorens 1 and # do not hold in noncomolete narmac spaces,’

To prove this we renind that the cons & in .che norwed space ¢
1s called reqular if every monotone orcer bounded secuernce in E

is convergent,

LEMMA 2, If X 1is 8 regular cone in the narmed space .E,

then the conditions (a) = (f) in (i1) of Theorer 2 ore
fequivalent,

Proof. We have to show that, (a) dmplies (f). Consider the

o
series Ll Barey, R EFICENEIRIY 2 e having the wesk limst x ,
i=

Then by the proposition V.,4,2 1in £7]1 . x 1s the eupremun of

n
the set | Za Xy thENI, It follows then that for eaeh
i=

subseries o=
A
i=] k!.
the sequence
n =
(* & "5.%)
f=1 kl n=1

is monotonically increasing and bounded above by x . Since

.
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K 1s regular this sequence convergee, wherefrom the convergence

of subseries. That 1s, we get (f) fulfilled snd the lemma is

proved,

e have given in [p] en example of a noncomplete normed
space £ with & closed regular and not nermal cone K . (Our
construction exploited sn ides of Breckner and Orbén in Lfl.)
For that‘apace the condition (ii) of Theorem 2 holds by

Leama 2 while condition (i) is obviously faelse,

‘Penark. From Theorem 2 end Lemsis 2 follows in particulsr
that avery regular cone in a Banach space is normel, which is 8

result due to Krasnosel®ukil (see [4] , Theorem 1.6 p, 34).

- ' *
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wUROTONZ LHCLOSURE FOR GONVEX OPERATORS

K. BAL{ZS, G. GOLDEER

1. laniroduction. In order to solve approximately the

equstion of form v
(1) F(x) = 0,
where F : X —»y, X 3nd Y being' locally convex ordered spaces
(FIC spaces), J. Vanderghaft (9] sdapted Newton's well known method
[5]. obtaining an dnereasing seguence which converges %o & solution
of (1). 3y using the divided difference LG], we construct a
decreasing sequence, and in this bsnner, the approximated solution
is snclosed ia s "decrsasing” sequencs of intervals. For our conside-
rations we use the definitions and properties of the PILC spaces
given in [9] and improved in [3], and the propertis of the divided
differences given in [1].
We note that for eguations in Bansch spaces there are
several results concerning the monotone enclosurs (see e.g.[2],
(7], [e], etec.).
The next lemms will be used in the proof of our result,
1ol LNA. Lot X god Y be PEC spsces, DCx 2
SORUSZ subset ond the mepping F i DY with [x',x",x"';k)30
for g1l x', xv, xw' in D. Then: ;
(1) the mapping P nvexs
(1)  for a11 TaXysXy i D with *1&%, we have the
equali ty ['xo.zl;r]q.[xo,:z;f'].



