FACULTY OF MATHEMATICS AND PHYSICS

RESEARCH SEMINARS

133/S-44-45

SEMINAR ON

FUNCTIONAL ANALYSIS AND NUMERICAL METHODS

Preprint Nr.1 , 1989

CLUJ-NAPOCA ROMANIA TITESAVINU "TAYNES - SERIAS"

BOULDE OF HETERORIES AND PHYSICS

TO THE SERIES - SERIAS - SERI

Col. 133/5-44-45

Club-Suppos, 1989

Plan Khali an

CONTENTS

V 1. Fira - Cristiana Anisiu , Fixed point theorems for
retractible mappings 1
2. D. Bradeanu, P. Bradeanu, On the application of a varia-
tional method to the study of small oscil-
lations of a fluid in moving tanks 11
3. Adrian Diaconu V Sur quelques propriétés des opera-
teurs itératifs 23
4. Adrian Diaconu , Sur la convergence des certaines
méthodes itératives utilisées pour la
résolution des équations opérationnelles
non-linéaires
5. C. I. Gheorghiu , On a linear singularly perturbed
two-point boundary value problem 67
6. Costică Mustăța , An application of a theorem of
Mc Shane 75
7. A. B. Németh , Ordered Fréchet spaces with universal
subdifferentiability properties 85
8. Ion Păvăloiu, Sur l'approximation des rasines des
équations dans un espace metrique 95.
9. Ion Păvăloiu/, Sur une méthode de type Steffensen
utilisée pour la résolution des équa-
tions opérationnelles non-linéaires105
10. Ion Serb V Banach spaces containing finite dimensional
strongly proximinal subspaces
Let A be a beginned manager and a second
the tip to the territory of the country of the transfer of the territory o
to the infine of the modern of much thus the cut is not -e inversed

REFERENCES

- 1 ANDRICA, D., MUSTATA, C., An abstract Korovkin type theorem and applications, "Studia Univ. Babes-Bolyai", (te appear).
- 2 ARONSSON, G., Extension of functions satisfying Lipschitz conditions, Arkiv för Matematik 6 (1967) Nr.28, 551 - 561.
- BROWN, B.M., ELLIOT, D., PAGET, D.F., <u>Lipschitz Constants for the Bernstein Polynomials of a Lipschitz Continuous Functions</u>,
 J. A. T. 49 (1982) 2 , 196 199 .
- 4 CZIPSER, J., GEHER, L., Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar 6 (1955), 213 - 220.
- 5 IANCU, C., MUSTATA, C., Error Estimation in the Approximation of

 Functions by Interpolation Gubic Spline, Mathematica

 29 (52) 1 , (1987), 33 39 .
- 6 Mc SHANE, E.J., Extension of range of functions, Bull. Amer.
 Math. Soc. 40 (1934), 837 842.
- 7 MUSTATA, C., On the extension problem with prescribed norm,
 Seminar of Functional Analysis and Numerical Methods,
 Preprint Nr.4 (1981), 93 99.
- 8 POPOVICIU, T., <u>Sur quelques prepriétés des fonctions d'une ou de deux variables réelles</u>, <u>Mathematica</u> (Cluj) VIII (1953), 1 85.
- 9 POPOVICIU, T., Sur l'approximation des fonctions convexes d'ordre superieurs , Mathematica (Cluj) 10 (1934), 49 54 .

Institutul de Calcul Oficiul Postal 1 C.P. 68 3400 Cluj-Napoca, Remania

This paper is in final form and no version of it is or will be submitted for publication elsewhere.

"BABES_BOLYAI" UNIVERSITY
Faculty of Mathematics and Physics
Research Seminars
Seminar on Functional Analysis
and Numerical Methods
Preprint Nr. 1, 1989; pp. 85 - 94.

ORDERED FRECHET SPACES WITH UNIVERSAL SUBDIFFERENTIABILITY PROPERTIES

by A. B. Németh

In this note it is shown that if a separable Fréchet space ordered by an arbitrary closed normal cone possesses the subgradient property, then it possesses also the fully subdifferentiability property. If every closed lattice ordered subspace of a Fréchet space with continuous lattice operations possesses the subgradient property then it possesses also the fully subdifferentiability property.

The vector valued convex analysis is primarily concerned with the study of subdifferentials for convex operators taking values in ordered vector spaces. When the range spaces are order complete vector lattices results of this kind go back to Valadier ((V)), Raffin ((R)), Levin ((L)) and Rubinov ((Ru)). But order completeness is a rather restrictive requirement. In the first results due to Zowe (((Z1)) and ((Z2))) where it was avoided, some structure conditions were imposed on the domain space. This line was continued and extended by Borwein in ((B1)). With respect to the existence of subgradients Fel'dman ((F)) proved that nice subdifferentiability properties can be obtained relaxing considerably the conditions

YCLASSVING "TANDE-BOLL"

Paculty of Mitheurities and Physics on the range space and with no assumption on the domain space. It turned out that Fel'dman's condition is also necessary for the above cited nice subdifferentiability property ((N2)). If no special conditions are imposed on subdifferentials except their non-emptity, then the conditions on the range space can be further relaxed. But the examples of ordered vector spaces having this weak subdifferentiability property, but not the stronger one considered above, are rather pathologic (see ((F)) and ((B2))). There exist important classes of ordered locally convex spaces for which the two properties coincide. A first result of this kind was obtained for Banach lattices in ((N4)). In the present note other results are obtained for separable Frechet spaces ordered by closed normal cones and also for Préchet spaces for which all closed lattice ordered subspaces possess special structural properties.

Let Y be a vector space over the reals and let K be a cone in Y, i.e., a nonempty set having the properties

(i) K + K C K; (ii) tK C K for each non-negative real number t; and (iii) K \cap (-K) = 0 . If we put u < v whenever v-u is in K, then < is a partial ordering in Y induced by K . Then Y is called an ordered vector space with the positive cone K .

The order interval [u,v] in the ordered vector space Y is by definition the set $\{z\in Y: u\leqslant z\leqslant v\}$. The space Y is said to have property (b) if for every pair of sequences (v_m) and (u_n) with $v_m\leqslant v_{m+1}\leqslant u_{n+1}\leqslant u_n$ for any $m,n\leqslant N$, one has

 $\mathbf{v}_{\mathbf{m}}, \mathbf{v}_{\mathbf{n}}$ $\neq \mathbf{p}$

The ordered vector space I is said to admit an isotone $\frac{(\text{real}) \text{ functional}}{(\text{real}) \text{ functional}} \text{ if there exists } f: I R \text{ with } f(u) < f(v)$ whenever $u \leqslant v$ and $u \not\in v$.

If Y is an ordered vector space endowed with a locally convex topology, then Y (and its positive cone) K) is called normal (or locally full) if there is a base of neighbourhoods V of O with

$V = (V - K) \cap (K - V)$.

The ordered locally convex space Y (and its positive cone
K) is regular if each decreasing sequence in K is convergent.

An ordered vector space Y is said <u>lattice ordered</u> or a <u>vector lattice</u> if every pair of its elements x, y possesses a supremum (or equivalently, an infimum) denoted by $x \lor y$ (and respectively, by $x \land y$). The operations $(x,y) \mapsto x \lor y$ and $(x,y) \mapsto x \land y$ are called <u>lattice operations</u>.

The vector lattice Y is <u>order complete</u> if every upper bounded (lower bounded) set possesses a supremum (an infimum) in Y.

We shall denote by Y° the ordered vector space completed with an abstract element ∞ (infinity) for which, as usual, we define the operations:

 $\infty + \infty = \infty$, $0 \infty = 0$, $y + \infty = \infty$ for each y.

We shall suppose that y < 00 for every y in Y .

The operator F defined on the vector space X with values in Y is called convex if for any u1, u2 in X and every t in [0,1] the following relation holds

 $F(tu_1 + (1-t)u_2) \le tF(u_1) + (1-t)F(u_2)$.

The domain of F is the subset of the elements x in X having the property that F(x) is in Y. We denote this set by dom F. By the convexity of F it follows that dom F is a convex set.

If x is in core dom F, then we say that F admits a directional minorant at x in the direction h, if

$$\nabla F(x;h) = \inf_{t>0} t^{-1}(F(x+th) - F(x))$$

exists. The space Y° is said to have the <u>directional minora-bility property</u> if every convex operator F with values in Y° has directional minorants at every point in core dom F and in every direction.

If Y is an ordered locally convex space, then if the limit

$$F^{*}(x;h) = \lim_{t \to 0} t^{-1}(F(x+th) - F(x))$$

exists, where $x \in \text{core dom } F$, then it is called the <u>directional</u> derivative of F at x in the direction h. If the positive cone of Y is closed, then from the convexity of F is follows that a directional derivative is also a directional minorant.

The ordered locally convex space Y is said to have the directional differentiability property if for every convex operator F and every x in core dom F there exist directional derivatives in every direction.

The linear operator A: X > Y is called a <u>subgradient</u>
of F: X -> Y° at x in dom F if

 $Ah \leq F(x+h) - F(x)$, $\forall h \in X$.

(m) M(m-1) = (m) My > (m-1) + mt/M(m)

The set of subgradients of F at x is called the subdifferential of F at x and is denoted by $\partial F(x)$.

The ordered vector space I' is said to have the <u>subgradient</u> property if for every convex operator F and every x in core dom F it holds $\partial F(x) \neq \emptyset$.

The ordered vector space Y is said to have the <u>fully</u> subdifferentiability property if it has the subgradient property and the directional minorability property and if it holds the relat on

(1) $\nabla F(x;h) = \inf \{ h : A \in \partial F(x) \}, \forall h$

for every convex operator F and every x in core dom F.

The ordered locally convex space T possesses the <u>fully</u>

<u>subdifferentiability property</u> if it has the subgradient property

and the directional differentiability one and if (1) takes

place for the directional derivative $F^*(x;h)$ instead of the directional minorant $\nabla F(x;h)$, for every convex operator F and every x in core dom F.

In ((V)), ((L)), ((Z1)), ((F)), ((N1)), ((B1)), ((B2)) various conditions were given to assure various types of subdifferentiability of convex operators. Since ((F)) it seemed that the principal role in the existence of subgradients belongs to the range space Y°. This becomes a certitude by proving in ((N2)) that the necessary and sufficient condition for an ordered vector space (respectively, for an ordered locally convex space) which admits an isotone functional to have the fully subdifferentiability property is that every decreasing lower bounded sequence has an infimum (respectively, to be regular).

The fully subdifferentiability property seems to be a rather strong one. In ((F)) and ((B2)) were considered ordered vector spaces with the subgradient property and without the fully subdifferentiability property. But these spaces are rather particular (for instance, they are not Archimedian ordered vector spaces). The problem of a complete characterization of spaces of this kind is still open.

In the recent note ((N4)) it was shown that for lattice ordered Banach spaces with closed normal positive comes which admit isotone functionals, subgradient property and fully subdifferentiability property coincide.

Starting with the paper ((N3)) which was the basic reference for ((N4)) too, we shall conclude results for Fréchet spaces. The basic tool in obtaining them is the characterization of the Fréchet spaces in which every closed normal cone is regular due to McArthur ((N)), and some related questions in Banach lattice theory due to Mayer-Nieberg ((MN)) and Schaefer ((Sch)) which were joined in ((N5)).

THEOREM 1. For a separable Frachet space I the following conditions are equivalent:

- (i) Every closed subspace of Y ordered by a closed normal come possesses the fully subdifferentiability property.
- (ii) Every closed subspace of Y ordered by a closed normal cone possesses the subgradient property.
- (iii) Every convex operator defined on R with values in an arbitrary closed subspace of Y ordered by a closed normal cone possesses subgradients in every core point of its domain.
- with co, the Banach space of the real sequences converging to 0.

<u>Proof.</u> The implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ follow by the definitions.

(iii) ⇒ (iv) . Assume that (iv) does not hold. Then Y contains a subspace isomorphic to the Banach space c of the convergent real sequences, since c and c are isomorphic. Let us consider c ordered by the cone of sequences with non-negative terms. This cone is closed and normal. We have shown in ((N3)) that c does not have property (b) which, by Proposition 3 in the same paper is necessary in order to every convex operator from R to c have subgradients in every point in R. Thus we conclude that (iii) does not hold for Y.

(iv)⇒(i). From Theorem 1 in ((M)) every closed normal cone in Y is regular. Since Y is separable, by Theorem 2.1 in ((XR)) it admits an isotone real functional whenever it is ordered by a closed cone. The similar statement holds for each closed subspace of Y. Then by Theorem 3 in ((N2)) every such subspace ordered by a closed normal cone possesses the fully subdifferentiability property, since its positive cone is regular and it admits an isotone functional.

THEOREM 2. Let Y be a Frichet space. Then the following conditions are equivalent:

- (1) Every closed lattice ordered subspace of Y with continuous lattice operations possesses the fully subdifferentiability proparty.
- (ii) Every closed lattice ordered subspace of Y with continuous lattice operations possesses the subgradient property.
- (iii) Every convex operator defined on R with values in an arbitrary closed lattice ordered subspace of Y with continuous lattice operations possesses subgratients in every

core point of its domain.

(iv) The space Y does not contain any subspace isomorphic (as a topological vector space) to co.

Proof. The implications (i) \Rightarrow (iii) \Rightarrow (iii) are trivial. (iii) \Rightarrow (iv). Let us assume that (iv) does not hold. Then Y contains a subspace isomorphic to c. Now, as in the proof of Theorem 1, we see via ((N3)) that if we consider c to be ordered by the cone of non-negative sequences, then there exist convex operators from R to c without subgradients in some point in R. Taking into account that c with this canonical ordering is a lattice with continuous lattice operations (this follows from Theorems 8.1 and 8.2 of ((N2)) since the positive cone is normal), we arrive to the conclusion that (iii) cannot hold.

 $(iv) \Rightarrow (i)$. If Y does not contain any subspace isomorphic with c_0 , then by ((N5)) every closed lattice ordered subspace in it with continuous lattice operations is order complete. Hence it possesses the fully subdifferentiability property by a classical result in ((V)) and ((L)) (see also ((B1))).

Remark. The obtained results are characterizations of a structural property of Fréchet spaces by subdifferentiability properties of their ordered subspaces. The equivalent properties listed in the above theorems can be completed with other ones as the so called exact Hahn-Benach approximation property ((F)) which is equivalent with the subgradient property, or with some lattice theoretic conditions in the spirit of ((MN)).

tiers of sinethernous secretage and Parace so that assembled

REFERENCES

((B1)) BORWEIN, J.M., Continuity and differentiability properties of convex operators, Proc. London Math. Soc. (3) 44 (1982), 420 - 444.

This work with the Bornelline

- ((B2)) BORWEIN, J.M., Subgradients of convex operators, Math.
 Operationsforschung u. Statistik, Ser. Optimization,
 15 (1984), 179 191.
- ((F)) FEL'DMAN, M.M., About the sufficient conditions of the existence of supporting operators to sublinear mappings, (Russian) Sibirsk. Mat. Z. 16 (1975), 132 138.
- ((KR)) KREIN, M.G., RUTMAN, M.A., Linear operators leaving 'nvariant a cone in Banach spaces, (Russian) Uspehi Mat. Nauk 3, 1 (23) (1948), 3 95.
- ((L)) LEVIN, V.L., The subdifferentials of convex mappings and composed functionals, (Russian) Sibirsk. Met. Ž. 13 (1972), 1295 1303.
- ((MN)) MATER-NIEBERG, P., Cheracterisierung einiger topologischer und ordnungstheoretischer Eigenschaften von Banachverbänden mit Hilfe disjunkter Folgen, Arch. Math. 24 (1973), 640 - 647.
- ((M)) MCARTHUR, C.W., In what spaces is every closed normal cone regular ? Proc. Edimburgh Math. Soc. (2) 17 (1970); 121 125;
- ((Na)) NAMIOKA, I., Pertially Ordered Linear Topological Spaces
 Memoirs of the A.M.S., Nr. 24, 1957 .
- ((N1)) NEMETH, A.B., Some differential properties of convex mappings, Mathematica (Cluj) 22 (45) (1980), 107 114.
- ((N2)) NEMETH, A.B., On the subdifferentiability of convex operators, J. London Math. Soc. (2) 34 (1986), 552 558.
- ((N3)) NEWTH, A.B., A necessary condition for subdifferentiability of convex operators, "Eabes-Bolyai" Univ. Faculty of Math. Research Seminars, Preprint Nr. 1, 1986, 104-126.
- ((N4)) NAMETH, A.B., Subdifferentiability of convex operators ranging in latticially ordered Banach spaces, Ibidem, Preprint Nr. 1, 1987, 115 119.

- ((N5)) NEMETH, A.B., Normality, regularity, latticislity and order completeness of ordered Frechet spaces. "Babes-Bolyai" University Faculty of Math. and Phys. Research Seminars, Preprint Nr. 7, 1989 .
- ((R)) RAFFIN, C., Sur les programmes convexes définis dans les espaces vectoriels topologiques, Ann. Inst. Fourier 20 - 1 (1970) . 457 - 491 .
- ((Ru)) RUBINOV, A.M., Sublinear operators and their applications, Russian Math. Surveys 32 (1977) , 115 - 175 .
- ((Sch)) SCHAEFER, H.H., Banach Lattices of Positive Operators, Springer-Verlag, Berlin - Reidelberg - New York , 1975 .
- ((V)) VALADTER, M., Sous-différentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné. Math. Scand. 30 (1972) , 65 - 74 .
- ((Z1)) ZOWE, J., Subdifferentiability of convex functions with values in ordered topological vector spaces, Math. Scand. 34 (1974), 69 - 83. Catholic (CEE))
- ((Z2)) ZOWE, J., Linear maps majorized by a sublinear map, Arch. Math. 34 (1975), 637 - 645 .

Insitutul de Matematică (S) Look days C.P. 68 -4 System Ferro 3400 Cluj-Napoca ((AL)) ENGLAS IS DESCRIPTION OF THE POST OF THE PROPERTY ((AL))

Xevgou to an Ironia of the court of the cour

Duprint No. 1, 1989, 115 - 119 .

remaining in Latelevelly ordered Dissach spaces, Linkson,

Maria: 26 (1925) - 600 - 602

This note is in final form and no version of it is or will be submitted for publication elsewhere. required detections (chap) to (150), 107 - 110 ...

Sparston to London Series See (2) on the Capony Sec & Sec. 12

billy of constant magnetons, "Setup-Bolest" Univ. Saculty ((8)) or kent, measure imminute, frequence for 1, 1956, 109-168s and

To be a selected to the selection of the

"BABES-BOLYAI" UNIVERSITY Faculty of Mathematics and Physics Research Seminars Seminar en Functional Analysis and Numerical Methods Preprint Nr. 1, 1989, pp. 95 - 104.

The state of the s SUR'L'APPROXIMATION DES RACINES DES ÉQUATIONS DANS UN ESPACE METRIQUE

elitible 2 thedering 1 " 2 sideonie I me sup apone me

Considerons 1 Goustion :

(and a see a second repar, led, ... See 1 , 05,6 , 23,6

Ien Păvăleiu

Dans cette nete neus étudions l'évaluation des erreurs qui surgissent pendant la résolution numérique des équations en espaces métriques à l'aide de certaines méthodes d'itération à plusieurs pas . tues ledgitl. It endson on enter as evelve it do so

Considerens un espace métrique (X, p) complet et l'équation suivante :

x = f(x) ,

où f: X -> X est un opérateur quelconque.

Désignons par Ik+1 = I x I x ... x I , c'est-à-dire le produit captesien de l'ensemble X avec lui même k+ 1 fois.

Pour la résolution de l'équation (1) neus considérons l'application G: $I^{k+1} \rightarrow I$ dont nous supposons que sa restriction à la diagonale de l'espace Ik+1 coïncide avec l'opérateur f, c'est-à-dire terral appendit set sa 2 moltre l'amil 13 1 minore

(2) G(x,x,...,x) = f(x),

pour chaque rel . The total and the service of the pour chapter of the service of

of the state of

Considérens la suite (xn) n=0 fournie par le procédé d'itération suivant : ga (2) notampa'l ab evisiaco entosa al see (2 E)