Sinus Association

A PHELPS TYPE THEOREM FOR SPACES WITH ASYMMETRIC NORMS

Author(s): Costică MUSTĂŢA

Source: Buletinul științific al Universitatii Baia Mare, Seria B, Fascicola matematică-

informatică, Vol. 18, No. 2 (2002), pp. 275-280

Published by: Sinus Association

Stable URL: https://www.jstor.org/stable/44001869

Accessed: 31-03-2023 10:23 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Sinus Association is collaborating with JSTOR to digitize, preserve and extend access to Buletinul ştiințific al Universitatii Baia Mare, Seria B, Fascicola matematică-informatică

Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, Vol. XVIII(2002), Nr. 2, 275 - 280

A PHELPS TYPE THEOREM FOR SPACES WITH ASYMMETRIC NORMS

Costică MUSTĂŢA

Abstract.If $(X, \|\cdot\|)$ is a linear space with asymmetric norm and Y is a subspace of X, for every $f \in Y_+^*$ (the cone of linear bounded functional on Y) there exists at most one functional $F \in X_+^*$ extending f and preserving the asymmetric norm of f. The problem of uniqueness of the extension in terms of uniqueness of elements of best approximation of $F \in X_+^*$ by elements of $Y_+^{\perp} = \{G \in X_+^* : G|_Y = 0, F \geq G\}$ is discussed.

MSC: 41A65, 41A52, 46A22

Keywords: asymmetric norm, extension and approximation

1. Asymmetric norms

Let X be a real linear space and $\|\cdot\|: X \to [0,\infty)$ a function with the following properties:

1) ||x|| > 0 for all $x \neq \theta$; 2) $||\lambda x|| = \lambda ||x||$ for all $\lambda \geq 0$ and all $x \in X$; 3) $||x + y|| \leq ||x|| + ||y||$ for all $x, y, \in X$. Then the function $||\cdot||$ is called an asymmetric norm on X and the pair $(X, ||\cdot|)$ is called a space with asymmetric norm (see [5]). In such a space, in general $||-x|| \neq ||x||$.

Example ([1]) Consider the real linear space

$$C_{0}\left(\left[0,1\right],1,0\right)=\left\{ x:\left[0,1\right]
ightarrow\mathbb{R},x ext{ is continuous and }\int_{0}^{1}x\left(t
ight)dt=0
ight\} .$$

The function $\|\cdot\|$: $C_0([0,1],1,0) \to [0,\infty)$, $\|x\| = \max\{x(t): t \in [0,1]\}$ satisfies the properties 1) - 3) of asymmetric norm. The functions $x_{\alpha}(t) = \alpha(t - \frac{1}{2})$, $\alpha \in \mathbb{R}$ are in $C_0([0,1],1,0)$ and $\|x_{\alpha}\| = \frac{|\alpha|}{2} = \|-x_{\alpha}\|$, but the functions $y_n(t) = 1 - nt^{n-1}$, n > 2 $(n \in \mathbb{N})$, which also belong to C([0,1],1,0) satisfy $\|y_n\| = 1$ and $\|-y_n\| = n-1 > 1$, i.e. $\|y_n\| \neq \|-y_n\|$.

By definition, the balls $B(x,r) = \{y \in X : ||y-x| < r\}$ $x \in X$ and r > 0 form a base of the topology of the space $(X, ||\cdot|)$. The space $(X, ||\cdot|)$ equipped with this topology need not be a topological linear space, since the multiplication by scalars is not continuous. In the preceding example, for x = 0 and $\lambda = -1$, (-1) = 0 and for all r > 0, $-B(0, r) \nsubseteq B(0, 1)$ i.e. the multiplication by scalars is not continuous.

For each asymmetric norm $\|\cdot\|$ on X one defines $\|x\| = \max\{\|x\|, \|-x\|\}$. Then $\|x\| \le \|x\|$, $x \in X$. If there exists c > 0 such that $\|x\| \le c \|x\|$, i.e. the norm $\|\cdot\|$ and asymmetric

norm $\|\cdot\|$ are equivalent, then $(X,\|\cdot\|)$ is a topological linear space. Such a situation occurs when dim $X < \infty$. In this case all the norms and asymmetric norms are equivalent ([5], I.2.1. pp.21-23). If $\|\cdot\|$ and $\|\cdot\|$ are equivalent then $\|\cdot\|$ is continuous on X.

An example of an asymmetric norm on the normed space $(X, \|\cdot\|)$ is given by $\|x\| = \|x\| + \varphi(x)$, $x \in X$ where $\varphi \in X^*$, $\varphi \neq 0$, (a linear and continuous functional on X).

2. Linear and bounded functional on a linear space with asymmetric norm. Let (X, || |) be a space with asymmetric norm and $f: X \to \mathbb{R}$ a linear functional. The linear functional f is called bounded if

$$||f| := \sup \left\{ \frac{f(x)}{||x|} < \infty : x \neq 0 \right\} < \infty.$$
 (1)

(see [5], Ch.9, Sec.5, p.483). If f is a linear and bounded functional, then

$$f(x) \le ||f| \cdot ||x|, \ x \in X,\tag{2}$$

and, changing x with -x, one obtains $-f(x) = f(-x) \le ||f| \cdot ||-x|$. Consequently

$$-\|f|\cdot\|-x\| \le f(x) \le \|f|\cdot\|x\|, \ x \in X$$

and in general, $||-f| \neq ||f|$. Denote by $X^{\#}$ the algebraic dual of the linear space X and by X_{+}^{*} the set of all linear and bounded functional on the space X with an asymmetric norm |||.

For $f, g \in X_+^*$ one obtains $f + g \in X_+^*$ and $\lambda f \in X_+^*$ $(\lambda \ge 0)$ $(\lambda f + \mu g \in X_+^*$, for all $f, g, \in X_+^*$ and all $\lambda, \mu \ge 0$). Consequently X_+^* is a convex cone in $X^\#$.

The functional $\|\cdot\|: X_+^* \to [0,\infty)$ defined by formula (1) satisfies the axioms 1) - 3) of an asymmetric norm. Indeed, if $f \neq 0$ then there exists $x \in X$, $x \neq 0$ such that f(x) > 0 or f(-x) > 0. It follows that $\|f\| = \sup (f(x) / \|x\|) > 0$. If $\lambda \geq 0$ then $\|\lambda f\| = \lambda \|f\|$ and $\|f + g\| \leq \|f\| + \|g\|$ are evidently fullfielled.

Finally, observe that the function $d: X \times X \to [0, \infty)$ defined by

$$d(x,y) = ||x-y|, \quad x,y \in X, \tag{3}$$

where X is a space with asymmetric norm $\|\cdot\|$, is a quasi-metric on X, i.e. d satisfies the conditions:

a)
$$d(x,y) = 0 \iff x = y$$
; b) $d(x,y) \le d(x,z) + d(z,y)$, $x,y,z \in X$ (see [6]) For $f \in X_+^*$ and all $x,y \in X$, we have $f(x-y) \le ||f| \cdot ||x-y||$, so that

$$f(x) - f(y) \le ||f| \cdot ||x - y|, \quad x, y \in X.$$
 (4)

The last inequality means that every bounded linear functional f on $(X, \|\cdot\|)$ is semi-Lipschitz (see [11]) i.e. $X_+^* \subset S \operatorname{Lip}_0 X$ where

$$S \operatorname{Lip}_{0} X = \left\{ f : X \to \mathbb{R}, \ f(0) = 0, \ \sup \frac{(f(x) - f(y)) \vee 0}{\|x - y\|} < \infty \right\}$$

is the semi-linear space of semi-Lipschitz real functions defined on $(X, \|\cdot\|)$ (see [11]). Because $X_+^* \subset S \operatorname{Lip}_0 X$, for every $f \in X_+^*$, we have

$$\sup_{x \neq 0} \frac{f(x) \vee 0}{\|x\|} = \sup_{x \neq 0} \frac{f(x)}{\|x\|} \quad \text{and} \quad \sup_{x - y \neq 0} \frac{f(x) - f(y)}{\|x - y\|} = \|f\|$$
 (5)

i.e. the asymmetric norm of $f \in X_+^*$ is the smallest semi-Lipschitz constant of f.

Let Y be a subspace of the linear space X with asymmetric norm $\|\cdot\|$ and let $f \in Y_+^*$. Then $f \in S \operatorname{Lip}_0 Y$ and, by an analogue of an extension theorem of McShane ([7]), there exists at least one function $F \in S \operatorname{Lip}_0 X$ such that $F|_Y = f$ and $\|F\| = \|f\|$ (see [8], Th.2). In our case the following result holds:

Theorem 1. ([5]). Let X be a real linear space with the asymmetric norm $\|\cdot\|$ and Y be a subspace of X. Then for every $f \in Y_+^*$ there exists $F \in X_+^*$ such that

a)
$$F|_{Y} = f$$
, b) $||F| = ||f|$.

Proof. If $f \in Y_+^*$ let $p: X \to \mathbb{R}$ be defined by $p(x) = \|f| \cdot \|x\|$. Then $f(y) \le \|f| \cdot \|y\| = p(y)$, $y \le Y$, and by Hahn-Banach theorem, there exists $F \in X_+^*$ such that

$$F|_{Y} = f$$
 and $F(x) \leq ||f| \cdot ||x|$, $x \in X$.

Then

$$\frac{F(x)}{\|x\|} \le \|f\|, x \in X, x \ne 0$$

and taking the supremum with respect to $x \in X$ one obtains $||F| \le ||f|$. On the other hand

$$||F| = \sup \left\{ \frac{F(x)}{||x|}, x \in X, x \neq 0 \right\} \ge \sup \left\{ \frac{F(y)}{||y|}, y \in Y, y \neq 0 \right\} =$$

$$= \sup \left\{ \frac{f(y)}{||y|}, y \in Y, y \neq 0 \right\} = ||f|$$

$$(6)$$

and, consequently ||F|| = ||f||.

By Theorem 1 it follows that if Y is a subspace of $(X, \|\cdot\|)$ then for every $f \in Y_+^*$ the set

$$\mathcal{E}(f) = \{ F \in X_+^* : F|_Y = f \text{ and } ||F| = ||f| \}$$
 (6)

is nonvoid.

Observe that, for every $f \in Y_+^*$, the set $\mathcal{E}(f)$ of all extensions of f, is included in $S(0) := \{F \in X_+^* : ||F| = ||f|\}$ and $\mathcal{E}(f)$ is convex.

Indeed, if $F_1, F_2 \in \mathcal{E}(f)$ and $\lambda \in [0, 1]$ then $f = \lambda F_1|_Y + (1 - \lambda) F_2|_Y$ and

$$||f| = ||\lambda F_1|_Y + (1 - \lambda) F_2| \le ||\lambda F_1 + (1 - \lambda) F_2| \le \lambda ||F_1| + (1 - \lambda) ||F_2| = \lambda ||f| + (1 - \lambda) ||f| = ||f|| \text{ so that } \lambda F_1 + (1 - \lambda) F_2 \in \mathcal{E}(f).$$

3. Extension and approximation

In [10] R.R. Phelps made a connection between the set of the extensions of a linear and continuous functional $f \in Y^*(Y^*)$ is the algebraic - topological dual of the subspace Y of a normed space $(X, \|\cdot\|)$ and the set of elements of best approximation of a functional $F \in X^*$ by the elements of the annihilator $Y^{\perp} = \{G \in X^* : G|_{Y} = 0\}$.

If $F \in X^*$ then the set of elements of best approximation of F in Y^{\perp} is $P_{Y^{\perp}}(F) = F - \mathcal{E}(F|_Y)$ where $\mathcal{E}(F|_Y) = \{H \in X^* : H|_Y = F|_Y \text{ and } ||H|| = ||F|_Y||\}$. The extension of a functional $f \in Y^*$ is unique if and only if Y^{\perp} is a Chebyshevian subspace of X^* .

In the proof of R.R. Phelps'result one uses an essential fact: together with $F \in X^*$ the functional F-G belongs to X^* , for every $G \in \mathcal{E}(F|_Y)$, i.e. the fact that X^* has a structure of linear space.

Because X_+^* has only a structure of a convex cone, it could exist a linear and bounded functional $F \in X_+^*$, such that for certain extensions G from $\mathcal{E}(F|_Y)$, or for all of them, we could have F - G unbounded, i.e. $F - G \notin X_+^*$. Some additional definitions are necessary. For a cone \mathcal{K} in a linear space \mathcal{V} and $x, y \in \mathcal{V}$, we will write $x \leq y$ if and only if $y - x \in \mathcal{K}$.

Let \mathcal{M} be a non-empty subset of the cone X_+^* and $F \in X_+^*$. We say that F admits minorants in \mathcal{M} if there exists $G \in \mathcal{M}$ such that $F \geq G$ (i.e. $F - G \in X_+^*$) and we say that F majorizes the set \mathcal{M} if $F \geq G$ for every $G \in \mathcal{M}$. (i.e. $F - \mathcal{M} \subset X_+^*$). Obviously, if $F \in X_+^*$ and majorizes \mathcal{M} , then F admits minorants in \mathcal{M} .

For a subspace Y of the space X with asymmetric norm, we denote by Y_+^{\perp} the annihilator of Y in X_+^* i.e., the set

$$Y_{+}^{\perp} = \left\{ G \in X_{+}^{*} : G|_{Y} = 0 \right\}. \tag{7}$$

We state the following problem of best approximation:

For $F \in X_+^*$ find $G_0 \in Y_+^{\perp}$ such that $||F - G_0|| = d_+(F, Y_+^{\perp})$ where

$$d_{+}(F, Y_{+}^{*}) = \inf\{\|F - G\| : G \in Y_{+}^{\perp}, F \ge G\}.$$
(8)

Let

$$P_{Y_{+}^{\perp}}(F) := \left\{ G \in Y_{+}^{*} : F \ge G, \|F - G\| = d_{+}(F, Y_{+}^{\perp}) \right\}. \tag{9}$$

We say that Y_+^{\perp} is F- proximinal if $P_{Y_+^{\perp}}(F) \neq \emptyset$. If, in addition, $card\ P_{Y_+^{\perp}}(F) = 1$ then Y_+^{\perp} is called F- Chebyshevian.

The following result is similar to Phelps'result([10]).

Theorem 2. Let X be a space with asymmetric norm, Y a subspace of X, and $F \in X_+^*$. Let

$$\mathcal{E}(F|_{Y}) = \{ H \in X_{+}^{*} : H|_{Y} = F|_{Y} \text{ and } ||H| = ||F| \}$$
 (10)

and

$$\mathcal{E}_{+}(F|_{Y}) = \{ H \in \mathcal{E}(F|_{Y}) : H \le F \} \tag{11}$$

a) If $\mathcal{E}_+(F|_Y) \neq \emptyset$ then Y_+^{\perp} is F - proximinal and the following equality holds:

$$d_{+}(F, Y_{+}^{\perp}) = ||F|_{Y}|. \tag{12}$$

- b) If $G_0 \in P_{Y_+^{\perp}}(F)$ then $F G_0 \in \mathcal{E}_+(F|_Y)$.
- c) We have $\mathcal{E}_{+}^{'}(F|_{Y}) \neq \emptyset$ if and only if $P_{Y_{+}^{\perp}}(F) \neq \emptyset$ and the following equality holds:

$$F - \mathcal{E}_{+}\left(F|_{Y}\right) = P_{Y_{\perp}^{\perp}}\left(F\right). \tag{13}$$

- d) Y_{+}^{\perp} is F Chebyshevian if and only $\operatorname{card} \mathcal{E}_{+}\left(F|_{Y}\right)=1.$
- e) $F \in \mathcal{E}_+(F|_Y)$ if and only if $0 \in P_{Y_{\perp}^{\perp}}(F)$.

Proof. Let G_0 be a minorant of F in $\mathcal{E}(F|_Y)$ (G_0 exists, because $\mathcal{E}_+(F|_Y \neq \emptyset)$. Then, $F - G_0 \in X_+^*$ and

$$||F|_Y| = ||G_0| = ||F - (F - G_0)| \ge d_+ (F, Y_+^{\perp}).$$

On the other hand, for every $G \in Y_+^{\perp} (F \geq G)$ we have

$$||F|_Y| = ||F|_Y - G|_Y| \le ||F - G||$$
.

Taking the infimum with respect to $G \in Y_+^{\perp}$ $(F \geq G)$ we find

$$||F|_Y| \le d_+ \left(F, Y_+^{\perp} \right).$$

Therefore, the formula (12) holds, and Y_+^{\perp} is F - proximinal.

b) Let $G_0 \in P_{Y_+^{\perp}}(F)$. Then $F \geq G_0$ (according to the definition of $P_{Y_+^{\perp}}(F)$), $(F - G_0)|_{Y} = F|_{Y}$ and

$$||F - G_0| = \inf \{ ||F - G| : G \in Y_+^{\perp}, F \ge G \} = d_+(F, Y_+^{\perp}) = ||F|_Y|$$

(according to a)). Thus $F - G_0 \in \mathcal{E}_+ (F|_Y)$.

c) Follows from a) and b).

If $H \in \mathcal{E}_+(F|_Y)$ then $F \geq H, (F-H)|_Y = 0$ and

$$||F - (F - H)| = ||H| = ||F|_Y| = d_+(F, Y_+^{\perp}),$$

and then $F - H \in P_{Y_{\perp}^{\perp}}(F)$.

Conversely, $G \in P_{Y_+}(F)$ implies $F \geq G$, so that $F - G \in X_+^*$, $(F - G)|_Y = F|_Y$, and

$$||F - G| = ||F|_Y| = d_+ \left(F, P_{Y_+^{\perp}} \right).$$

279

It follows that $F - G \in \mathcal{E}_+(F|_Y)$, i.e. $G \in F - \mathcal{E}_+(F|_Y)$.

d) If Y_+^{\perp} is F - Chebyshevian, it results that there exists only one element $G \in P_{Y_+^{\perp}}(F)$ such that $F \geq G$, so that $F - G \in X_+^*$, $(F - G)|_Y = F|_Y$ and

$$||F - G|| = d_+(F, Y_+^{\perp}) = ||F|_Y|,$$

i.e. $\mathcal{E}_{+}\left(F|_{Y}\right)$ contains only one element, namely F-G.

e) If $F \in \mathcal{E}_+(F|_Y)$ then there exists $H \in \mathcal{E}_+(F|_Y)$ such that F = H. Thus, according to c) $F - H = F - F = 0 \in P_{Y_-^{\perp}}(F)$.

If
$$0 \in P_{Y_{+}^{\perp}}(F)$$
 then $||F| = d_{+}(F, Y_{+}^{\perp}) = ||F|_{Y}|$, so $F \in \mathcal{E}_{+}(F|_{Y})$.

REFERENCES

- [1]Borodin, P.A.; The Banach-Mazur Theorem for Spaces with Asymetric Norm and Its Applications in Convex Analysis, Mathematical Notes vol. 69. Nr.3 (2001), 298-305
- [2] Dolzhenko, E.P. and E.A. Sevast'yanov, Approximation with sign-sensitive weights, Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Marh.] 62 (1998) no.6, 59-102 and 63 (1999) no.3 77-48.
- [3] Ferrer, J., Gregori, V. and C. Alegre, Quasi-uniform structures in linear lattices, Rocky Mountain J. Math. 23 (1993), 877-884
- [4] Garćia Raffi, L.M.; Romaguera S., and Sanchez Pérez E.A., Extension of Asymmetric Norms to Linear Spaces, Rend. Istit. Mat. Trieste XXXIII, 113-125 (2001)
- [5] Krein, M.G. and A.A.Nudel'man, The Markov Moment Problem and Extremum Problems [in Russian], Nauka, Moscow, 1973.
- [6] Kopperman, R.D., All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), 89-97
- [7] McShane, E.J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934), 847-842
- [8] Mustăța, C., Extensions of Semi-Lipschitz functions on quasi-Metric spaces, Rev. Anal. Numér. Théor. Approx.. 30 (2001) No.1, 61-67
- [9] Mustăța, C., Extensions of convex Semi-Lipschitz Functions on quasi-metric linear spaces, Séminaire de la Théorie de la Meileure Approximation Convexité et Optimization, Cluj-Napoca, le 29 november 2001, 85-92.
- [10] Phelps, R.R., Uniqueness of Hahn Banach Extension and Unique Best Approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
- [11] Romaguera, S. and M. Sanchis, Semi-Lipschitz Functions and Best Approximation in quasi-Metric Spaces, J. Approx. Theory 103 (2000), 292-301.

Received: 1.09.2002

Department of Mathematics and Computer Science North University of Baia Mare, Str. Victoriei nr. 76 4800 Baia Mare ROMANIA; Email: mmustata@ubbcluj.ro