ANALELE ŞTIINŢIFICE

ALE

UNIVERSITĂȚII "AL. I. CUZA" DIN IAȘI

(SERIE NOUĂ)

SECTIUNEA I

a. Matematică

TOMUL XIs ANUL 1965

Omagiu acad. prof. O. MAYER cu ocazia împlinirii a 70 ani

	Cab
anrefook	261 - 272
и. Попа и г. георгиев - Замечание в свизи с пнутренней алгеброй.	
г. т. георгиу- О геодезических кривых смешвиого восомогного по	273 - 281
л. годо — О последовательностях квадряя весоциированных точкам по-	283 - 289
верхности СУ БУКИН — О псевдопернодических последовательностях Лапласа в	
	291 - 305
в салита по Мотогразиная герметрия проектняных групп плос-	307 — 335
	307 - 300
 маркус — О поверхностях R проективно-наложимых на их преобра- 	337 - 348
Wettigx P	349 - 356
Т. М. ХАНГАН — Проективная грассманова поевдогруппа	357 - 362
Н. МИХЭЙЛЯНУ — Об одного нвадратичного пульсистемы	
Г. ВРЭНЧАНУ — Связности афияные инзарилатные относительно дис-	363 - 381
яретных групп Я. ШАПИРО — Просто граниятивные группы движений в эффинносаяз-	
Я. ШАПИРО — Просто транитаване группа долгова	383 - 395
 р. мирон н Д. ПАПУК — Теория многообразий пространства с аффин- 	Min will
	397 - 409
карк в срокола - О паравых симелектических деформациях конгру-	411 — 428
	911 - 420
о не оконтить и AU Времения в конфромию лифференциальную тес-	429 - 451
в. КРУЧАНУ — О центро-вффинной геометрии неголономных миогообра-	453 - 454
sub Variation and T	465 - 472
С. ГОЛАБ — Об особых точках парадзедьных поверхностей. I	
М. ПИНЛ — Манимальные поверхности и изотропные кривые в рамано- вом простроистве	473 - 480
 Р. Н. ЩЕРБАКОВ — Обобщенные псендосферические конгрузиции. 	481 - 492
т. ж. вилмор — С погруженных поверхностях	493 - 496
К. РАДЗИЖЕВСКИЙ — О некоторой метрической интерпретации сопри-	
уде дооних н плоскостей	OTHER PROPERTY.
о рарга — О cheпической отображении в риминовых пространствах.	507 - 512
и мранцэ и и рэдеску — Неголономиме мизгооорязия с акси-	
activity the sire industrict and analysis	513 — 51
и. вайсман — Об одной аффиниой связности ассоциированной сети на	521 - 53
nonenvencery	
О. ОНИЧЕСКУ — Сумичторная функция случайного процесса дискретного	531 - 53
воемени на конечном множестве состояния	537 - 54
МЕНДЕЛЬ ХАЙМОВИЧ — Об изучении упругих пластинок	545 - 55
К. И. БОРШ — Плоские деформация в анизотропных телях	The state of the s
 К. П. ПАПАИОАННУ — Об общих характерных уравнения и термодина- мических функциях. Примернение к теоретическому расчету 	100
мических функциях, ггримериение и теоретической	555 - 56
С, и С,	. 560 - 59

ANNALES SCIENTIFIQUES DE L'UNIVERSITÉ "A L. I. C U Z A" — J A S S Y

TOME XIBs s. I a 1965

SOMMAIRE

	Pages
A MYLLER - Les différentes formes du problème mathématique. Son	1-7
origine, son élaboration et sa présentation	1-1
FI ORICA CIMPAN - Textes roomains sur les fractions dans un ma-	9-13
nuscrit gree .	700
GR. C. MOISIL - Sur la logique strictement positive	15-24
VERA MYLLER - Sur les racines primitives et les systèmes de bases et	96 46
indices dans le corps quadratique général	25 - 41
W. SIERPINSKI - Sur quelques conséquences d'une hypothèse de M. A.	43-45
Schiozel sur les nombres premiers.	
VIGGO BRUN - Un procede qui ressemble au crible d'Eratosthène .	47-53
GH. PIC - Sur les groupes finis p-nilpotents.	55-65
I. GY. MAURER and M. SZILÁGYI - Über in Stellenringen definierte	69 94
unendliche Produkte.	67.—74
M. F. CHIROKHOV - Les suites de décomposition dans l'algèbre booléenne .	75-87
M. KOLIBIAR - Linien in Verbänden	89 - 98
TUDORA LUCHIAN - Remarks on Weak-Rings	99-111
G. CALUGAREANU - Sur une propriété métrique des ensembles conne-	
xes du plan	113-117
Z. LEWANDOWSKI, M. O. READE, E. ZLOTKIEWICZ - On a certain	1447-744
condition for univalence	119-123
PETRU CARAMAN - Sur l'ensemble de monogénéiré faible des applica-	10- 100
tions de Re	125-136
ALEXANDRE FRODA - Discriminants attachés aux systèmes isogonaux	Fort - 180
- complets on non - d'un espace unitaire	137-153
TIBERIU POPOVICIU - Sur certaines inégalités qui caractérisent les fonc-	1EE 101
tions convexes	155-164
D. V. IONESCU — La représentation de la différence divisée généralisée par une intégrale définie dans le cas des noeuds simples. I .	165-184
G. SANSONE - Sull'equazione differenziale non lineare di A. J. Lerner	ASSECT MARKET
dv	
$y\frac{\partial}{\partial x} + y + \sqrt{ x } \operatorname{sgn} x = 0$	185-208
CARLO MIRANDA - Su di una particolare equazione ellittica del secon-	- Year (1975)
do ordine a coefficienti discontinui	209-215
O. BORUVKA - Über die allgemeinen Dispersionen der linearen Differen-	247 220
tialgleichungen 2. Ordnung	217 - 238
ADOLF HAIMOVICI — Sur une interprétation géométrique des systèmes de Pfaff complétement integrables et sur leur arbitrariété	239-250

SUR CERTAINES INÉGALITÉS QUI CARACTÉRISENT LES FONCTIONS CONVEXES

PAR

TIBERIU POPOVICIU

à Cluj

Hammage à M. O. Mayer à l'occasion de son 70-e anniversaire

Une fonction f(x), définie sur un intervalle I, (de longueur non nulle) est dite non-concave, respectivement convexe si sa différence divisée d'ordre 2, [x₁, x₂, x₃; f] est ≥ 0, respectivement > 0 sur tout groupe de 3 points distincts x₁, x₂, x₃ ∈ I. Une fonction convexe est d'ailleurs un cas particulier de fonction non-concave.

Dans la suite nous étudierons quelques inégalités qui caractérisent

les fonctions continues et non-concaves.

2. Théorème 1. Pour que la fonction continue f soit non-concave sur l'intervalle I, il faut et il suffit que l'inégalité de Jensen

$$(1) 2f\left(\frac{x+y}{2}\right) \le f(x) + f(y)$$

soit vérifiée pour tout x, y \in I.

L'inégalité (1), pour tout $x, y \in I$, caractérise donc les fonctions continues et non-concaves sur I.

On connaît plusieurs démonstrations du théorème 1.

La condition est suffisante. En effet si l'inégalité (1) est vérifiée pour tout $x, y \in I$, la fonction f, supposée continue, est non-concave sur I.

La condition est nécessaire. Ceci résulte immédiatement de la formule

$$\left[x, y, \frac{x+y}{2}; f\right] = \frac{2}{(y-x)^2} \left[f(x) + f(y) - 2f\left(\frac{x+y}{2}\right)\right] (x \neq y).$$

Mais nous allons donner ici une autre démonstration, qui est basée sur l'approximation des fonctions continues par des lignes polygonales inscrites dans la courbe représentative.

La démonstration de la nécessité de la condition du théorème I

résulte des propriétés suivantes:

A. Les fonctions $\lambda x + \mu$, $|x - \varrho|$, où λ , μ , ϱ sont des constantes quelconques, vérifient l'inégalité (1) pour tout x, $y \in I$.

B. Si un nombre fini de fonctions vérifient l'inégalité (1) pour tout $x, y \in I$, toute combinaison linéaire de ces fonctions, avec des coefficients non-négatifs, jouit de la même propriété.

C. Si les termes d'une suite convergente sur I, de fonctions définies sur I, vérifient l'inégalité (1) pour tout $x, y \in I$, la fonction limite jouit de la même propriété.

D. Toute fonction continue et non-concave est la limite d'une suite

de fonctions de la forme

(2)
$$\lambda x + \mu + \sum_{\alpha=1}^{n} C_{\alpha} |x - c_{\alpha}|,$$

les C_a , $\alpha=1,2,\ldots,n$, étant des constantes non-négatives et c_a , $\alpha=1,2,\ldots,n$ des points de l'intervalle I.

 Pour compléter la démonstration précédente nous allons examiner de plus près les propriétés A, D de plus haut. Nous pouvons nous dispenser de donner les démonstrations des propriétés B, C, qui sont immédiates.

Occupons-nous d'abord de la propriété A.

Tout polynôme du premier degré $\lambda x + \mu$ vérifie l'inégalité (1), avec le signe = , pour tout $x, y \in I$.

La fonction |x| vérifie l'inégalité (1) par suite de l'inégalité bien connue

$$(3) |x+y| \le |x| + |y|$$

entre la valeur absolue de la somme et la somme des valeurs absolues des termes.

Il en résulte immédiatement que la fonction $|x-\varrho|$ vérifie aussi l'inégalité (1) pour tout $x, y \in I$ et toute constante ϱ .

Remarquons que la non-concavité des fonctions $\lambda x + \mu$, |x| (donc aussi de $|x-\varrho|$) résulte directement de l'inégalité (1), sans l'hypothèse de la continuité. En effet, la fonction f est non-concave sur I si et seulement si nous avons

(4)
$$f\left(\frac{px+qy}{p+q}\right) \leq \frac{pf(x)+qf(y)}{p+q}$$

pour tout $x, y \in I$ et pour tout p, q > 0.

Dans le cas d'un polynôme du premier degré P(x) = ix + n, en posant $Q(x) = \lambda x + \mu$ (p+q) (p, q>0) de l'inégalité $2Q\left(\frac{px+qy}{2}\right) \le 2Q(px) + Q(qy)$ on déduit, après quelques simplifications, $P\left(\frac{px+qy}{p+q}\right) \le 2Q(px) + Q(px)$ (dans ces relations c'est le signe=qui a toujours lieu).

Dans le cas de la fonction |x|, de $|px+qy| \le |px|+|qy|=p|x|+$ +q|y| (p, q>0) il résulte aussi $\left|\frac{px+qy}{p+q}\right| \le \frac{p|x|+q|y|}{p+q}$. Nous avons une propriété analogue pour la fonction |x-g|.

4. Pour démontrer la propriété D il suffit de supposer que la fonction f soit continue et non-concave sur l'intervalle fini et fermé [a, b]. Soient alors $a = c_0 < c_1 < \ldots < c_{m-1} < c_m = b$ les points qui divisent l'intervalle [a, b] en m parties égales et $\varphi_m(x)$ la fonction représentée par la ligne polygonale inscrite dans la courbe y = f(x) suivant les sommets $(c_a, f(c_a)), a = 0, 1, \ldots, m$. Alors nous avons

$$\varphi_m(x) = \sum_{n=0}^m C_n |x - c_n|$$

qui est bien de la forme (2) où les coefficients C_e , $\alpha=1, 2, ..., m-1$ (m>1) sont non-négatifs. En effet, la suite des pentes

 $\left(\sum_{n=0}^{s} C_{n} - \sum_{n=r+1}^{m} C_{n}\right)_{n=0}^{m-1}$ des côtés de la ligne polygonale est non-décroissante.

Si $\omega(\delta)$ est le module d'oscillation de la fonction f, nous avons

$$\begin{split} |f(x)-\varphi_m(x)| &= \left| [f(x)-f(c_{a-1})] \frac{x-c_a}{c_{a-1}-c_a} + \right. \\ &+ \left. [f(x)-f(c_a)] \frac{x-c_{a-1}}{c_a-c_{a-1}} \right| \leqq \omega(x-c_{a-1}) \frac{c_a-x}{c_a-c_{a-1}} + \\ &+ \omega(c_a-x) \frac{x-c_{a-1}}{c_a-c_{a-1}} \leqq \omega\left(\frac{b-a}{m}\right), \end{split}$$

où $x \in [c_{n-1}, c_n], a = 1, 2, ..., m, donc$

$$|f(x) - \varphi_m(x)| \le \omega \left(\frac{b-a}{m}\right)$$
, pour $x \in [a, b]$

et la suite $(\varphi_m(x))_{m=1}^{\infty}$ converge (et même uniformément) vers la fonction f.

5. Nous avons montré plus haut le rôle de l'inégalité (3) dans la caractérisation par l'inégalité (1) des fonctions continues et non-concaves. Nous allons montrer comment on peut utiliser certaines généralisations de l'inégalité (3) pour obtenir d'autres caractérisations de la même nature. Considérons l'inégalité de H. Hornich [4],

(5)
$$|x+y|+|y+z|+|z+x| \le |x|+|y|+|z|+|x+y+z|$$

qui est une généralisation de l'inégalité (3) et est vérifiée, en particulier, quels que soient les nombres réels x, y, z. Nous avons alors le

Théorème 2. Pour que la fonction continue f soit non-concave sur l'intervalle I, il faut et il suffit que l'inégalité

(6)
$$2\left[f\left(\frac{x+y}{2}\right) + f\left(\frac{y+z}{2}\right) + f\left(\frac{z+x}{2}\right)\right] \le$$

$$\le f(x) + f(y) + f(z) + 3f\left(\frac{x+y+z}{3}\right)$$

soit vérifiée pour tout x, y, z \in I.

Ce théorème est un cas particulier (n=3, k=2) d'un théorème plus général qui résulte d'une généralisation de l'inégalité (5). Dusan D. Adamović [1] et Dragomir Ž. Doković [2] ont généralisé l'inégalité (5), le premier pour k=2 et le second pour k quelconque, par l'inégalité

(7)
$$\sum_{t_1}^{(k)} |x_{t_1} + x_{t_2} + \dots + x_{t_k}| \leq$$

$$\leq {n-2 \choose k-2} \left[\frac{n-k}{k-1} \sum_{i=1}^{n} |x_i| + |\sum_{i=1}^{n} x_i| \right], k=2, 3, \dots, n-1, n=3, 4, \dots,$$

la sommation $\Sigma^{(k)}$ étant étendue à toutes les combinaisons i_1, i_2, \ldots, i_k , k à k des indices $1, 2, \ldots, n$.

On peut alors généraliser le théorème 2 par le

Théorème 3. Si n est un nombre naturel ≥ 3 et k un nombre naturel qui vérifie les inégalités $2 \leq k \leq n-1$, pour que la fonction continue f soit non-concave sur l'intervalle I, il faut et il suffit que l'inégalité

(8)
$$k \sum_{k=1}^{(k)} f\left(\frac{x_{t_1} + x_{t_2} + \dots + x_{t_k}}{k}\right) \leq \left(\frac{n-2}{k-2}\right) \left[\frac{n-k}{k-1} \sum_{i=1}^{n} f(x_i) + nf\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)\right]$$

soit vérifiée pour tout x1, x2,...,xn € I.

Pour n=3, k=2 nous retrouvons le théorème 2.

L'inégalité (8) et, en particulier, l'inégalité (6), caractérisent donc les fonctions continues et non-concaves.

 La démonstration du théorème 3 peut se faire de la même manière que celle du théorème 1.

La condition est suffisante, donc, si l'inégalité (8) est vérifiée pour tout $x_1, x_2, ..., x_n \in I$, la fonction continue f est non-concave sur I. En effet, posons dans (8), d'abord $x_1 = x$, $x_2 = x_3 = ... = x_n = \frac{ny - x}{n-1}$, ensuite $x_1 = y$, $x_2 = x_3 = ... = x_n = \frac{nx - y}{n-1}$ et ajoutons membre à membre les inégalités ainsi obtenues. Nous en déduisons

(9)
$$f\left(\frac{x+y}{2} + \frac{y-x}{2\delta}\right) + f\left(\frac{x+y}{2} - \frac{y-x}{2\delta}\right) \leq f(x) + f(y),$$

où $\delta = \frac{k(n-1)}{(n+1)} \ge \frac{(n-1)^2}{(n-1)^2 - 2} > 1$. Il en résulte que les points $\frac{x+y}{2} + \frac{y-x}{2\delta}$, $\frac{x+y}{2} - \frac{y-x}{2\delta}$ sont toujours compris entre x et y. On peut alors répéter l'inégalité (9) en prenant ces points pour x et y. En continuant ainsi on trouve

(10)
$$f\left(\frac{x+y}{2} + \frac{y-x}{2\delta^m}\right) + f\left(\frac{x+y}{2} - \frac{y-x}{2\delta^m}\right) \leq f(x) + f(y), m = 1, 2, ...$$

Compte tenant de $\delta > 1$ et de la continuité de la fonction f, en faisant $m \to \infty$, on déduit de (10) l'inégalité (1) de Jensen.

La condition est nécessaire, donc toute fonction non-concave et continue sur I vérific l'inégalité (8) pour tout $x_1, x_2, \ldots, x_n \in I$. En effet, les propriétés A, B, C, D du no. 2 sont vérifiées pour l'inégalité (8).

7. Considérons l'inégalité

(11)
$$\sum_{a=1}^{m} p_a f(z_a) \ge 0,$$

où $p_* \neq 0$, $\alpha = 1, 2, ..., m$ et $z_1 < z_2 < ... < z_m$ sont m points distincts de I. Si l'inégalité (11) est vérifiée pour toute fonction f non-concave sur I, nous avons m > 2 et

(12)
$$\sum_{i=1}^{m} p_{i} f(z_{i}) = \sum_{i=1}^{m-2} q_{i} [z_{i}, z_{i+1}, z_{i+2}; f],$$

avec $q_a \ge 0$, $a = 1, 2, \dots, m - 2$ [6]. En particulier, $q_1 = (z_1 - z_2)(z_1 - z_3)p_1 > 0$, $q_{m-2} = (z_m - z_{m-1})(z_m - z_{m-2})p_m > 0$ et de (12), en posant $f(x) = x^2$, il résulte que

 $\sum_{n=1}^{m} p_{*} z_{*}^{2} = \sum_{n=1}^{m-2} q_{*} > 0.$

Nous en déduisons que pour toute fonction f convexe sur I, l'inégalité stricte

 $\sum_{a=1}^{\infty} p_a f(z_a) > 0$ (13)

est vérifiée.

De cette analyse résulte le

Lemme 1. Si l'inégalité (11), où pa, a = 1, 2, ..., m, sont des constantes (quelconques, non pas nécessairement différentes de zéro) et sa, a = 1, 2, ..., m, des points (distincts ou non) de l'intervalle I, est vérifiée pour toute fonction f non-concave sur I et si $\sum_{a=1}^{\infty} p_a z_a^2 > 0$, l'inégalité stricte

(13) est vérifiée pour toute fonction f convexe sur I.

Revenons à l'inégalité (8). Pour $f(x) = x^2$ la différence entre le second et le premier membre est égale à

$$\binom{n-2}{k-2} \frac{n-k}{nk} \sum_{(2)} (x_{i_1} - x_{i_2})^k$$
.

En appliquant le lemme 1 on en déduit la

Consequence 1. Si n est un nombre naturel ≥3, k un nombre naturel qui vérifie les inégalités $2 \le k \le n-1$ et si $x_1, x_2, ..., x_n \in I$, toute fonction f continue et convexe sur I vérifie l'inégalité (8), l'égalité ayant lieu si et seulement si $x_1 = x_2 - \ldots = x_n$,

8. Il en résulte que l'équation fonctionnelle qu'on obtient en égalant les deux membres de la relation (8), a comme solution continue

générale les polynômes de degré 1.

En effet, pour une telle solution il est nécessaire que les fonctions f et -f soient toutes les deux non-concaves, ce qui a lieu si et seulement si f est un polynôme de degré 1.

En ce qui concerne l'équation fonctionnelle

(14)
$$\sum_{k=2}^{(k)} f(x_{i_1} + x_{i_2} + \dots + x_{i_k}) =$$

$$= \binom{n-2}{k-2} \left[\frac{n-k}{k-1} \sum_{i=1}^{k} f(x_i) + f(x_1 + x_2 + \dots + x_n) \right]$$

analogue à l'équation de Cauchy f(x + y) = f(x) + f(y), nous allons dé-

montrer que sa solution continue générale est un polynôme de degré 2 qui s'annule pour x = 0, donc une fonction de la forme $\lambda x^2 + \mu x$.

Pour n=3, k=2 nous avons l'équation fonctionnelle

(15)
$$f(x+y) + f(y+z) + f(z+x) = f(x) + f(y) + f(z) + f(x+y+z)$$
.

Considérons donc l'équation (14) qui est vérifiée quels que soient x1, x2,...,xn réels. Remarquons d'abord que tout polynôme de la forme $yx^2 + \mu x$ vérifie cette équation.

Soit maintenant f une solution de Péquation (14). Si nous posons $x_1 = x_2 = \dots = x_r = 0$, nous déduisons f(0) = 0. Si nous posons ensuite (pour n > 3), $x_1 = x$, $x_2 = y$, $x_3 = z$, $x_4 = x_5 = ... = x^2 = 0$, nous trouvons que la fonction / vérific l'équation (15). Il suffit donc de démontrer que toute solution continue de cette équation est de la forme yx2 + µx. Ceci résulte des recherches de M. Fréchet sur la caractérisation fonctionnelle des polynomes [3]. Nous allons donner la démonstration. Il suffit de démontrer que la solution f de l'équation (15) est un polynôme de degré 2. Si nous posons $A_k^2 f(x) = f(x+2h) - 2f(x+h) + f(x)$ et si nous posons y = x = h dans (15) nous trouvons (f(0) = 0), $A_h^2 f(x) = A_h^2 f(0)$, donc aussi $A_k^2 f(x+h) = A_k^2 f(0)$ pour tout x et h. Nous en déduisons $A_h^3 f(x) = A_h^2 f(x+h) - A_h^2 f(x) = 0$ pour tout x et h, d'où la propriété résulte immédiatement.

9. On peut se demander s'il est possible d'étendre les résultats précédents à l'inégalité

$$(16) 2 \sum f\left(\frac{x_1 + x_2}{2}\right) + 4f\left(\frac{x_1 + x_2 + x_3 + x_4}{4}\right) \leq \sum f(x_1) + 3 \sum f\left(\frac{x_1 + x_2 + x_3}{3}\right)$$

étendue à 4 valeurs x1, x2, x3, x4 de l'argument (les sommations ayant des significations évidentes).

Toute fonction qui vérifie l'inégalité fonctionnelle (16) est bien non-concave, car en prenant pour x_1, x_2, x_3, x_4 les points 2x-y, 2x-y,2y - x, 2y - x nous en déduisons l'inégalité (1) de Jensen. Mais la réciproque n'est pas vraie, car la fonction non-concave | x - 0 , si o est à l'intérieur de l'intervalle I, ne vérific pas l'inégalité (16), l'inégalité analogue à celle de H. Hornich

(17)
$$\sum |x_1 + x_2| + |x_1 + x_2 + x_3 + x_4| \le \sum |x_1| + \sum |x_1 + x_2 + x_3|$$

n'étant pas vraie en général. Nous allons donner la démonstration de ce fait plus loin.

En ce qui concerne l'équation fonctionnelle obtenue en égalant les deux membres de la relation (16), sa solution continue générale est encore un polynôme quelconque de degré 1.

10. Considérons l'inégalité

(18)
$$\sum_{k=1}^{n} (-1)^{k-1} \sum_{i=1}^{(k)} |x_{t_1} + x_{t_2} + ... + x_{t_k}| \ge 0$$

dont (5) et (17) sont des cas particuliers, pour n-3 et n=4 respectivement. Dragomir Z. Dokovic dans son travail cité [2] a montré que l'inégalité (17) n'est pas vraic, en général. De la même manière nous pouvons démontrer que pour n>3 quelconque l'inégalité (18) n'est pas vraic, en général. Pour cela il suffit de prendre $x_1=x_2=\ldots=x_{n-1}-1$, $x_n=-2$ (ou des valeurs quelconques non-nulles et proportionnelles à cette suite de nombres). Nous avons alors

$$\sum_{k=1, 2, ..., n} |x_{t_1} + x_{t_2} + ... + x_{t_k}| = {n-1 \choose k} k + {n-1 \choose k-1} |k-3|$$

$$k = 1, 2, ..., n \left[{n-1 \choose n} = 0 \right]$$

et si n>3, le premier membre de (18) devient

$$\sum_{k=1}^{n} (-1)^{k-1} \left[\binom{n-1}{k} k + \binom{n-1}{k-1} | k-3 | \right] = \sum_{k=1}^{n} (-1)^{k-1} \binom{n-1}{k-1} | k-3 | = 3 - n + \sum_{k=3}^{n} (-1)^{k-1} \binom{n-1}{k-1} (k-3) = 2(3-n) < 0.$$

De cette manière on a aussi répondu négativement à un problème que j'ai posé autrefois [7].

11. L'équation fonctionnelle

$$\sum_{k=1}^{n} (-1)^{k-1} \sum_{k=1}^{(k)} f(x_{i_1} + x_{i_2} + \dots + x_{i_k}) = 0$$

s, d'après M. Frèchet [3], comme solution continue générale un polynôme quelconque de degré n-1 qui s'annule pour x=0. On peut démontrer cette propriété comme dans le cas particulier n=3 de l'équation (15) en remarquant d'abord que tout polynôme de la forme $a_0x^{n-1} + a_1x^{n-2} + \ldots + a_{n-2}x$ vérifie l'équation et que toute solution vérifie

aussi l'équation fonctionnelle $A_k^n f(x) = \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} f(x+ih) = 0$ dont

la solution continue est bien connue.

Dans l'équation considérée les variables $x_1, x_2, ..., x_n$ sont choisies de toutes les manières possibles avec la seule restriction que toutes les

sommes $x_{l_1} + x_{l_2} + ... + x_{l_k}$ (pour tout k) restent dans un intervalle de l'axe réel qui contient l'origine. Cet intervalle peut, en particulier, se réduire à l'axe réel lui-même.

12. L'équation fonctionnelle

$$\sum_{k=1}^{n} (-1)^{k-1} k \sum_{k=1}^{(k)} f\left(\frac{x_{t_1} + x_{t_2} + \dots + x_{t_k}}{k}\right) = 0$$

vérifiée pour tout $x_1, x_2, \dots, x_n \in I$, a comme solution continue générale un polynome quelconque de degré 1.

Ce résultat peut être obtenu indépendamment de l'étude des fonctions pour lesquelles le premier membre ne change pas de signe.

En effet, tout polynôme de degré 1 vérifie l'équation, mais le polynôme x² n'est pas une solution puisque

$$\sum_{k=1}^{n} (-k)^{k-1} \frac{1}{k} \sum_{k=1}^{(k)} (x_{t_1} + x_{t_2} + \ldots + x_{t_k})^2 = \frac{1}{n(n-1)} \sum_{k=1}^{(2)} (x_{t_1} - x_{t_2})^2$$

est, en général, différent de 0. (I est de longueur non nulle).

En posant $x_i = x + (i-1)n!h$, i = 1, 2, ..., n, nous trouvons que toute solution f de l'équation considérée vérifie aussi une équation de la forme $\sum_{n=0}^{(n-1)n!} a_n f(x+\alpha h) = 0$, où x, $x+(n-1)n!h \in I$, les a_n sont des constantes

et $a_0 \neq 0$, $a_{(u-1)v} \neq 0$. Nous savons [5] que toute solution continue d'une telle équation est un polynôme.

BIBLIOGRAPHIE

- Adamović, Dušan, D. Généralisation d'une identité de Hlawku et de l'inégalité correspondante. Matem. Vesnik 1 (16) (1964), 39-43.
- Doković, Dragomir, Z. Generalizations of Hlawka's inequality. Glasnik Mat. Fiz. i Astr., 18 (1963), 169-175.
- Frèchet, M. Une définition fonctionnelle des polynômes. Nouv. Ann. des Math. (4) 9 (1909), 145-162.
- Hornich, H. Eine Ungleichung für Vehrorlängen, Math. Zeitschrift, 48 (1942), 268-274.
- Popoviciu, T.—Sur certaines équations fonctionnelles définissant des polynômes, Mathematica, 10 (1934), 197—211.
- Notes sur les fonctions convexes d'ordre supérieur. III. Mathematica, 16, (1940).
- 7. . -P. 139, Colloquium Mathematicum III, 2 (1955), 172.

ASUPRA UNOR INEGALITĂȚI CE CARACTERIZEAZĂ FUNCȚIILE CONVEXE

Regumat

Se demonstrează că inegalitățile (1), (6), (8) caracterizează funcțiile continue neconcave, iar (16) este o condiție suficientă, dar nu necesară, de neconcavitate.

О НЕКОТОРЫХ НЕРАВЕНСТВАХ ХАРАКТЕРИЗУЮЩИХ ВЫПУКЛЫЕ ФУНКЦИИ

Краткое содержание

В этой работе доказывается что неравенства (1), (6), (8) характеризуют непрерывные не вогнутые функции и что (13) является достаточным но не необходимым условнем выпуклости.