

SUR LES FRACTIONS CONTINUES DE J. MIKUSINSKI

PAR

TIBERIU POPOVICIU

(Cluj

On donne une nouvelle démonstration de la suffisance de la condition (3) du théorème 1 de J. Mikusinski [2]. On donne aussi quelques autres propriétés des fractions continues arithmétiques de la forme $[a, \dot{b}, 2\dot{a}]$.

1. Soit e un nombre naturel > 1, différent d'un carré, $(r_n)_{n=0}^{\infty}$ la suite des réduits du développement de $\sqrt[r]{e}$ en fraction continue arithmétique et $(x_n)_{n=0}^{\infty}$ la suite d'approximations de $\sqrt[r]{e}$ donnée par la relation de récurrence

(1)
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right), \ n = 0, 1, \dots, x_0 = [\sqrt[n]{c}]$$

J. Mikusinski a démontré [2] le théorème suivant Théorème 1. Pour que l'on ait

$$(2) x_n = r_{2^{n-1}}, \ n = 0, 1, \ldots$$

il faut et il suffit que le nombre c soit de la forme

$$c = a^2 + \frac{2a}{b}$$

où a et b sont des nombres naturels.

J. Mikusinski a démontré très simplement la nécessité de la condition et a aussi démontré la suffisance de la condition en remarquant qu'alors la fraction continue de $\sqrt[r]{c}$ est de la forme $[a, \dot{b}, 2\dot{a}]$. Dans la suite nous allons d'abord donner une démonstration un peu différente de la suffisance de la condition (3).

Les nombres naturels c de la forme (3) sont caractérisés par la propriété que si $a = \lceil \sqrt{c} \rceil$, le nombre 2a est divisible par $c - a^2$.

REV. ROUM. MATH. PURES ET APPL., TOME XIII, Nº 1, p. 79-83, BUCAREST, 1968

2. Désignons par $r_n = \frac{P_n}{Q_n}$, $n = 0,1,\ldots$, les réduits de la fraction continue arithmétique périodique [a, b, 2a]. Les suites (P_n) , (Q_n) sont des solutions $(u_n)_{n=0}^{\infty}$ du système d'équations récurrentes

$$\begin{cases}
 u_{2n} = 2au_{2n-1} + u_{2n-2} \\ u_{2n+1} = bu_{2n} + u_{2n-1}
\end{cases} \quad n = 1, 2, \dots$$

avec respectivement les valeurs initiales $P_0=a,\ P_1=ab+1$; $Q_0=1,\ Q_1=b.$

Mais si $(u_n)_{n=0}^{\infty}$ est une solution du système (4), les suites partielles $(u_{2n})_{n=0}^{\infty}$, $(u_{2n+1})_{n=0}^{\infty}$ sont des solutions (v_n) de l'équation de récurrence

(5)
$$v_n = (2ab + 2) v_{n-1} - v_{n-2}, n = 2,3, \dots$$

D'après la théorie, bien connue, des équations de cette forme nous avons $v_n = Ax^n + By^n$, $n = 0,1, \ldots$, où x, y sont les racines de l'équation caractéristique $z^2 - (2ab + 2)z + 1 = 0$ et A, B sont indépendants de n.

Si nous tenons compte de (3) nous avons

$$x = ab + 1 + b\sqrt{c} = \frac{b}{2a}\xi^2, y = ab + 1 - b\sqrt{c} = \frac{b}{2a}\eta^2$$

où $\xi = a + \sqrt{c}$, $\eta = a - \sqrt{c}$. Nous avons donc

(6)
$$v_n = \left(\frac{b}{2a}\right)^n (A \xi^{2n} + B \eta^{2n}), \ n = 0, 1, \dots$$

Pour obtenir les suites (P_n) , (Q_n) on détermine les suites partielles $(P_{2n})_{n=0}^{\infty}$, $(P_{2n+1})_{n=0}^{\infty}$, $(Q_{2n})_{n=0}^{\infty}$, $(Q_{2n+1})_{n=0}^{\infty}$, à l'aide des formules (6), en tenant compte respectivement des valeurs initiales $P_0 = a$, $P_2 = 2a^2b + 3a$; $P_1 = ab + 1$, $P_3 = 2a^2b^2 + 4ab + 1$; $Q_0 = 1$, $Q_2 = 2ab + 1$; $Q_1 = b$, $Q_3 = 2ab^2 + 2b$. Dans chacun de ces cas ces valeurs initiales déterminent les coefficients A, B correspondants.

En faisant les calculs, nous trouvons ainsi

(7)
$$\begin{cases} P_n = \frac{1}{2} \left(\frac{b}{2a} \right)^{\left[\frac{n+1}{2}\right]} (\xi^{n+1} + \eta^{n+1}) \\ Q_n = \frac{1}{2\sqrt{c}} \left(\frac{b}{2a} \right)^{\left[\frac{n+1}{2}\right]} (\xi^{n+1} - \eta^{n+1}) \end{cases}$$

Il est clair que ces formules sont valables en général si a, b, c sont des nombres non nuls tel que $cb = a^2b + 2a$.

La réduction d'un système de la forme (4) à une équation du type (5) a été faite par Th. Angheluță [1].

3. Revenant à notre problème, considérons la relation de récurrence (1). Nous avons

$$\frac{x_n - \sqrt{c}}{x_n + \sqrt{c}} = \left(\frac{x_{n-1} - \sqrt{c}}{x_{n-1} + \sqrt{c}}\right)^2, \ n = 1, 2, \dots, x_0 = a$$

d'où il résulte que

(8)
$$\frac{x_n - \sqrt[n]{c}}{x_n + \sqrt[n]{c}} = \left(\frac{\eta}{\xi}\right)^{2^n}, n = 0, 1, \dots$$

où bien

(9)
$$x_n = \sqrt{c} \frac{\xi^{2^n} + \eta^{2^n}}{\xi^{2^n} - \eta^{2^n}}, n = 0, 1, \dots$$

Mais, de (7) il résulte que

$$r_n = \sqrt[n]{c} \frac{\xi^{n+1} + \eta^{n+1}}{\xi^{n+1} - \eta^{n+1}}, \ n = 0, 1, \ldots$$

d'où l'égalité (2) s'ensuit immédiatement.

4. En remarquant que $|\eta| < \xi$, la formule (8) nous montre que la suite (x_n) converge vers $\sqrt[r]{c}$. Mais on peut approximer $\sqrt[r]{c}$ par d'autres suites itératives. Une telle suite $(y_n)_{n=0}^\infty$ est déterminée par la relation de récurrence

(10)
$$y_{n+1} = \frac{\alpha y_n + c}{y_n + \alpha}, \ n = 0, 1, \dots$$

où nous supposons que $y_0 > 0$ et que α est un nombre rationnel positif. En nous limitant seulement à des approximations rationnelles de $\sqrt[n]{c}$, le cas de α positif et irrationnel ne présente pas d'intérêt.

Tous les termes de la suite (y_n) sont positifs et nous avons

$$\frac{y_{n+1}-\sqrt{c}}{y_{n+1}+\sqrt{c}}=\frac{\alpha-\sqrt{c}}{\alpha+\sqrt{c}}\cdot\frac{y_n-\sqrt{c}}{y_n+\sqrt{c}},\ n=0,1,\ldots$$

d'où

(11)
$$\frac{y_n - \sqrt{\overline{c}}}{y_n + \sqrt{\overline{c}}} = \left(\frac{\alpha - \sqrt{\overline{c}}}{\alpha + \sqrt{\overline{c}}}\right)^n \cdot \frac{y_0 - \sqrt{\overline{c}}}{y_0 + \sqrt{\overline{c}}}, n = 0, 1, \dots$$

et, puisque $\left| \frac{\alpha - \sqrt{c}}{\alpha + \sqrt{c}} \right| < 1$, il résulte que la suite (y_n) converge vers \sqrt{c} .

La convergence de la suite (x_n) vers $\sqrt[r]{c}$ est d'ordre 2 tandis que celle de la suite (y_n) seulement d'ordre 1.

Supposons que $\alpha = y_0 = [\sqrt[n]{e}] = a$, alors de (11) il résulte que

$$y_n = \sqrt{c} \frac{\xi^{n+1} + \eta^{n+1}}{\xi^{n+1} - \eta^{n+1}}, \ n = 0, 1, \dots$$

en continuant de poser $\xi = a + \sqrt{c}$, $\eta = a - \sqrt{c}$.

Cette formule nous montre que si le nombre c est de la forme (3) et si $\alpha = y_0 = a$, nous avons

$$(12) y_n = r_n, \ n = 0, 1, \dots$$

donc que la relation de récurrence (10), avec la condition initiale $y_0 = [\sqrt{c}]$, nous donne précisément la suite des réduits de la fraction continue arithmétique de \sqrt{c} .

5. Proposons nous maintenant de déterminer le nombre naturel c (non carré) et le nombre rationnel (positif) α de manière que la relation de récurrence (10) donne précisément la suite des réduits $(r_n)_{n=0}^{\infty}$ de la fraction continue arithmétique de \sqrt{c} .

Pour cela désignons par $a=[\sqrt[r]{c}]$ et posons $c=a^2+k$. Si $[a, b, d, e, \ldots]$ est la fraction continue arithmétique de $\sqrt[r]{c}$ et $r_0, r_1, r_2, r_3, \ldots$, sont ses réduits successifs, de

$$r_1 = \frac{ab+1}{b} = a + \frac{1}{b} = \frac{\alpha a + a^2 + k}{a + \alpha}$$

il résulte

$$b = \frac{a + \alpha}{k}$$

De

$$r_2 = \frac{abd + a + d}{bd + 1} = a + \frac{1}{b + \frac{1}{d}} = \frac{\alpha(ab + 1) + b(a^2 + k)}{ab + 1 + \alpha b}$$

il résulte

(14)
$$d = \frac{\alpha - a + kb}{2ab + 1 - kb^2}$$

En fin de

$$r_3 = a + rac{1}{b + rac{1}{d + rac{1}{e}}} = rac{lpha(abd + a + d) + (bd + 1) \; (a^2 + k)}{abd + a + d + lpha(bd + 1)}$$

compte tenant de (13) et (14), nous déduisons

$$e = \frac{2\alpha}{k}$$

Mais les nombres b, e sont entiers (positifs), il en résulte donc que $2b - e = \frac{2a}{k}$ est aussi entier. Il en résulte que 2a est divisible par k, donc que le nombre e est de la forme (3). Dans ce cas e = b, donc $\alpha = a$. Nous avons donc la propriété exprimée par le

THÉORÈME 2. Pour que les y_n , $n=0,1,\ldots$, donnés par la relation de récurrence (10), où c est un nombre naturel (non carré) et α un nombre rationnel positif, soient les réduits successifs de la fraction continue arithmétique de \sqrt{c} , il faut et il suffit que c soit de la forme (3) et que $\alpha = \lceil \sqrt{c} \rceil = a$.

6. Remarquons que si c est un nombre positif quelconque et si nous avons (1), avec $x_0 > 0$, il en résulte

$$\frac{x_n - \sqrt{c}}{x_n + \sqrt{c}} = \left(\frac{x_0 - \sqrt{c}}{x_0 + \sqrt{c}}\right)^{2^n}, \ n = 0, 1, \ldots$$

En tenant compte aussi de la formule (11), on voit que nous pouvons énoncer le

THÉORÈME 3. Si c et α sont des nombres positifs et si les suites $(x_n)_{n=0}^{\infty}$, $(y_n)_{n=0}^{\infty}$ sont données par les relations de récurrence (1), (10), avec les valeurs initiales $x_0 = y_0 = \alpha$:

1° Elles convergent vers \sqrt{c} .

 $2^{\circ} \ On \ a \ x_n = y_{2^n-1}, \ n = 0,1,\ldots$

Reçu le 3 mai 1967

Institut de Calcul Académie de la République Socialiste de Roumanie, Filiale de Cluj

BIBLIOGRAPHIE

- 1. Angheluță, Th. Intégration d'une classe d'équations linéaires aux différences finies. Bulletin de la Soc. des Sciences de Cluj, T. III (1926), 94-104.
- 2. Mikusinski, J. Sur la méthode d'approximation de Newton. Annales Polon. Math., I (1954), 184-194.