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The *‘cquilibrium’ ecleclrons distribution function for a homogencous,. high-
frequency, fully ionized plasma is
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which have as iimit, the global maxwellian electrons distribulion function. /8:8 is not
maxwecllian not only to some restrictive physical condition imposed on the plasma
(and therefore on the integrated equations) but also Lo Lhe truncation proce-
dure of the system of equations.

1. INTRODUCTION

In a recent series of papers [1] we showed that the derivation of
certain explicit solutions of the Boltzmann equation means in essence
to know the ‘‘equilibrium” distribution function. The purpose of this
paper is to determine the analytical expression of this function for a homo-
geneous, fully-ionized plasma in an high-frequency electric field.

Following Krusckal and Bernstein [2] we have considered that in
the velocity space exist two regions :

— The region in which the collisions are dominated in the ener-
getical distribution of electrons. This means that the collision term is
larger that the Lorentz force term and the collisions may be considered
as inelastic [3].
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i

— The conexion region in which the Lorentz force term dominates
and the collisions may be considered as elastic. It is true that the residual
effect of inelastic collisions persists, especially in the direction of electric
field, but the effect of these is very small compared with those of Lorentz
forces and in any case may be considered of the same order of magnitude
as the neglected terms in the evaluation of explicit solutions of Boltzmann
equation [1].

Let us return, now, on the expression of collision frequency

/

vy = 4m«'v( o co) (1)

where N is the ions number, z-the electron velocity and o, is the terms
of series which is obtained by development of total cross section o in
spherical harmonics [4].

The expression (1) for I = 20" and 1 = 2" + 1 becomes :

vop = 4w-N-v Gzzl' ] 2
)2y T [41, 1 Go (2)

1 = Am Nop| 221 J 3
Vor 41 [4l' 3 Go (3)

For I’ = 0, we immediately obtain vy, = 0 and v, & 0.

The case v; & 0 has been studied by us in [1] and it corresponds
to the region of velocity space where the Lorentz force term dominates,
i.e. to elastic collisions.

The case v, = 0, corresponding to the same region, has no physical
significance. Thus for equilibrium, where it is possible to have £ =~ 0
or L =0, we are obliged to take also into consideration the inelastic
collision term.

The expression of inelastic collision term, or ‘‘imparfaitement’
Lorentzian in the Jancel terminology [5], has been intensively studied
in literature (see f.e. [2], [6], [7] etc.). It is:

KT d d
— . 103 0,0 i, 2.~ £0.0 4
M- do (% Jolo) + 2Mv?  dv (o dv 0:6) )

or, if we consider the dimensionless coordinates, u = (v/U), where T is
mean velocity, we obtain

Sa(foy = 2. 4 [m —,?_L(u 3:3+—1~--if3:3)] )

Qu2 E

where fg5 is the equilibrium electron distribution function; 8§ = 2(m,/M);
v is the mean collision frequency.
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Taking into consideration (5), the collision term of Boltzmann
equation is

3v d 1 d
S =28, ,Se — . 2 2 T > £00
+ S 242 du [u v ( o + du fo'o)] +

- 4TN B L_G). 2!;-334(&_ __G) o1 o |
. {(4z'+1 °) w3 o)l

The equation for fg and its solution are presented in Sec. 2. Some
remarks on the obtained results are contained in Sec. 3 and brief conclu-
sions are presented in Sec. 4.

2. EXPRESSION OF f33

The equation for f is obtained starting from (29). Thus, taking
into consideration the inelastic collision term too, we have :

d v d
s, 0,0 :Q'_“__ 0 S A R > P 6
(fo0) 6 du i 15 du VY (6)

where o = (¢2E2/mv%v?). But, observing that fi, = flis and taking
into account the expression of ftio from [1 — 2]

Vv

12(v2 + ©?)

fHle = —

( fo+—f) (7)

and the expression of S,,(f39) from (5), one obtains for f§ the following
equation

iluz s + L4 oo ] + A-uz-i[-l—fs:s +if3.-3] —0, (8
u 3 du u du

du
where :
A — V1Y (9)
(Vi + «?)
o
Y= 1<l (10)
and v; = v for a maxwellian plasma.
But

At (R )—i[Auz(i 3:3+if3:3) —24ufig]. ()
du du % du
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Replacing, now, (11) in (8) we obtain :

d 1 d d
| u3f88 — Aufdd + —-u?-—fod + Adu2 — =0 12
du[ o Jos 3 du o3 du OO] (12)
that
dd f8;8.3A 3+ o + fd(ud — Au) = C,. (127)
u

The solution of the homogeneous equation (C;, = 0) corresponding
to the eq. (12') is:

139 = K, exp —-S _ 3 4 +S 34 1y (13)
034 4+ 1 02(3A +1) i
which may be rewritten :
SA
o = K, -u- 34+ .ox — —u?}. 14
o p( 2(34 + 1) ) ()

The constant K; may be determined from the normalization condition

47:S v2f83 dv = ny. " (15)
0
Orne obtains, thus:
kK, = ®  94+2 : n ot (16)
47v3 S udd+1 exp( _ 1(2) du
0 2(34 + 1)

The integial from denominator is immediately if we observe that :

-} . 1 P+1 .o
S uPe- qu = (—) \ z’e~" dx (17)
Y l (31 -0

and taking into account [8]

= 1
| ore dam— P(” + ) (18)
0 q q
we obtain :
n
Kl = — T '1'2.2;'s—_———'—'—"_"'"' * (19)

27{1_)3[2 (34 +1)]m.r( 124 + 3 )
3 2
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The solution of the inhomogeneous equation (12’) (C, #* 0) may
be obtained using the method of variation of constants [see e.g. [15]].
By derivation of the equality (14) we obtain

d o ( a LY 34 L
o =|—— I w3+l L Ko ——— g 351
a1 =g T MY
64+1 \
_ Kl._g—.usiil).exp(___“.}ﬁ VVVVV w2l (20)
34 41 , 2(34 4 1)

Replacing (20) and (14) in (12') (with C; 5= 0) we obtain

0442
__d-_ I(I — 301 ./u—ﬂ.-i-}-l.exp. (_ uZ) . (21)
du 3A +1 \2(34 + 1)
The solution of the equation (21) will be denoted by
u 94.+2 2
IKy(u) = 3CI—~—~\ t 3-1l.exp (—~~ﬁ ) dt + H (22)
34 +1 2(34 + 1)

with H constant.

Replacing (22) in (14) we obtain the solution for inhomogeneous
equation (12'):

4 3
0.0 _ K, ubd+i.exp|——— 2 42 23
Jou 2 P( 234 + 1) ) (23)

or

30, 3 v gt 312
138 =——1 — udd+i.exp (———— u2)=s t 34+1.exp (—)dH-
34 +1 2(34 + 1) 0 2(34 4+ 1)

+ H-u%-exp (——3— uz)- (24)
2(34 + 1)

The constant H may be get replacing the solution (24) in (15):

753 o 94+2
H = {ln,o —_ MS [/uﬁ:l—ﬁ exp (_ ._3__,__ u2) .
34 +1J 2(34 + 1)

” 2

S t_:j_:i-exp (——3t2 ) dt]du] .

Jo 234 +1)) | |
84

o -1
R [471.'53 g um .exp . (___3___ “2) d,u]
AN 2(34 + 1)
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or

3(), po[ 2442
H = {ny — 12nv (/IS [1(3A+1-exp (———3
34 + 1 2(34 + 1)
w9442 - 2
S t—-"Trh exp (—ﬁ——) dt] du}-
0 2(34 + 1)
12A+3
Jonws 2(34 4+ 1) J°e4+2 I‘( 124 + 3 )}
3 2
Finally, the solution of (12°) is
84 3
00 — K, ,-u3+1.exp ( _— uz)
2(34 + 1)
where

K, ifC=0
]{1 0 = .
K,(u) if Cy == 0

3. REMARKS

1° For the diagram one can see that the function from (14) has

a maximum

I\’I(V%)al.exp (%‘—) for v = V2BI

34 3
oy =—— and g; = ————
34 + 1 2(34 +1)

where

The diagram is :

J

K22 70—

Fig. 1. — The diagram of

cquilibrium clectron dis-

tribution function in the
velocily space.

which is of the same form as that studied in literature [3], [9].
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2°. Because plasma is in a high-frequency electric field, i.e. &> vy,
we observe that, allways, we have:
34

34 <1and «"" =1 but not = (27)

34 +1

here we have taken into account (9) and (10).
In this case the expression (14) becomes :

3
= K,.exp| ——°—— u? 28
o8 p( 2(34 + 1) ) &9
or
. \
38 = Kyexp [ — - mE ‘ (29)
27001’9[1 +— l——] )
8(v% + w?) |
from where, with [8]:
@ — 18 -
[ omere g = D1/ a0
0 2(2p) P

and (15) we obtain :

m

K, =mng - 3l (31)
27k T (1 4o )
8(v% + w?)
Setting :
T, =T, =T,[1+ VIY-——) 32
’ (it (32)
we obtain for f9:) the expression :
m 312 m
o) =mg| ——=—] .ex ‘2 33
os °( 2k T, ) p( 20T, ) (33)

which is the well-known expression of the cquilibrium electron distri-
bution function [5], [6], [7], named also, global maxwellian distribution
function. The difference of this from ‘‘pure” maxwellian distribution is
the presence of the effective temperature 7,. But this latter distribution
is obtained immediately where the electiical field is nul, i.e. if

F=025E=0; a=y=0and T,=T, (34)

then (33) is exactly a maxwellian distribution function done by hix author.
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Because (14) is a particular case of (23) the above considerations
are exactly for this latter case, too.

f. CONCLUSIONS

Up to 1970 the distribution function for electrons at equilibrium
was unanimously accepted of the form (33). The results obtained with
this distribution were in an acceptable agreement with the experimental
data. This is why we utilized it in some previous papers to compare our
results with those presented in literature.

In 1970, Wright and Theimer [11] using quasiclasics (or quasi-
quantic) considerations showed that the ‘‘equilibrium” electron distri-
bution for £ = 0 is not a maxwellian one but it has a small correction
able to explain some desagreements between theory and experimental data.

The distribution of the form (33) may be immediately obtained
from the evolution equation for the first two t2rms of a Hartmann-Mar-
genau type truncation [12] (see [10] too).

The system of differential equations obtained from Boltzmann
equation by using a development into spherical harmonics, Fourier series
and series in terms of a dimensionless parameter «, [1], [13] lead us to
obtain an ‘“equilibrium’ electron distribution function for a homogeneous,
fully ionized plasma in a high-frequency electric field of the form (14)
or (23) which differs from (33). These are approximatively of the same
form for o > v,.
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