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The “equilibrium” electrons distribution function for a homogeneous, high- 
frequency, fully ionized plasma is

/0,0 = л'і,2 •изл+1 exp f----------3-------“
{ 2(З.Л -i- 1)

which have as limit, the global maxwellian electrons distribution function, is not 
maxwcllian not only to some restrictive physical condition imposed on the plasma 
(and therefore on the integrated equations) but also to Lhc truncation proce­
dure of the system of equations.

1. INTRODUCTION

In a rec-ent series of papers [1 ] we showed that the derivation of 
certain explicit solutions of the Boltzmann equation means in essence 
to know the “equilibrium” distribution function. The purpose of this 
paper is to determine the analytical expression of this function for a homo­
geneous, fullv-ionized plasma in an high-frequency electric field.

Following Krusckal and Bernstein [2] we have considered that in 
the velocity space exist two regions :

— The region in which the collisions are dominated in the ener­
getical distribution of electrons. This means that the collision term is 
larger that the Lorentz force term and the collisions may be considered 
as inelastic [3].
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— The conexion region in which the Lorentz force term dominates 
and the collisions may be considered as elastic. It is true that the residual 
effect of inelastic collisions persists, especially in the direction of electric 
field, but the effect of these is very small compared with those of Lorentz 
forces and in any case may be considered of the same order of magnitude 
as the neglected terms in the evaluation of explicit solutions of Boltzmann 
equation [1].

Let us return, now, on the expression of collision frequency •

where N is the ions number, r-the electron velocity and cr, is the terms 
of series which is obtained by development of total cross section c in 
spherical harmonics [4].

The expression (1) for Z = 21' and I = 2V + 1 becomes :

V2J' 4.1 — 4 7Z • N • V

G21' ]

4Г + 1 C°J

-2C + 1 ]
^“4_^2l

41

(2)

(3)

i.v, = 4tc • JV • V

For V = 0, we immediately obtain v0 = 0 and 0.
The case 0 has been studied by us in [1] and it corresponds 

to the region of velocity space where the Lorentz force term dominates, 
i.e. to elastic collisions.

The case = 0, corresponding to the same region, has no physical 
significance. Thus for equilibrium, where it is possible to have ~ 0 
or E = 0, we are obliged to take also into consideration the inelastic 
collision term.

The expression of inelastic collision term, or “imparfaitement” 
Lorentzian in the Jancel terminology [5], has been intensively studied 
in literature (see f.e. [2], [6], [7] etc.). It is :

Jlf-r2 dr 2J/r2 dr dr
(4)

or, if we consider the dimensionless coordinates, w = (r/u), where v is 
mean velocity, we obtain

0,0 \ __ d
2«2 dw

+-J-—.®)
v V 3 d?t J (5)

where До is the equilibrium electron distribution function ; 8 = 2(wc/Jf) ; 
v is the mean collision frequency.
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Taking into consideration (5), the collision term of Boltzmann 
equation is

« = Sin + Sel =
Sv

2tt2 dît +

47Г.У-V • ît
( °2«' _ \ 4"2l’,2m' I ( ct2!' + 1 _ \ /21< + 1. 2m' + l

" °r,e' " °r2fc'+1’"'

The equation for До and its solution are presented in Sec. 2. Some 
remarks on the obtained results are contained in Sec. 3 and brief conclu­
sions are presented in Sec. 4.

2. EXPBESSION OF До

The equation for Д£ is obtained starting from (29). Thus, taking 
into consideration the inelastic collision term too, we have :

О / /0,0 \ a /1,1 V d-
««nUO.oJ — — -—J-1,0 —

6 dît 12 dît
/і.-іJ -1.0 (6)

where к = (e2^/wei,2v2). But, observing that f-i.o — f-ïi and taking 
into account the expression of Ді.о from [1 —

f1-1 — —J-i.o — —
12(v?

V V1_______ f 1 /0,0 I /O,o\

5 + и«) I « “ + (7)

and the expression of $<„(До) from (5), one obtains for Д§ the following 
equation

d
dît

where :

И+-Нда)]+Лиг- _d_
dît

--Æ2 + -^-ÆS = «, (8)
ît dît

и

Л - Vlï
24(v? + со2)

a
y = y ; y <1

(9)

(10)

and ѵг = V for a maxwellian plasma. 
But

л,,г -л— р-Л» + Т-Л8І + -5-да) - 2Л»дг1 • <п>
dît \ ît dît J dît L \ ît dît J J
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Replacing, now, (11) in (8) we obtain 
d

d«
«ЭД _ AufS;°0 + -- «2 /о°о + Au2 JL/o.0 

3 dw dw
= 0 (12)

that

—Æo°.—— w2 + /o°.o>3 - Au) = Cv 
dtt 3

(12')

The solution of the homogeneous equation (C\ = 0) corresponding 
to the eq. (12') is :

[ru 4/ rn45JTId<4

which may be rewritten :

/о.о = Кі-гіАлГі exp (-

3A 1-dt
2(3 A +1) t

u*

(13)

(14)2(3 A + 1)

The constant K1 may be determined from the normalization condition

4k ( v2/0°;g dv = n0. 
Jo

(15)

One obtains, thus :

Ki =
nn

0--I+2 /
I w’a+i expl- u2 j d

(16)
и

2(3A + 1)

The integial from denominator is immediately if we observe that :

foo / 1 \ p + 1 -œ
I w”e-3,«- = I I l a?”e_:t2 da;
Jo VI h) -0

and taking into account [8]

Jo q V q J

:(17)

we obtain :

2tzv3 2 (ЗА + 1)
rr0

Ï24 + 3
0Л + 2 / 12 A + 3

(18)

(19)
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The solution of the inhomogeneous equation (12') ((^=£0) may 
be obtained, using the method of variation of constants [see e.g. [15]].

By derivation of the equality (14) we obtain

d. Z d 3A
iw \ dw

ЗА
du

-к,
ЗА + 1

3

и
i

3J4 ï _

6.1 +1 \ z з '— мзл + 1 j ,ехр J-------------------uz\
1 J V 2(3A + 1) )ЗА + 1 J " V 2(3A +

Replacing (20) and (14) in (12') (with 0) we obtain

3

(20)

Л ОЛ 9.14 2 z
---- =-----------î— ■ и 31+1 ■ exp ■ I -

~ M
■

du ЗА + 1 * V2(3A + 1)

The solution of the equation (21) will be denoted by

467 « / 3/2 \
Jf2(«) =------1 —- \ t 311 exp I-------------- 1 dt + H3A+l\, 42(3A+1)J

(21)

(22)

with H constant.
Replacing (22) in (14) we obtain the solution for inhomogeneous 

equation (12') :
3.1

До = К2иЗА+'ехр — и
2(3A + 1)

') (23)

or

/0.0Jo.o
30. (1 «w+i-exp I -

ЗА + 1 )-u 1ЫЧ-2 / oy2 \
• \ t зл+1 ■ exp I------------- I d<+

Jo \2(3A + 1)J

ЗА
+ 2?--мзл+1ехр u‘ (24)

2(3A + 1)

The constant H may he get replacing the solution (24) in (15) : 

127ЛЖѴГ ^4? / 3h = {По­
за +

9Л + 2

n r°°r z
гЦ“м+,еірс2(3A + 1)

и 1
df]dw] •• \ t ЗЯі1ехр f----- —----- dfldwj

Jo P \2(3A + 1) J J j

-oo ЗЛ / О

4wb3^ " * '(-u3A+1 exp
. о V 2(3A + 1)

dr/ j -1
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Ol'
11 = H.

іо-йіЗР г°° Г ÜAi? 12ТГО Gjf L.37ȚÎ.
«г 9Л + 2 z 3

l 7<зл+1. eXp I---------------- 1,
ЗА + 1 Jo L V 2(3A + 1)

І2Лз p4_+l) p’. г( 12A+ 3.) j-.
(25)

Finally, the solution of (12') is

(8J

/о,о = K^-u^+'-exp
2(3Jl + 1)

(20)и

where
7fi 2 = . Кг if G1 = 0 

Jf2(w) if C2 =f= 0

3. ItEAIARKS

1° For the diagram one can see that the function from (14) has 
a maximum

where

и = “l

The diagram is :

r
2 Pi

ai

Fig. 1. — The diagram of 
equilibrium electron dis­
tribution function in the 

velocity space.

which is of the same form as that studied in literature [3], [9].
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2°. Because plasma is in a high-frequency electric field, i.e. vn 
we observe that, allways, we have :

3.1
ЗА зл г iС 1 and и 1 but not he 1

ЗА + 1

here we have taken into account (9) and (10). 
In this case the expression (14) becomes :

До = Jfx.exp ( —-
2 (ЗА + 1)

or

До = K1exp -- tnev£
2k°Te [l +

from where, with [8] :

( x2a.e~1>x'd# =
Jo

and (15) we obtain :

-K-i — no

8(A +CÔ2)

(2a — 1) ! ! I/ -
2(2p)a Г P

27tĂ®TJl +
8(

Setting

Tej, = T'e = Te(l A-----)
V 8(A + <02)/

we obtain for /8:o the expression :

До =w0(- m. 3/2

2t№T’
.exp -e---- 4,2

2k°T'e

(27)

(28)

(29)

(30)

(31)

(32)

(33)

'hY___ \
Л + 6?)J

m

which is the well-known expression of the equilibrium electron distri­
bution function [5], [6], [7], named also, global maxwellian distribution 
function. The difference of this from “pure” maxwellian distribution is 
the presence of the effective temperature T'. But this latter distribution 
is obtained immediately where the electiical field is nul, i.e. if

E =0 => E0 = Q ; a = у = 0 and T’e =. Te (34)

then (33) is exactly a maxwellian distribution function done by his author.
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Because (14) is a particular case of (23) the above considerations 
are exactly for this latter case, too.

I. COXCLUSIOXS

Up to 1970 the distribution function for electrons at equilibrium 
was unanimously accepted of the form (33). The results obtained with 
this distribution were in an acceptable agreement with the experimental 
data. This is why we utilized it in some previous papers to compare our 
results with those presented in literature.

In 1970, Wright and Theimer [11] using quasiclasics (or quasi- 
quantic) considerations showed that the “equilibrium” electron distri­
bution for E = 0 is not a maxwellian one but it has a small correction 
able to explain some desagreements between theory and experimental data.

The distribution of the form (33) may be immediately obtained 
from the evolution equation for the first two terms of a Hartmann-Mar- 
genau type truncation [12] (see [10] too).

The system of differential equations obtained from Boltzmann 
equation by using a development into spherical harmonics, Fourier series 
and series in terms of a dimensionless parameter a, [1], [13] lead us to 
obtain an “equilibrium” electron distribution function for a homogeneous, 
fully ionized plasma in a high-frequency electric field of the form (14) 
or (23) which differs from (33). These are approximatively of the same 
form for co
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