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INTRODUCTION 

IN ORDER to produce a vector minimization principle which contains Ekeland’s variational 
theorem [8] as well as the results of [13. 141, we have to introduce cone valued metrics. 
Working with these metrics provides noteworthy technical facilities in some application 
oriented investigations, the most relevant one from our point of view being the fixed point 
theory. From the results of Eisenfeld and Lakshmikantham [5-71 comes the idea of application 
of regular cone valued metrics, which will play an important role in this paper. 

The normal cone valued metrics induce uniformizable topologies and every uniformizable 
Hausdorff topology can be induced by a normal and regular cone valued metric according to 
a result due to Antonovskij, Boltjanskij and Sarymsakov [ 11. The above considerations. largely 
exposed in our preprint [15] will only be summarized in Section 5. Problems concerning a 
special sort of relativized regularity considered first in [14] will be given in Sections 3 and 4, 
after showing by some examples in Section 2 the consistency of the notion introduced. The 
principal result of this paper is theorem 6.1. which constitutes a general nonconvex vector 
minimization principle containing Ekeland’s variational principle [8] and the results of [13, 
141. The principle comprised by theorem 6.1 is in fact a criterion for the above-mentioned 
relativized regularity of a cone. This is asserted by theorem 6.2. This paper ends with the 
deduction from theorem 6.1 generalizations of some results due to Eisenfeld and Laksh- 
mikantham [7], among others an ordered vector space variant of the Kirk-Caristi fixed point 
theorem [lo]. 

The proofs use the axiom of choice. In [16] we have shown that a denumerable variant of 
this axiom suffices when E is a Frechet space. This is the case also when E = R with the natural 
ordering. The relations of this axiom with the fixed point theorem cited above and with other 
ordering principles of the analysis were considered by Bronsted (21 (see also the assertion in 
[16, Section 1)). 

1. DEFINITIONS 

Let E be a vector space over the reals and let K be an acute convex cone in it, i.e. a set 
having the properties: (i) K + KC K; (ii) tK C K for each nonnegative real number t; (iii) 
K n (-K) = (0). We shall refer to K with these properties simply as to a tune in E, and shall 
suppose throughout that K + (0). Putting x d y whenever y - x is in K, we obtain a reflexive, 
transitive and antisymmetric order relation on E, which is translation invariant and invariant 
with respect to the multiplication with nonnegative reals. It is called the order induced by K 
or simply the K-order in E. The vector space E endowed with an order relation as defined 
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above is called ordered uector space and the cone K inducing the order in it is called its positive 
cone. K bounded, K monotone etc. will mean bounded, monotone etc, with respect to the 
order induced by K. 

The set A in the ordered vector space E with the positive cone K will be called full if A = 
(A + K) n (A - K). 

Suppose that E is an ordered vector space endowed with a locally convex vector space 
topology which is Hausdorff. The positive cone K in E is said to be normal if the zero element 
of E has a neighbourhood basis B(0) consisting of full sets. 

The cone K0 in K is called K bound regular (sequentially K bound regular) if each K. 
increasing and K order bounded net (sequence) in K0 converges to an element of Ko. If K is 
itself K bound regular (sequentially K bound regular) then it is called regular (sequentially 
regular). 

If Ko is a K bound regular subcone of K then it is obviously a regular cone. 
The cone K is called fully regular if each of its K increasing and topologically bounded nets 

is convergent to one of its elements. 
A stronger notion of relativized regularity was considered in [ll, 1.8.41. Various concepts 

of bound regularity were introduced and used in [14]. 

2. EXAMPLES OF REGULAR CONES 

2.1. Let K be a normal cone of 
subcone of K which is complete and 
and does not contain any subspace 
converging to 0 in its usual norm. 

the locally convex Hausdorff space E. Suppose that K. is 
has the property th at its linear span is complete, metri zable 
isomorphic with the Banach space co of the real sequences 
According to theorem 1 of McArth ur in [12], K. is fully 

regular. Since K is normal, every K. increasing K order bounded net in K. is topologically 
bounded too (see for example [17, II, proposition 1.41) and hence convergent by the full 
regularity of KI,. The limit of such a net is in Ko, the latter being complete by hvpothesis. We - 
have thus shown that K. is a K bound regular subcone of K. 

2.2. Suppose that B is a complete, convex and bounded subset of the locally convex 
Hausdorff space E. Suppose B does not contain 0. Let K(, be the cone generated by B. Then 
Ko is a K bound regular subcone of every normal cone K containing it. Indeed, if we consider 
the subspace sp K(, of E, then this space can be endowed with a norm considering the unit ball 
in it the convex circled hull of B. This topology on sp K(, is finer than that induced from E and 
sp K. is a Banach space with respect to the norm. In this space KI, admits a plastering and 
hence it is fully regular according to theorem 1.12 of Krasnosel’skij in (111. Now, since K is a 
normal cone containing K. the reasoning in 2.1 applies to conclude K. is K bound regular. 

2.3. Let S be a nonempty set and let Rs be the vector space of all the real functions defined 
on S, endowed with the topology of the pointwise convergence. This topology is in fact the 
direct product topology of RS and converts this space in a locally convex Hausdorff space. The 
cone Rs of all the nonnegative functions in RS is normal since the generating family of 
seminorms pS on R” defined by ps(x) = 1 x s ( >I is monotone on it ([17, II, proposition 1.51). It is 
also regular, since the convergence in RS is the pointwise one and hence the regularity of 
Rs is a direct consequence of the regularity of R+, the nonnegative half line. 

2.4. Let RS be the vector space considered at 2.3. Denote by c,,(S) the subspace consisting 
of the functions x having the property that for every positive real E the set (s E S : ix(s) > E} 
is finite. Let us define a norm on co(s) by putting ilxll = max Ix(s)l. Equipped with this norm, 
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co(S) becomes a Banach space ([3,11.2]). The cone c$ (S) of the nonnegative functions in co(s) 
is normal and regular. 

2.5. Consider the Banach space c of all the convergent sequences of real numbers endowed 
with the sup norm. Then c+, the cone of sequences with nonnegative terms is normal. Let co 
be the subspace in c of the sequences converging to 0. Then cl = c+ n co is a regular cone 
which is neither c+ bound regular, nor fully regular. 

2.6. Let K be a generating closed normal cone in the barelled space E. The set L+ of all the 
linear and continuous operators A with the property that A(K) C K forms a regular cone in 
the space L(E) of all the linear and continuous operators acting in E and equipped with the 
topology of simple convergence (see [lS, 9.11). 

2.7. Let H be a real Hilbert space. The linear and continuous operator A acting in H is 
called positiue if (Ax, x) 3 0 for every x in H. Let the vector space L(H) of all the &ear and 
continuous operators acting in H be endowed with the topology of simple convergence. Then 
the set L+ of all the positive operators forms a regular cone in L(H) ([ 15, 9.21). 

3. A SUMMATION CRITERION FOR REGULARITY 

The reduction of definitions of regularity to criterions which use a denumerable set of terms 
is very desirable from a technical point of view. In this direction we observe first of all that: 

a complete cone K. in K is K bound regular if and only if 

it is sequentially K bound regular. 
(3 1) . 

Proof of (3.1). The “only if’ part is immediate. For the converse implication let us assume 
that K. is sequentially K bound regular but is not K bound regular. Then there exists the K. 
increasing K bounded net (&, in K. which is not Cauchy. That is, there exists a neighbourhood 
U of 0 such that for any i in I there exists xi and xk with j a i and k zs i such that xi - xk e U. 
We can suppose xk - xi t K. since (xi) is K. increasing. Fix i and consider xi and xk as above. 
Put x, = Xj and ~2 = xk. Starting with xk instead of Xi, we can determine x3 and x4 in (.Q) so as 
to have x3 - x2 t Ko, x4 - x5 E K. and x4 - x3 e U. Continuing this procedure we obtain 
a sequence which is Ko increasing and K bounded, but is not Cauchy, contradicting the 
hypothesis. H 

The above assertion is used in establishing the following summation criterion: 

The complete subcone K0 of the cone K is K bound regular if and ’ 

only if for every sequence (x,) of K. the condition x, 4 U 

for any n and for some neighbourhood U of 0 implies that the 

m 

set (sm :mEN)wheres, = C x,, cannot be K order bounded. 
n4 

Proof of (3.2). Suppose that there is a sequence (.x,J in 

{ 

m 

some neighbourhood U of 0 such that Sm = C xn : m F 
n-1 

forms a K. increasing K bounded sequence which is not 
sequentially K bound regular. 

J 

Ko with xn e U for every n and for 

N 
1 

is K order bounded. Then (S,) 

convergent, that is, K0 cannot be 
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Assume now that K0 does not be K bound regular, and hence neither sequentially K bound 
regular by (3.1). Hence K. contains a K. increasing K order bounded sequence (2,) with the 
property that there exists a neighbourhood U of 0 such that z,+~ - zn & LJ for every n. We 
can assume z1 = 0. Then the elements X, = z,+ 1 - z, form a sequence in K. such that 

m 

s,= ~,=z,+~:rnEN z 
n=l 

is K order bounded. This contradicts the condition of the criterion and completes the proof. 

Summation criteria for various types of regularity were considered by McArthur (121 and 
by the author in [13, 141. The summation techniques in some problems concerning the 
sequentially regular cones had already been used by Krasnosel’skij in [11, theorems 1.6 and 

1 ‘I . . 

4. NEAR TO MINIMUM POINT CRITERION FOR REGULARITY 

Let E be a vector space ordered by the cone K. Suppose that M is a set in E and H is a 
subset of K. The point x in M will be said an H near to minimum point of M if 

. 
(x-H-K)nM=0. 

Another regularity criterion for a cone can be stated in terms of near to minimality. It is: 

the complete subcone K. of the cone Kin the locally convex space 

E is K bound regular if and only if for each nonempty set H 

in K. with the property that Ew is a neighbourhood of 0, 
(4 1) . 

every K lower bounded subset of E has H near to minimum points. 

Proof of (4.1). Suppose that M is a set of E which is K lower bounded by 6. Assume that 
H is as in (4.1) and there are no H near to minimum points in M. Then 

(x-H-K)nM#0 

for each x in M. Let us consider xl E M arbitrarily and choose 

x n+t E (xn -H-K)nM. 

n = 1, 2, . . . . Then we have 

X n+l s x, - h,, n E N 

for some h, in 
n = m, we get 

H, where s denotes the K order in E. Summing these relations from n = 1 to 

m 

Ch n s-1 -X,+1 <Xl 0 be 
n= I 

By the hypothesis on H, there exists a neighbourhood U of 0 in E so as to have h, e U for 
every n. This, together with the above relation show, via the criterion 3.2, that K. cannot be 
K bound regular. ‘ 
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To prove the “if” part of the assertion, assume that evet’y subset of E which is K bounded 
from below has H near to minimum points for each H as in 4.1, but K0 is not sequentially K 
bound regular. Using the criterion 3.2 again, it follows that there exist the elements x, in K0 
without some neighbourhood U of 0 such that the sums 

have a K upper bound b . 

is K order bounded from 

x = - 2 f X, or some m. 
n=l 

This means that the set 

I 
m 

M = -c xn :mEN 
n==t 

below by -6. Let x be an arbitrarily chosen element of M.’ Then 

We have 

m+i 

x -x m+l = - C&-f 
n= 1 

and 

x - xm+1 Ex-Hex-H-K, 

where we have denoted by H the set {Xn : n E IV). That is, we have got 

(x-H-K)nM#0 

for every x in M. Since H satisfies the hypothesis in the proposition, this is a contradiction. 

We shall use criterion 4.1 in the following slightly modified form: 

The complete subcone K. of the cone K in the locally convex 
space E is K bound regular if and only if for each H in K. (H # 0) 
with the property that EVI is a neighbourhood of 0, every set M in 

i 

(4.2) 
E which has K order bounded K lower sections, i.e. which contains 
a point z such that the set 

(z - K) n M 

is K order bounded, has H near to minimum points. 

5. CONE VALUED METRICS 

Let E be an ordered vector space with the positive cone K. A K metrr’c r on a nonempty 
set V is a mapping r of V x V into K which satisfies for arbitrary elements u, u and z in V the 
following conditions: (i) T(U, u) = 0; (ii) r(u, u) = 0 implies u = u; (iii) r(u, u) = T(D. rr); (iv) 
t(u, z) G r(u, u) + r(u, z), where G stands for the K ordering. 

If K is a normal cone in the locally convex Hausdorff space E, then the sets 

V(U, a) = {u E v: r(a, u) E u), u t B(O) 

with B(0) a neighbourhood basis in E consisting of full sets, and a runs over V, form a 
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neighbourhood basis for a Hausdorff topology on K The resulting topology is a uniformizable 
one; it is called the topology induced by r on V. Cauchy nets and complexity can be defined in 
a natural way (for details see [15]). Antonovskij, Boltjanskij and Sarymsakov have shown in 
[ 1, 11.4 and 11.5) that a completely regular Hausdorff topological space is K metrizable, with 
K the positive cone R$ of the space R5 considered in 2.3. We have observed that Rs is a 
normal and regular cone. That is, every completely regular Hausdorff topological space is K 
metrizable with K a normal and regular cone. Hence by 19, 1.151, the Hausdorff topological 
spaces which are K metrizable by a K metric of this kind are quite those which are uniformizable. 

Regular cone valued metrics were considered by Eisenfeld and Lakshmikantham in [5-7] 
for the case when K is a regular cone of a Banach space. Since criteria using a denumerable 
set of terms also work for regular cones in nonmetrizable locally convex Hausdorff spaces, we 
have as an immediate consequence of one of them, the criterion 3.2, the following assertion: 

Let V be a set endowed with a K0 metric r, where K0 is a K bound regular’ 
subcone of the normal cone K in the locally convex Hausdorff space E. Suppose 
that (0,) is a sequence in V such that the set 

is K order bounded. Then (u,) is Cauchy in the topology on V induced by the 
KO metric r. 

6. NONCONVEX MINIMIZATION 

‘(5 1) . 

Let V be a topological space and let F be an operator from V to the ordered topological 
vector space E. We shall say that F is submonotone if from the conditions: 

01 i imv, = 0, where (u,),~I is a net in V indexed by the totally ordered set I; 

(ii) $,) G F(Q) whenever v 3 p, it follows that 

F( 0) 6 F(u y) for every v in 1. 

Observe that submonotonicity is a feeble sort of lower semicontinuity of operators with 
values in ordered vector spaces. Various related but stronger notions were considered in [5- 
71 and in [13-151. 

The main result of our note is the following. 

THEOREM 6.1. Let E be a locally convex Hausdorff space and let K be a closed normal cone 
in E. Suppose that K0 is a K bound regular complete subcone of K. 

Let (V, r) be a complete KO metric space, and let F: V + E be a submonotone operator with 
respect to the K ordering. 

Suppose that F has K order bounded K lower sections, i.e. that there exists at least an 
element z in V such that the set 

(i) (F(r) - K) n F(V) has a K lower bound. 

Then for every t with the property (i) and for every positive real & there is a o so as to have 

(ii) F(z) - F(U) - ~(2, U) E K 
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and 

(iii) F(o) - F(w) - E~(u, w) @ K whenever w t V\(o). 

Let U be a neighbourhood of 0 in E. If H = K\CJ # E?, then for a z with the property (i) 
there exists a u in V such that 

(iv) F(z) - F(U) F K 

and 

(v) (F(u) - EH - K) n F(V) = 0. 

For every u with this property there is an element u in V satisfying (iii) and the condition 
(ii) with u instead of z, and such that 

(vi) T(u, 0) F U. 

Proof. Define the relation < on F(v) by putting F(p) < F(q) if 

It is straightforward that < is reflexive, transitive and antisymmetric, hence an order relation 
on F(V). Apply Hausdorff’s theorem (see [4,1.2.6]) to determine a subset 2 in F(V) which is 
totally ordered with respect to the relation <, has F(z) as supremum, and is maximal with 
respect to the set theoretic inclusion. We shall show that 2 contains its infimum with respect 
to _(. 

Let us introduce a relation G in F’(Z) = V. by putting p G q if F(p) < F(q). Then V. will 
be totally ordered with respect to =G and the filter of its lower sections is Cauchy. To verify 
this, let us assume the contrary: there exists a neighbourhood U’ of 0 such that for each s 
in V. there are p and q in Vo, p s s and q s s, such that r(p, q) e U’. Fix s and let p and 
q be as above. We can suppose p G q. Put ui = q, u2 =p. Then r(u2, uJ e CJ’ and 
F(uJ - F(u2) - &r(u2, u,) E K. Starting with p instead of s we can continue this procedure. 
Accordingly we can determine the decreasing sequence (0,) in V. such that 

T&k, u%_i) e U’ for every k. (6-l) 

From the definition of the relation G on V. we have also 

@n) - F(Un+l) - E~(o,+~, u,) E K for each It. 

By summing this relation from n = 1 to n = m, we get 

Since the elements F(u,) are all in the set (i), they have a K lower bound, say yo. Adding with 
F( u,+ 1) - y. E K, the above relation yields 
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The obtained relation shows that the sums 

m 

Z( rv n+ll on), m t N 
n=l 

are K order bounded, wherefrom we get, via the assertion (5.1), a contradiction with (6.1). 
The obtained contradiction shows that the lower sections of V. form a Cauch; filter, which 

converges by the completeness of V to v. 
Since F is submonotone with respect to the K order, we.have 

for everv p in V d Oe Let q be arbitrary in Vtl. For every p 6 q we have 

f(q) - F(P) - HP* sf .E K 

which bv adding to (6.2) vields * b d 

F(q) - F(o) - Er(p, q) E K. 

Letting p ---) v in this relation. taking into account K is .&sled, it follows 

.; F(q) - F(v) - Er( u, q) F K. 

that is. F(v) -C F(q) l?&r each F(q) in Z. Now, since 2 is maximal, F(v) must be in Z and it is 
the infimum of Z with respect to 4. 

The last assertion implies also that there does not exist anv w in V\(v) so as to have 
d F(w) < F(v). Thus we have proved the relations (ii) and (iii). 

If H is the set defined in the theorem. then by 4.2. with F(V) for M and with eH for H, we 
conclude the existence in Eof u with the properties (iv) and (v). 

If we proceed as above taking 14 in place of t, we can get a v in V so as to have (iii) and (ii) 
with u instead of t. that is. to have the relation 

F(v) E F(u) - w(u, v) - K. (6 3) . 

We assume now that (vi) does not hold. Then we have r(u, O) E KW = H. that is, 

F( ) U - w(u, v) - KC F(u) - EH - K. 

this relation together with (6.3) contradict (v). M 

We shall show that the principal result of theorem 6.1 consisting in the existence of a u so 
as to have relation (iii), which may be considered a nonconvex vector minimization principle, 
is the best possible with respect to the order relation in E, or, in other words, it characterizes 
the K bound regular subcones. More precisely, we have the following. 

THEOREM 6.2. Let K be a closed normal cone of the locally convex Hausdorff space E and let 
& be a complete subcone of K. Then the minimization principle comprised in the existence 
of a v satisfying (iii) of theorem 6.1, holds for every KO metric space (V, r) and every K 
submonotone mapping from V to E which has K bounded K lower sections, if and only if KO 
is K bound regular. 

Proof. The ‘if part is contained in theorem 6.1. For the converse implication let us suppose, 
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that K0 does not be K bound regular. Then by the criterion (3.1) there exist a neighbourhood 
U of 0 in E and a K0 increasing sequence (x,) in K0 which is K order bounded and for which 
x n+1- x, 4 U for every n. Put V = {x,: n F: N). Define a K0 metric I on V by putting 
T(Q, x,) = x, - x,, where m = max{h, k), n = min(h, k). Then V is trivially r complete since 
it is discrete. Let us define F: V-+ E by putting F(X) = 0-x. Then F is K lower bounded (since 
V = {x,) is K order bounded). Because V is discrete, F is trivially K submonotone. 

Put E = l/2 and consider X, to be arbitrary in V. Let m > n. Then 

FX,) - F(x,) - k(x, , x,) = -x, + x, - 3(x, - x,) = Q(xm - x,) E K. 

We have in conclusion for every o (=x,) in V that there exists some w (=x, with m > n) in 
V\(o) such that the relation (iii) in theorem 6.1 fails. l 

We observe the parallelism in form and in content between our theorem and the criterion 
(4.2). In fact, the nonconvex minimization principle can be considered itself a criterion for K 
bound regularity. 

7. A FIXED POINT THEOREM 

In the papers [5-71, Eisenfeld and Lakshmikantham have succeeded in extending various 
important results in metric fixed point theory for matrices with values in regular cones in 
Banach spaces. In [7] (Lemma 3.3) they extend the Kirk-Caristi fixed point theorem for 
metrics with values in regular minihedral cones with nonempty interior in separable Banach 
spaces. Theorem 6.1 permits us to obtain an essentially extended form of this theorem. The 
quoted result of [7] is the key of obtaining the principal result of the cited paper, which also 
can be extended using our following theorem. 

THEOREM 7.1. Let E be a locally convex Hausdorff space, K a closed normal cone in E and 
K. a complete K bound regular subcone of K. Let (V, t) be a complete Ko’ metric space and 
let F be an operator from V to E which is K submonotone and has the property that the set 

is K order bounded for some z in V. If f: V-, V satisfies the condition 

for every u in V, then f has a fixed point u such that 

F(u) s F(z) - r(u, z), 

where G stands for the K order. 

Proof. Put E = 1 and apply theorem 6.1 to V and F in the above theorem. Then it follows 
the existence of a u in V such that F(o) G F(z) - I(U, z) and 

F(u) - F(w) - T(W, u) @ Kwhenever w F V\(o). (7 2) . 

On the other hand (7.1) implies 

F(u) - F(f(u)) - r(f(u>, u) E K. 

If we would have f(v) # u, the obtained relation would contradict the relation (7.2). l 



678 A.B. NMETH 

1. 

2. 
3. 
4. 
5. 

6. 

7. 

8. 
9. 

10. 

11. 
12. 

13. 

14. 

15. 

16. 

17. 

REFERENCES 

~~ONOVSKIJ M. JA., BOLTJANSKIJ V. G. & SARYMSAKOV T. E. Topological Sem@ei& Izd. SamGU, Tashkent 
(1960). (In Russian.) 
BRB~STED A., Fiied points and partia1 orders, Proc. Am. math. Sot. 60, 365-366 (1976). 
DAY M. M., Nomed Linear Spuces, Springer, Berlin (1973). 
D~ORD N. & SCHWARTZ J. T., Linear Operators I, Interscience, New York (1958). 
E~SE~JFELD J. & LAKSHMIKAMHAM V., Comparison principle and nonlinear contractions in abstract spaces, 1. 
math. Analysis Appk. 49, 504-511 (1975). 
EISE~LD J. & LAKSHMIKA~M V., Fixed point theorems through abstract cones, J. math. Analysis Appfic. 
52, 25-35 (1975). 
EISENFELD J. & LAKSHMIKAN?HAM V., Fixed point theorems on closed sets through abstract cones, Technical 
Report NO. 39, University of Texas at Arlington (March 1976). 
EKELAM) I., Nonconvex minimization problems, Bull. Am. math. Sot. (NJ.) 1, 44-74 (1979). 
ISBELL J. R., Uniform Spaces, Am. Math. Sot. Surveys No. 12, Providence, RI (1964). 
KIRK W. A. & CARISTI J., Mapping theorems in metric and Banach spaces, BUN. Acad. PO/on. Sci. Ser. Math. 
23, 891-894 (1975). 
KRASNOSEL’SKIJ M. A., Positive Solutions of Operator Equations, Nordhoff, Groningen (1964). 
MCAR~UR C. W., In what spaces is every closed normal cone regular ?. Proc. Edinb. Moth. Sot. 17 (Series II), 
121-12s (1970). 
NAMES A. B., Nonconvdx minimization principle in ordered regular Banach spaces, Mathematics (Cfuj) 23 (46), 
43-48 (1981). 
NEMETH A. B., Summation criteria for regular cones with applications, “Babes-Bolyai” Univ. Faculty of Math. 
Research Semin., preprint No. 4, pp. 99-124 (1981). 
N~METH A. B., Normal cone valued metrics and nonconvex vector minimization principle, “Babe3-Bolyai” Univ. 
Faculty of Math. Research Semin., preprint No. 1 (1983). 
N~METH A. B., Nonconvex vector minimization principles with and without the axiom of choice, “Babe%-Bolyai” 
Univ. Faculty of Math. Research Semin., preprint No. 1 (1983). 
PERESSI~JI A. L., Ordered Topological Vector Spaces, Harper & Row, New York (1967). 


