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Introduction

Since its inception in the papers of Valadier [14] and Levin [5], the theory of
vector-valued convex analysis has been concerned with operators having values in
order-complete vector lattices. The special interest of these spaces is motivated by the
nice subdifferentiability properties of convex operators acting in such spaces. Besides
considerable progress in this direction (see [11] and the references therein), there are
results concerning more general ordered vector spaces. Zowe [15], and recently
Borwein [1], have obtained results when conditions are imposed on the domain space
of operators. Another approach is to build up the subgradients using directional
minorants (or directional derivatives, when a topology is given). This method, initiated
by Fel'dman [4] (see also [8,2]), has the advantage that conditions are imposed only
on the range space. This approach suggests the natural question of how to characterize
the ordered (topological) vector spaces in which every convex operator has directional
minorants (directional derivatives) at each point and in every direction. Such a
characterization can be done in terms of classical ordered (topological) vector spaces,
and this is the principal result of the present note. It furnishes, using Fel'dman's
theorem, a necessary and sufficient condition for every convex operator with
values in an ordered vector space admitting isotone real functionals to have nice
subdifferentiability properties.

The author expresses his gratitude to the referee and to J. M. Borwein for many
valuable suggestions which improved the original version. Their remark, that the
directional minorability of convex operators implies the Archimedian property of the
space led to the present improved version of Theorem 1.

1. Prerequisites

An ordered vector space is, by definition, a pair (Y,K), where Y is a real vector
space and K is a cone in it, that is, a subset having the properties (i) K+ K <=. K, (ii)
tK <= Kior each non-negative real number / and (iii) K f) (— K) — {0}. The order relation
induced by Kin Y\% defined by putting u ^ v whenever v — u e K. Then ^ is a reflexive,
transitive and antisymmetric relation which is invariant with respect to translations
and to multiplication by non-negative real numbers. The cone K is called the positive
cone of the ordered vector space.

The ordered vector space (Y, K) is Archimedian ify ^ 0 whenever^ ^ tz for some
zeATand all / > 0.

The space (Y, K) is said to admit an isotone functional if there exists / : Y -*• U
having the property that for any u and v in Y, the relations u ^v, u ^ v imply that

Au) <Av).
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The space (Y,K) is said to have the monotone sequence (monotone net) property
if every decreasing sequence (net) in Y with a lower bound has an infimum.

If we suppose that Y is a topological vector space, then (Y, K) will be called an
ordered topological vector space. All the topological vector spaces we shall deal with
are supposed Hausdorff.

The ordered topological vector space (Y, K) is called normal if there is a base of
neighbourhoods V of 0 with

V=(V-K)(](K-V).

The ordered topological vector space (Y, K) is called regular (sequentially regular)
if every decreasing net (sequence) having a lower bound has a limit in Y. If (Y,K)
is regular (sequentially regular) and if K is closed, then (Y, K) has the monotone net
(sequence) property by [12, Corollary II.3.2]. Observe that in this case (Y,K) is
Daniell space. An ordered topological vector space is called (countably) Daniell if it
has the monotone net (sequence) property and every decreasing net (sequence) with
a lower bound converges to its infimum.

Let F be an operator from a real vector space X to (Y, K). Then F is called convex

F(tXl + (\-t)x2) ^ tF(Xl) + (\-t)F(x2)

for all xlf x2 in x and all / in [0,1].
The directional minorant of F at x0 in the direction h is defined by

VF(x0; h) = inf t-i(F(xo + th)-F(xo))
t>o

when this infimum exists.
Suppose that (Y,K) is an ordered topological vector space. Then the directional

derivative of F at x0 in the direction h is the limit

F(x0; h) = lim r\F(xo + th)-F(xo)),
t\o

if it exists.
Let x0 and h be fixed in X. If F is convex, then the operator

is increasing on R\{0} (see for example [5] or [14]). Hence, when K is closed and
F(x0; h) exists, VF(x0; h) also exists (this follows from [12, Corollary II.3.2]).

Let L(X, Y) be the space of linear operators from X to Y. The set

dF(x0) = {AeL(X, Y):Ax ^ F(xo + x)-F(xo) for all xeX}

is called the subdifferential of F at x0. The elements of dF(x0) are called subgradients
of F at x0.

For future reference we shall use Greek letters for alternatives in the following
known result concerning the existence of directional minorants and directional
derivatives.

PROPOSITION 1. (a) If (Y,K) is an ordered vector space with the monotone
sequence property, then each convex operator with values in (Y, K) has a directional
minorant in every direction at every point of its domain.
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(fi) If(Y,K) is a sequentially regular ordered topological vector space, then each
convex operator with values in (Y,K) has a directional derivative in every direction at
every point of its domain.

The proof is straightforward. The alternative (a) appears, for instance, in [14] and
in [1, Proposition 3.7(a)].

Since (/?) was not explicitly stated in this form (usually the normality of K is also
required—see for example [14, Theorem 5.1] or [1, Proposition 3.7(c)]) we give its
proof.

Let F be a convex operator from the vector space X to (Y, K). Let x0 and h be
fixed in X. The operator <f> defined by (*) is increasing on R\{0}. If we assume that
\\mt s 0 <f)(t) does not exist, then we get a neighbourhood U of 0 in Y for which we can
construct a decreasing sequence (/n) of real numbers converging to 0 such that

^('2&-i) - <f>(t2k) i U for each k.

Now, since the sequence (<f>(tn)) is decreasing and F(xo) — F(xo — h) is a lower bound
for it, we get a contradiction with the hypothesis.

REMARK. For some ordered topological vector spaces, regularity implies nor-
mality. McArthur [7] has shown that every closed regular cone in a Frechet space is
normal. In the case of locally convex spaces he gave in [6] conditions in order that
every closed normal cone be regular. There exist ordered normed spaces which are
regular but lack normality [9].

2. Main results

We state first our principal results in the form of two theorems.

THEOREM 1. Let (Y, K) be an ordered vector space and let X be a vector space of
dimension greater than or equal to 1. The following assertions are equivalent.

(i) (Y, K) has the monotone sequence property.

(ii) Each convex operator F:X—>(y,K) possesses a directional derivative in every
direction at every point.

(iii) Each convex operator F:X-+(Y,K) possesses a directional minorant at 0 in
some non-zero direction.

THEOREM 2. Let (Y, K) be an ordered topological vector space and let Xbea vector
space of dimension at least 1. Then the following assertions are equivalent.

(i) (Y,K) is sequentially regular.

(ii) Each convex operator F:X-+{Y,K) possesses a directional derivative in every
direction at every point.

(iii) Each convex operator F:X->(Y,K) possesses a directional derivative at 0 in
some non-zero direction.

We shall follow in the proofs a schema proposed by J. M. Borwein (which
simplifies essentially our original version in [9]). Consider first some auxiliary results.



ON THE SUBDIFFERENTIABILITY OF CONVEX OPERATORS 555

PROPOSITION 2. Let (an) and (yn) be sequences in U and Y, respectively with
an > an+ifor each neN. In order that a convex operator/: U -* Ysuch thatf{an) = yn

exists, it is necessary and sufficient that

A =

is decreasing with respect to n.

Proof. We have An ̂  An+1 if and only if

Sn+l
an+i~an+2 , an~an+i

an "n+2 "n "n+2

This relation shows the necessity of the condition. To verify the sufficiency, define
/ n : R - y b y

fn(t) = (t-an)An+yn,
and observe that each/n is affine and

Thus

fit) = max/fc(/) = / n (0 if / e[fln+lf a j
keN

defines a convex operator with f{an) = yn.

PROPOSITION 3. Let (un) be a sequence in K with un+1 < tn unfor some tn in (0,1).
Then one can select a sequence (an) in U decreasing to zero such that the operator f
defined on {an} byf(an) = an un has a convex extension to U.

Proof. Inductively, suppose that alt ...,an have been selected. By Proposition 2
it is sufficient to find r small enough so that

n - l ^ 1
an-\-an an~r

From the hypothesis, we can find Sn > 0 such that

«"l T V ( n - l n ) + n > ( +
"n- l an

while, since «n+1 ̂  0, for every r with 0 < r < an we obtain

A ( ) ()

Take r sufficiently small in order to have r/(an — r)^Sn as well; then An-1 ^ An(r) and
0 < flji+i < arf> a s desired.

LEMMA. If each convex operator f :X->(Y,K) possesses a directional minor ant at
0 in some non-zero direction, then (Y,K) is Archimedian.

Proof. We shall show that if (Y,K) is not Archimedian, then there exists a
convex operator from U to (Y,K) without directional minorant at OeR in the
direction 1 e U. Observe first that (Y, K) is Archimedian if and only if each set of the
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form {tx:t > 0} with xeK has an infimum. Indeed, suppose that v is an infimum of
the set {tx:t> 0}, where xeK. Then v ^ 0 and sx ^ rv for arbitrary 5 > 0 and r > 0. If
we fix r = 2, then it follows that 2v is a lower bound for the set {tx: t > 0}, thus v ^ 2v,
that is, y ^ 0. Hence if every set of this kind has an infimum, it must be 0. But then,
if tx ^ y for some xeK and every / > 0, it follows that y ^ 0, that is, (Y,K) is
Archimedian. The converse is immediate. Now assuming that (Y,K) is not Archi-
median and considering a set {tx:t > 0}, where xeK, without infimum, we define
/ : U -> (Y, K) by putting^/) = 0 for / ^ 0 and/(0 = t2x for / > 0. Then/is obviously
convex and the set {/^(/(f)-f[0)) = tx:t> 0} has no infimum, that is, V/(0; 1) does
not exist.

Proof of Theorem 1. Clearly (ii) implies (iii), while (i) implies (ii) by Proposition
l(a). To show that (iii) implies (i) we argue as follows. Let (vn) be a decreasing
sequence in K. Let un = vn(n + \)/n. Then 0 ^ un ^ (1 — \/n2)un_x for each n, and
Proposition 3 applies. Let F(t) =J{\t\) with / constructed as in Proposition 3. Then
d = vT(0; 1) exists by hypothesis and

d= inf a-nKF(an)-F(0))= inf un.
neN neN

Since (Y, K) must be Archimedian by the preceding lemma, tfalso will be an infimum
of (vn). Indeed, we have d ^ (1 + 1 Jn) vm for all n and m. Fix m for the moment. Then
d—vm <; vm/n for all n and hence d < vm, that is, d is a lower bound for (vm). Every
other lower bound v of (un) will be a lower bound for (un) too, and hence v ^d. This
completes the proof.

Proof of Theorem 2. Clearly (ii) implies (iii), while (i) implies (ii) by Proposition
1(/?). For the proof that (iii) implies (i) we consider a decreasing sequence (vn) in K.
Then, since un = vn(n+ \)/n, we can construct by Proposition 3 a convex function
F.R-* Y such that F(0) = 0 and F(an) = an un with some sequence (an) decreasing
to zero in U. If we consider now

lim a-\F(an)-F(0)),
ra->oo

which certainly exists, we deduce that l i m ^ ^ wn exists. But vn = («/(«+ l))wn has
obviously the same limit, and so Theorem 2 is proved.

3. Application to subdijferentiability

Let X be a vector space and let (7, K) be an ordered (topological) vector space.
Suppose that F:X^(Y,K) is a convex operator. We shall say that F is fully
subdifferentiable at xoeX if (i) V/XJC,,; •) (or F(x0; •)) is defined on X, (ii) dF(x0)
is non-empty, and (iii) for every h in X one has the relation
VF(x0; h) = max {Ah: AedF(x0)} (or F(x0; /i) = max {Ah: AedF(x0)}).

As a consequence of a result of Fel'dman [4] (see also [8,2]) combined with some
continuity properties of convex operators in [3,1] we have the following.

PROPOSITION 4. Let Fbe a convex operator from the vector space X to the ordered
vector space (Y, K) with the monotone net property or to the ordered topological vector
space (Y,K) which is Daniell. Then F is fully subdifferentiable at each point of X.
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If X is a topological vector space, (Y,K) is an ordered normal topological vector
space which is Daniell, and if F is continuous at x0, then it is fully subdijferentiable at
x0 and all the maps in the definition of the full subdifferentiability are continuous.

By using Theorems 1 and 2 we can give the following characterization of the
ordered vector spaces in which all the convex operators are fully subdifferentiable.

THEOREM 3. Let (Y,K) be an ordered vector space (respectively an ordered
topological vector space with closed positive cone) which admits an isotone functional.
Then the following assertions are equivalent.

(i) (Y, K) has the monotone sequence property {respectively is countable Daniell).

(ii) Every convex operator F from a vector space X to (Y,K) has directional
minorants (respectively directional derivatives) in every direction at every point in X.

(iii) Every convex operator Ffrom a vector space Xto(Y, K) is fully subdifferentiable
at each point of X.

Proof. Condition (i) implies condition (ii) by Proposition 1. To verify that (ii)
implies (iii) we observe that in the presence of an isotone functional the monotone
sequence property (respectively the countable Daniell property) implies the monotone
net property (respectively the Daniell property), the reasoning being similar to that
in [13, Proposition II.4.9]. Hence Proposition 4 can be used. Finally (iii) implies (i)
according Theorem 1 (respectively Theorem 2).

REMARK. In [4,2] it was shown that the condition dF(x) # 0 for each convex
operator F with values in (Y, K), called the subgradient property of(Y,K), does not
imply that the space has the monotone sequence property. In the given counter-
examples (Y,K) is not Archimedian. Our results say nothing about the relationship
between the monotone sequence property and either the subgradient or the Archi-
median properties. (For other problems concerning the subgradient property see [10].)
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