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The authors extend the deduction of the equations satisfied by the force fields from inertial to rotating frames, when the 
curves of a certain family are known to be solutions for the equations of motion. Then Drimbii’s equation is obtained as a 
consequence of this result. The works of Hadamard and Moiseev are proved to be closely related to the inverse problem of 
dynamics. 
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1. Introduction 

The inverse problem of dynamics consists in finding the force field (or t..e potential) w ich governs the motion of 
a dynamical system, knowing a given family of orbits. The first outstanding results are due to Newton (1687), 
who found that the forces generating spirals or ellipses are proportional to the distance or inversely proportional 
to  the square or the cube of the distances. 

The problem was reconsidered at  the end of the XIXth century by Bertrand (1877) and was generalized by 
Dainelli (1880) and Jukovski (1890) (more informations on this period for the Russian school are given in Shorokhov 
(1988)), their results being presented by Whittaker (1904). These are closely related to  the research of Hadamard 
(1897) on the contacts of solutions of a dynamical system with a given family of curves, which was then extended 
by Moiseev (1934) to systems in a rotating frame. The inverse problem for this last situation was considered by 
DriimbB (1963), fact reported by Stavinschi and Mioc (1993); but the paper which gave a real impulse to  the field 
of the inverse problems was that of Szebehely’s (1974). An impressive number of papers were ever since dedicated 
to the subject, a recent synthesis being contained in Bozis (1994). 

The aim of this note is to show that DrambB’s equation can be obtained from a generalization of Dainelli’s 
result to  rotating systems and to reveal the importance of the works of Hadamard (1897) and Moiseev (1934). 

2. Inverse problems in an inertial frame 

We devote this section to the problem considered by Dainelli (1880) and Whittaker (1904, p.93), following the 
ideas of Dainelli, whose proof is simpler than Whittaker’s one using the tangential and normal components of 
acceleration. 

Being given a family of orbits 

f(z, y) = c = constant, (1) 

one looks for the force field (the force depending only on the position coordinates (2, y)) for which this family is 
an orbit family of a particle. More precisely, one will find the components X ( z ,  y) and Y ( z ,  y) of the force under 
whose action a particle of the unit mass will describe the orbit family (l), the motion being governed by the system 

X = X  
y = Y. 
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Theorem 1. Let D c R2 be an open set and f E C 2 ( D )  such that f , (z ,y)  + f z ( z , y )  # 0 for each (z,y) E D. If 
the system (2) admits as orbits the curves of the family (l), then 

where k E C 1 ( D ,  R+) is an arbitrary function. 
Proof. Differentiating in (1) we obtain 

if, + Yfy = 0, 

x = *&fy 

y = 4f,, 

(4) 

hence x and y will be given by 

(5) 

the sign depending on the sense of the motion on the orbit. Differentiating again we have 

Using the equations (2) we obtain the relations (3). 0 

Remark 1. For k = K 2 F 2  one gets the values of X and Y given by Dainelli (1880), for k = -u those given by 
Whittaker (1904), and for k = g2 those given by Broucke and Lass (1977), where the relations (3) are also given 
as 

I f x  k 2 x = $(kf& - 2-( f,)Y 
Y = h ( k f i ) y  - f f ( k f i ) z .  P 

Now we shall derive the partial differential equation obtained by Szebehely (1974) for the potential function V as 
a direct consequence of Dainelli’s result. 

The problem is to  determine the potential energy U or the potential function V = -U E C’(D) for which the 
equations of the motion of a unit mass particle are 

x = v, 
Y=v,, 

knowing a given family of orbits (1). 
The system (7) admits the energy integral 

(7) 

x 2  + y2 = 2(V + E ( f ) ) ,  (8) 

E(f) being constant on every orbit in (1). 
Theorem 2. Let D c R2 be an open set and f E C 2 ( D )  such that f;(z, y) + f,”(z, y) # 0 for each (z, y) E D. If 
the system (7) admits as orbits the curves of the family ( l ) ,  then the function V satisfies the partial differential 
equation 

Proof. Applying theorem (1) we have 

vz = k ( f r y f y  - f y y f z )  + ( k f y  - k y f z )  f y / 2  

v y  = k ( f z y f z  - fzzfy)  - ( k z f y  - kyf,) fz /2 ,  

with k E C1(D, R+) satisfying the relations ( 5 ) .  
Eliminating the expression which contains the partial derivatives of k in the relations above one obtains 

fZVZ + f y V y  = k ( 2 f z y f d - y  - f , ” f y y  - f i f zz )  * (10) 

From the energy integral and the relations ( 5 ) ,  the function k is given by 
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Replacing this in (10) one obtains the well-known Szebehely's equation (9). 0 
Many years ago, Hadamard (1897) studied the case when the isoenergetic trajectories of the system (7) with 

a given potential function V have a contact of order at  least two with the curves of the family (1).  This means 
that at the point (2, y) = ( ~ ( t ) ,  y(t)) we have 

q t )  = 0, @(t) = 0, @"(t)  = 0, 

@(t)  = f(.(t), Y(t))  - Cl 

(11) 

where 

(12) 

( z ( t )  , y(t)) being a solution of the system (7). In fact, Hadamard studied more general systems in curvilinear 
coordinates, but applying his result to  (7), we get the following statement. 
Theorem 3. In the conditions of theorem (2), if the solutions of the system (7) have a contact of order at least 
two with the curves of the family ( l) ,  then the following relation is true 

Proof. The third equality in (11) is 

Substituting 2 and y from the equations (7), i , y  from the second equality in ( l l ) ,  and taking into account the 
energy integral 

x2 + yz = 2(V + E), 

we obtain the relation (13). 
Remark 2. If the curves of the family (1 )  are solutions of the system (7), they have obviously a contact 

of any order a t  each point, so theorem is a consequence of theorem (3) (it is not essential in theorem (3) that 
the trajectories are isoenergetic). But Iladamard, who obtained the relation (13) (even in a more general form) 
between the potential V and the family of curves (l), did not interpreted it explicitly in terms of an inverse 
problem. Nevertheless, we have the feeling that his result must be mentioned when speaking of the history of the 
inverse problem. 

3. Inverse problems in a rotating frame 

Dainelli considered the system (2) which does not depend on k and 6 ,  but one can study a similar system 
corresponding to a rotating frame. Let this system be 

where X ,  Y are functions of ( 2 , ~ ) .  
Suppose that in the rotating frame zOy a family of planar curves (1) can be traced by the moving particle. 

We obtain then a result similar to that of Dainelli (1880). 
Theorem 4. Let the conditions in theorem (1 )  be satisfied by the family of curves (1). If the system (14) admits 
as orbits the curves of the family ( l ) ,  then X and Y are given by 

Ic E C1(D, R+) being an arbitrary function. 
Proof. Following the same idea of Dainelli (1880) as in theorem , we obtain the relations (4), (5) and (6). 

Replacing now in (14) the values of x, y,  k and y obtained as functions of k, f and their partial derivatives, we 
finally get the relations (15). 0 

Remark 3. It is clear that in this case the sense of motion on the orbit is significant, because the system is 
no more reversible. That is why the f s i g n  appears in (15), which was not the case in (3) for the reversible system 
(2). 
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Remark 4. The relations (15) have the equivalent form 

x = i-Z&f, + f(kf,2), - $f”(kf,”)y 
f Y  

f z  
y = It2&fy + $(kfi)y - 2-( 1 f Y  k f,),. 2 

From theorem (4) we can deduce the condition satisfied by the potential energy U or the potential function 
V = -U E C1(D) appearing in a system of the type 

x - 2y = v, 
y + 2 3 : = v y ,  

which has as orbits the curves in the family (1). 
The system (16) admits the energy integral 

x 2  + y2 = 2(V + E( f ) ) .  (17) 

The result for potential systems in rotating frames was obtained by Drkmbii (1963) and by Szebehely and 
Broucke (1981). Their result may be proved as follows. 
Theorem 5 .  Let the conditions in theorem (1) be satisfied by the family of curves (1). If the system (16) admits 
as orbits the curves of the family ( 1)1 then the function V satisfies the partial differential equation 

Proof. From theorem (4) with X = V,, Y = Vy we obtain 

v, = k2AfZ + k (fzyfy - fyyfz) + ( b f y  - kyfz) fy /2  
vy = f 2 4 f y  + k ( fzyfz  - f zz fy )  - ( L f y  - kyfz) f,/2. 

f zv ,  + f y  v y  + 

x = k&fy 
Y = F&fz, 

k = 2(V + E(f))/(f2 + f,”), 

Multiplying the two equations by f z l  respectively f y r  and summing up we get 

( f z d , ”  - 2fzyfzfy + f y y f 2 )  7 2 f i  (f: + f,”) = 0 

Having in mind that 

the energy integral (17) gives 

and the relation (18) follows. 0 

The considerations of Hadamard for inertial frames were extended by Moiseev (1934, 1936) for rotating frames. 
Moiseev obtained the partial differential equation (18) as a necessary condition for the system (16) to have 
isoenergetic solutions with a contact of order at  least two with the curves of the family (1). 

Theorem 6 .  If the family of curves (1) satisfies the conditions in theorem (l),  and the solutions of the system 
(16) have a contact of order at  least two with the curves of the family (l), then the following relation holds 

Moiseev’s result is the following: 

2 (V  + E )  f zv ,  + fyVy + f,” + fy” ( f z z f i  - 2fzyfzfy + fyyf,”) F 2[2(V + E)]’/”f,” + fy = 0.  (19) 

Proof. From the second equality in (11) we get (4), wherefrom 

the upper sign corresponding to trajectories of negative direction. 
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From the last equality in ( l l ) ,  after substituting i and y from (20), and  y from (7), we obtain 

Using the  energy integral with x, y from (20) one gets 

v2 = 2(V+ E )  

and the theorem is proved. 
Remark 5. T h e  function v in (20) (introduced by Moiseev) and k in (5) are related by 

k = v”(f,” + f i ) ,  

they both being a measure of the  velocity of the particle on the  curves of the  family (1) .  
Remark 6. As in the  case of Hadamard, the conditions in Moiseev’s theorem are weaker then those in  theorem 

(5), so the latter is its consequence (again it is not essential t o  have isoenergetic trajectories). Moiseev himself 
did not consider the  problem as an  inverse one, nevertheless his condition (19) is exactly the  one which permits 
to find an unknown potential function when a given family of curves (1)  represents a family of trajectories. 

Moiseev (1936) used the  following notations 

s = fzxf,” - 2fwfz fy  + f y y f , 2  

and  wrote (19) in a simplified way 

T h e  number n in (22) represents the angular velocity of the rotating frame (which is not necessarily l) ,  the  system 
considered by Moiseev being 

x = 2ny+ V, 

y = - 2 n i  + V,. 

Due to  the  similarity of the relations obtained by Hadamard (1897) and Moiseev (1934,  1936) to the  results in 
the  inverse problems of dynamics, the  authors propose these papers to be mentioned as milestones in  this research 
area too. 
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