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Inhomogeneous potentials producing homogeneous orbits 
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We prove that, in general, a given two-dimensional inhomogeneous potential V(z,y)  does not allow for the creation of 
homogeneous families of orbits. Yet, depending on the case at hand, if the given potential satisfies certain conditions, this 
potential is compatible either with one (or two) monoparametric homogeneous families of orbits or at most with five such 
families. The orbits are then found on the grounds of the given potential. 
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1. In t roduc t ion  

The two-dimensional inverse problem of dynamics seeks all the potentials V(x,y) which can give rise to  a pre- 
assigned monoparametric family of curves f(z, y) = c,  traced by a unit mass material point. If the total energy 
dependence E = E ( f ( z ,  y)) is not given in advance, the connection between orbits and potentials is established by 
a partial differential equation of the second order (Bozis 1984). The equation is linear in V(z, y), of the hyperbolic 
type with coefficients depending merely on the given orbits. 

The above equation, if rearranged adequately, can also serve to  face the direct problem, i.e. given a potential to 
seek all monoparametric families which can be created by this potential, for adequate initial conditions, of course. 
Indeed, it turns out that for a function y(x, y) = fy/jz, related to  the slope of the given orbits, the second order 
partial equation is now nonlinear in the unknown function y(z, y). The direct problem then requires the solution 
of a harder to  solve differential equation. 

In the framework of the direct problem, one expects that additional information regarding the orbits will 
generally facilitate its solution. Such information is e.g. the homogeneity of the family of orbits, i.e., the property 
of the family to include geometrically similar orbits. The case of having homogeneous families produced by 
homogeneous potentials has been studied by Bozis and Stefiades (1993) and Bozis and Grigoriadou (1993) and led 
to an ordinary differential equation. 

In the present paper we study the following version of the direct problem: in the system of Cartesian coordinates 
Oxy, a purely inhomogeneous potential V is given. Are there any homogeneous families of orbits satisfying the 
system of differential equations 

ii=-v,, 
y=-vy, 

i.e., created by this potential? 
For an affirmative answer we find that: 
(i) In general, certain conditions have to  be satisfied by the given potential. In this case there exist no more 

than two homogeneous monoparametric families of orbits consistent with the given potential. They correspond to 
the common roots of a quadratic and a quintic algebraic equation. 
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(ii) In some special cases (specifically if the aforementioned quadratic equation becomes a triviality), it may 
be that there exist a t  most five solutions although the existence of at  least one solution is not guaranteed. 

2. The equation of the inverse problem 

Consider a monoparametric family of planar curves 

traced in the inertial frame O x y  by a material point of unit mass under the action of the potential V = V ( x ,  y) 
and introduce the notation 

TO each function f ( x ,  y) there corresponds one function ~ ( x ,  y) and, vice versa, to each y(x, y) there corresponds 
a family (1). Thus, the function -y(x, y) replaces the family (1) and allows us to  refer to it as the family of orbits. 

Compatible pairs of potentials V ( x ,  y) and orbits ~ ( x ,  y) are related by the partial differential equation (Bozis 
1995) 

where 

7% - 7 Y  h =  (-rzvr + (27% - 3Yy)  vy + y (VA  - VYY) + ( 7 2  - l)Vry) . 
vr + yvy (4 )  

Comments 
l.(i) It can be shown easily that the expression 7yZ - ry appearing in (4) does not become identically equal to 

zero in a domain D C - R2 but only for families of straight lines, excluded from our study. 
(i i)  The expression V, + rVy, which originally is a factor in the left hand side of equation (3),  cannot be 

identic:ally zero in a domain D R2 for inhomogeneous potentials V ( x ,  y), because then the numerator of the 
right hand side must also be zero and this happens only for constant potentials. 

2. Equation (3) is nonlinear in the unknown function ~ ( z ,  y) and is more suitable to answer the direct problem: 
Given a potential, find families of orbits generated by it. The dynamical system being autonomous, it is understood 
that the most general solution of equation (3) can depend on no more than two independent arbitrary constants. 

3. Homogeneous families produced by inhomogeneous potentials 

In what follows we study a version of the direct problem. We assume that the given potential V (r, y) is not 
homogeneous (i.e. no m exists such that xV, + yVy = mV) and we try to find homogeneous families of orbits (1). 

No matter what the degree of homogeneity of f (2, y) might be the function y, defined by (2),  will then be 
homogeneous of degree zero, i.e. 

So, for a given inhomogeneous V (x, y) we now look for functions y (z, y) satisfying both equations (3) and (5). 

( i )  We differentiate equation (5) with respect to x and y, thus obtaining two equations including second order 

(ii) We solve for 7rE,  yzy, yyy the algebraic system of the above two equations and equation (3). At the same 

To this end: 

derivatives of the function y (x, y). 

time we express yy in terms of yr in view of equation (5). In so doing we obtain the system 
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where 

n = ( X + Y Y )  (Vz+.Vy) 
li’ = 2yvyy + (-yV2 + 3ZVY) 
L = YV2yYZ + (yV22 - yvyy - 2VY) 7 - (yVzy + 2V2). 

From now on we adopt the notation 

ai+j v 
K j  = - ax;av 

315 

(7) 

e.g. V O ~  = V,, V ~ Z  = VzYy etc. 

into account the system itself as well as equation (5) we come up with one equation which reads 
Working out the compatibility conditions (yzz)y = (yZy), and (y2y)y = (yyy), for the system ( 6 )  and taking 

YA 
y2 = ( z + y y ) B ’  

where 

A0 = VllVlO + ~(V2lVlO - V20V11) + Y(VlZVl0 - V,”,) 

and 

B = 3 (~(VllVlO - VZOVOl) + Y(vOzV10 - VllVOl)) 

Comment: It is of vital importance to observe that the above equation (8) cannot be obtained for homogeneous 
potentials. In fact, it is an easy matter to show that if V (x, y) is homogeneous in 2 ,  y, say of degree m, i.e. if 
xV10 + yV01 = mV, both A and B are identically equal to zero and consequently y, becomes indeterminate. The 
class of potentials for which B = 0 on a domain (apart from all homogeneous V(z,y) ,  this class also includes 
inhomogeneous potentials as e.g. inhomogeneous potentials of the form V(x - coy), where co is a constant) is 
excluded from our study. 

Some y2 being necessarily given by equation (8), in view of equation (5) yy must be given by 

The question now arises as to whether 7, and yY, given by (8) and ( lo ) ,  are compatible. Working on the 
condition yZy = yy2, taking into account equations (8) and ( lo) ,  we obtain after some straightforward bu t  tedious 
algebra 

G3y3 + Gzy2 + G l 7  + Go = 0 

Gi = B (ZAi,, + YAj ,y  + Ai) - Ai (2Bz + yBy) , i = 0,1,  2 ,3 .  

(11) 

(12) 

where 

The calculations give that 

(13) 
VlO 
vo 1 

Go = --G3 and Vol(G1+ G3) = Vlo(G0 + Gz). 
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One step further we observe that the left hand side of equation ( 1  1) can be factorized as 
(VlO + YVOl) (Hzy2 + H1-Y + H o ) ,  where 

H z  = -2 
H - L - 3  
Ho = -Hz .  

1 - VlO Vf0 Go 

Since, for any given inhomogeneous V (I, y )  and any homogeneous y ( E ,  y) that we look for, the expression Go+yVol 
is not zero in a region D C R2, we obtain the quadratic equation 

If both Hi and Hz are zero, equation (15) is satisfied identically. If only one of the expressions Ha, H1 is zero, 

Assuming that for the given potential 
the above equation leads to the non-interesting solutions y = 0, f l .  

equation (15) constitutes a necessary condition so that a solution y of our problem exists. In general, the solutions 
of equation (15) could be inhomogeneous, as it happens in the case of the potential V ( I ,  y )  = sin E + I, and 
the problem has a negative answer, i.e. no homogeneous family of orbits is generated by the given inhomogeneous 
potential. 

On the other hand, having expressed by (8) and (10) the first order derivatives y,,yy in terms of y itself and 
of the given potential, we can also express yZZ, yZy, yyy in terms of y and derivatives of V (I, y )  up to the fourth 
order. Then, by inserting these into equation (3), we can obtain y in terms of the potential. To this end we 
prepare A, ,  A , .  Thus, for instance, in view of equations (8) and (10) we write 

After some tedious but straightforward algebra, aided by the use of Maple, we write equation ( 3 )  as a quintic 
algebraic equation in y: 

R5y5 + R4y4 + R3y3 + R2y2 + R l y  + Ro = 0. (17) 

We note that each of the coefficients R, (i = 0,1 ,  ..., 5) can be expressed as a sum of the form 

Ri = R i 3 0 Z 3  + R , 2 1 t 2 y  + % I Z ~ Y ~  + %03Y3 + +RizoE2 + Rrllzy + RiozY2 + %102 + RiolY 

where the 6 x 9 = 54 coefficients R i j k  ( i  = 0,1,  ... 5) depend merely on derivatives of the given V (I, y) up to the 
fourth order and they are homogeneous polynomials of the fifth degree in the 14 variables &o, V31, ..., Vol. 

In the case when Hz # 0, H1 # 0,  equations (15) and (17) constitute a system of two algebraic equations which 
the zero order homogeneous function y (t, y) must satisfy. Obviously this happens only for potentials V (t, y )  for 
which the pertinent Sylvester’s 7 x 7 determinant (Mishina and Proskuryakov (1965), p. 164), i.e., 

vanishes. 

4. Special cases 

It is reminded that the 7 x 7 determinant (18) is to be checked for the given inhomogeneous potential provided that 
equation (15) is not a triviality. (In fact, in such a case, (18) becomes an identity also, satisfied for any V ( 2 , y ) ) .  
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Therefore, it must first be checked that the coefficients H2 and HI in (15) are not identically equal to zero. Of 

Let us then proceed under the assumption that, for the potential at hand, equation (15) becomes a triviality, 
course, if only one of them is zero, no solution to our problem exists. 

i.e. 

This means that (15) gives no restriction for the function y (x, y) but also gives no information as to its being 
zero-order homogeneous, as we want it to be. 

Yet, yz and yy are still given by formulae (8) and ( l o ) ,  and the quintic equation (17) may be written down. 
This equation now stands for the unique necessary condition which y and V must satisfy in order to be compatible. 
Thus, if the conditions (19) are satisfied, we expect at  most five solutions y(x, y) to our problem but we are not 
sure in advance that even one of these is acceptable, in the sense that it is zero-degree homogeneous. The quintic 
equation has to be solved and the homogeneous roots must be selected. 

An interesting result which we established with the aid of Maple is the following: The quadratic equation (15) 
is a triviality if the given potential V ( x ,  y) is of the form 

V(x,y) = xmvi ( 5 )  +X"V2 (2) X 

with m # n, i.e. if the potential is the sum of two terms, each of which is homogeneous, of a different degree of 
homogeneity, of course. We have also checked that for a potential being the sum of three homogeneous terms the 
quadratic (15) is no longer a triviality. 

In general, of course, an inhomogeneous potential needs not be the sum of certain homogeneous terms and in 
this case we expect to  have only one of H I  and Ha equal to zero, so the problem will have no acceptable solution. 

5. Examples 

A. For the potential 

v (2, y) = 4x2 + y2 + x3 + 8x4 - 2x2y2 - y4 

one can check that HI # 0 and H2 # 0. The common root of (15) and (17) is 

2x y = -  
Y '  

which is compatible with the potential (21). 

functions, 
B. For the Hbnon-Heiles type potential (1964), which is the sum of two homogeneous of degree two and three 

we have H2 = HI = 0. In this case, it remains only the equation (17), having the homogeneous solution 

X 7 = -- 
4Y 

C. For the potential 
which is compatible with given potential. 

one has Ha = 0, 
for our purposes. 

H I  # 0 and the quadratic equation (15) has only the solution y = 0, which is not of interest 
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