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Abstract. The two-dimensional inverse problem of dynamics is considered for nonconservative 
force fields, both in inertial and rotating frames. The families of curves are given in parametric 
form x = F(A. b), y = G(A. b), b varying along the monoparametric family of planar curves and 
). being the parameter describing a specific curve. The special ca.~e of the force fields generated 
by a potential in an inertial field, already studied by Bozis and Borghero, is derived as well as the 
corresponding one in rotating frames. 

1. Introduction 

The central aim of the inverse problem consists in finding the potential (or force field) which 
can give rise to a monoparametric family of planar curves traced by a unit mass material point 
P. The family of orbits was generally given (Szebehely [I I]. Broucke and Lass (4), Szebehely 
and Broucke [12] , Bozis [I]) in the form 

f(x, y) =c. (I) 

More details are to be found in the monograph paper of Bozis [2]. 
Recently, the problem of finding the potential when the family is given in parametric form 

was taken into account by Bozis and Borghero (3). because models inspired from the physical 
reality give rise to such families, for example of self-similar orbits. A special case is that of 
the family of ellipses 

x = pcos()/(1 +e0 cos ()) y = psin 8/(1 + e0 cos8) 

having fixed eccentricity e0 and variable parameter (semilatus rectum) p , () being the true 
anomaly. Other self-similar orbits appear in astrophysics [8]. 

In the following we study the problem of finding general force fields which can produce 
families of orbits a priori given in parametric form. For families having the form (I) in a 
rotating frame the problem was considered by Pal and Anisiu [ 10]. 
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2. The inverse problem in an inertial frame 

The inverse problem for families of the type (I) was considered at fi rst by Dainelli [5] and 
Whittaker [13]. It consists in finding the components X(x, y) and Y(x, y) of the force under 
whose action a particle P of unit mass will describe a given family of orbits, the motion being 
governed by the system 

x=X 
y = Y, 

(2) 

the dots representing differentiation with respect to time t. The family of orbits was given in 
the implicit form (1 ). 

We consider the corresponding problem for the case of a family of orbits given in the form 

x = F(>.. , b) y = G(>.. , b), (3) 

where the parameter b varies from member to member of the family (as c did for (1 )) and 
>.. stands for the parameter varying along each curve for a fixed b. Partial derivatives will be 
denoted by subscripts. 

The transformation (3) is considered: a C2 one-to-one correspondence between a domain 
D in the x y Cartesian plane and a domain D' in the )..b plane, with the Jacobian 

(4) 

different from zero. The fact that the Jacobian (4) is different from zero at a point assures 
the bijectivity and existence of a differentiable inverse of (3) only on a neighbourhood of that 
point; if it is different from zero at each point of IR2 , we have in general only local bijectivity 
for the transformation. If an extra condition is added, as for example weak coercivity (Zeidler 
[14]) 

ll(F, G)ll ---+ oo whenever II(>.., b)ll---+ oo, (5) 

then the transformation is globally bijective. So, imposing the condition that the Jacobian is 
different from zero at each point of a domain D (or IR2 ) we generally obtain only local results. 

Besides the condition (4) on the Jacobian, we impose that 

~=Fu.GA - G).;.F;., 

f3 = F} + G~ 

are also different from zero. 

(6) 
(7) 

The problem is now to find X, Y E C(D) such that the system (2) has, as solutions, the 
curves of the family (3), which means that there exists l : (10 , t1) ---+ (>..0 , >.. 1) of C2-class so 
that the functions 

x(t) = F(l(t), b) y(t) = G(l(t), b) 

verify the system (2). 
By differentiating in (8) we obtain the velocity components of the particle P 

i = F).i y = G).i 

and the acceleration components 

x = Fui2 + Fj ·2 .. y = G;.;.l + G,./. 

Replacing (8) and (I 0) in (2) and denoting 

X(>.., b) = X(F(>.., b), G(>.., b)) Y(>.., b) = Y(F(>.. , b), G(>.., b)) 

(8) 

(9) 

(JO) 

(11) 
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we obtain 
·2 .. -

F).;J +Fi-.!= X(l, b) 

G;.,;.12 + G).{ = Y(l, b), 
(12) 

where l has the argument t, while F, G and their derivatives have the argument (l (t), b). It 
follows that 

I 
X(l,b) F).I 

i2 = _Y_(_l ,_b_) _G_;.._ 
!:!,. 

where !:!,. is given by (6), so the value of i at a given t depends only on l(t) and b. For an 
arbitrary function k E C 1(D', IR+), we consider 

i(t) = ±Jk(l(t), b). 

Then it follows 

i'(t) = ~ki.(l(t), b) 

and using the relations ( 12) we obtain 
- I 
X(),, b) = kh;., + 2k).F;. 

- I 
Y(A., b) = kGu + 2k;.Gi., ( 13) 

where F, G, k and their derivatives have the argument (A., b). So (13) provides a general form 
of the force field admitting the fami ly of orbits (3) as solutions of the system (2). 

In the case when the force field is generated by a potential, i.e. there exists v E C 1 (D) so 
that 

X = -Vx y =-Vy, ( 14) 

the system (2) is a Lagrangian one, with L(x, y,i, j•) = T(i, y) - v(x, y) and T(i , j·) = 
(i2 + j·2)/2. For such a system the energy 

£ = Lri + L> )' - L = T + v 

has a constant value E and 

&<x 2 + j·2
) = E - v 

hence k = 2
<Ef!-v), with f> given by (7). Inserting in (13) the relations (14) and eliminating the 

terms ink)., one has 

k = F)..Vy - G;.Vx 

!:!,. 

Let the potential in the coordinates A., b be 

V(A., b) = v(x(A., b), y(A., b)). 

We have 

Vx = 1 - I (V;.Gh - VhG;.) Vy = 1- 1 (- Vi.h + VbF;.), 

with l given by (4). Equating the two forms obtained fork and denoting 

a= -(F;.h + G).G,,), 

it follows 

f> 
E = V +--(a Vi.+ {JV,,), 

2}!:!,. 

which is exactly the equation obtained by Bozis and Borghero [3] directly for the system having 
the right-hand side terms given by (14), and for the family of curves (3). 
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3. The inverse problem in a rotating frame 

A problem similar to that of Dainelli for the system (2) and the family of orbits ( 1) was studied 
for a system in a rotating frame by Pal and Anisiu [I OJ. Suc.:h a system has the form 

x - 2)· = x 
)' + 2x = Y. 

(15) 

We now look for the functions X, Y E C(D) in order that the system (15) admits 
as solutions the curves from the family (3). In this case, after replacing the veloci ty and 
acceleration components of the particle P in (15) one obtains 

hence 

F,_1)2 + FJ- 2G;J = X(l. h) 

G;,;)2+G;}+2F;J = Y(l,b), 

I 
X(l , b)-2G,.i F;.. I 

i2 = Y(l, b) - 2F;) G ;. 

~ 

(16) 

with ~ given by (6) and X, Y by ( 11 ). So, we can consider again i as an arbitrary function of 
(/(!), b). Let K E C 1 (D', IR+) be an arbitrary function and 

i(t) = ±JK(l(t), b). 

Then 

i'(t) = ~K;,(l(t), b) 

and considering (16) we can take 
- r;; I 
X(A., b) = =f2v KG;,+ K Fu+ 2K;,F,_ 
- ("-;; I 
Y(A., b) = ±2v K F,, +KG;,;,+ 2K1.G,_, 

( 17) 

where F, G, Kand their derivatives have the argument (A., b). 
Now, ifthe force field in (15) is produced by a potential, i.e. the relations (14) take place, 

we obtain from ( 17) eliminating the terms in K;,: 

F ).Vy - G;,Vx = =F2f3./K + ~K. (18) 

The system (15) with X = -Vx, Y = -Ur is a Lagrangian one, but with a generalized 
Lagrangian L(x ,y,x,)·) = T(x,y) - Z(x .. y,x.j.·), with T(i,j·) = (X 2 + j·2)/2 and a 
generalized potential also depending on velocities Z = -(x)· - yx) + v(x, y). For this system 
the energy 

£ = L.ri + L) )• - L = T + v 

is a constant of motion and obviously £ i=- T + Z. So we have 

~(X 2 + )'2) = E - v 

hence K = 2(£ - v)/{3. Replacing this value of Kin (18) we obtain 

(aV;. + f3V&)/ J = =FJ2(E - V)fe + 2(£ - V)~/{3, 

which is the correspondent of the equation derived by Dramba [7], Szebehely and Broucke 
[ 12] for the system ( 15) with X , Y given by ( 14 ), the family of curves being ( 1 ). 

Example. Let the family of orbits ( 3) be given, with 

F(A., b) = exp(A.) - exp(b) 

G(A.,b) = A.+b. 
(19) 
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This is a diffeomorphismfrom JR2 in JR2 for which f3 = exp(2A.) + I , J = exp(A.) + cxp(b), 

!::;. = exp(A.) are all different from 0. The coercivity condition (5) is also verified. In the case 
of the inertial frame, the form of the force field obtained in ( 13) is 

X(A. , b) = (k(A., b) + 4k).(A.. b)) cxp(A.) Y(A., b) = 4k;.(A., b), (20) 

while in the rotating frame ( 17) becomes 

X(A., b) = ~2J K (A., b) + (K(A., b) + 4 K). (A.. b)) exp( A.) 

Y(A., b) = ±2) K(A., b) exp(A.) + 4K1.(A, b). 
(21) 

The inverse of the tramformation ( 19) can be computed explicitly, so for obtaining X and 
Y in the variables (x, y) it suffices to insert in formulae (20) and (21) 

A. = y - In 4 ( J x 2 + 4 cxp(y) - x) b = In ~ ( J x 2 + 4 exp(y) - x) . 

Remark. The formulae ( 13) and ( 17), which give the form of the forcefield producing families 
of orbits of the type ( 3), in an inertial or rotating frame, involve the partial derivatives of the 
functions F and G. It may happen that the values of these functions are known only on a 
grid of points, or that the functions are so complicated it is desirable to approximate them by 
polynomials, for example. The values of the derivatives of F and G can then be compllted 
using approximated differentiation, starting with Newton's interpolation formula for functions 
of two variables {6]. Two types of errors appear: truncation errors caused by replacing the 
function with the interpolation polynomial, decreasing with the dimension of the step; rounding 
errors caused by inaccurate initial values of the fimction on the grid, which increase with the 
dimension of the step. So, an optimal step is to be determined in order to minimize the total 
error. 

Another problem arises when the force fields, obtained as functions of(>.., b) are to be 
expressed in the original variables (x, y). For this it is necessary to perform the inverse 
transformation of (3), using for example a variant of Newton's method {9]. 
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