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Abstract. Taking as a guide the case of the set of monoparametric familiesy = h(x) + c, for
which Szebehely’s equation can be solved by quadratures for the potentialV (x, y) generating the
given set of orbits, we propose the followingprogrammed motion problem: can we manage so as
to have members of the given set inside a preassigned domainT ⊂ R2 of thexy plane?

We come to understand that, among the various inequalities by means of whichT can be
ascribed, the simplest isb(x, y) > 0 where, for eachh(x), the functionb(x, y) is related to
the kinetic energy of the moving point (equations (19)–(21)). We then proceed to show that, in
general, ifb(x, y) satisfies two conditions (equations (39) and (40)), the answer to our question is
affirmative: on the grounds of the given appropriateb(x, y), a functionh(x) is found, associated
with a certain potentialV (x, y) creating members of the familyy = h(x) + c inside the region
b(x, y) > 0.

Some special cases which stem from the method are studied separately. The limitations
and also the promising features of the method developed to face the above inverse problem are
discussed.

1. Introduction

The two-dimensional inverse problem of dynamics consists in finding a potentialV which
generates a family of curves

f (x, y) = c (1)

in thexy Euclidean space. The roots of the problem are to be found in Newton’sPrincipia
(1687) where a force law compatible with Kepler’s laws was deduced. Interest in this old
problem increased after Szebehely [8] presented the partial differential equation

fxVx + fyVy − 2(E(f )− V )
f 2
x + f 2

y

(fxxf
2
y − 2fxyfxfy + fyyf

2
x ) = 0, (2)

where the subscripts denote partial derivatives. This linear inV partial differential equation is
our tool to find the potentialV (x, y)which can produce as orbits a preassigned monoparametric
family of curves (1), traced in thexy plane, with adequate initial conditions, by a material
point of unit mass, with energy dependence

E = E(f (x, y)) (3)

given in advance.
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20 M-C Anisiu and G Bozis

In spite of its linear character, in practice, equation (2) cannot be solved analytically.
Actually, its solvability is directly connected to the possibility of solving a (generally nonlinear)
system of ordinary differential equations.

Additional assumptions regarding the form of either the known functionf (x, y) or the
unknown potentialV (x, y) ease the solution of the problem. Thus, for example, for particular
sets of functionsf (e.g., homogeneous inx, y) the compatibility with homogeneous (Bozis
and Grigoriadou [1]) or nonhomogeneous (Boziset al [4]) potentials was already studied.

In this framework, in the present paper a new special case is considered: that ofthe setof
monoparametric families of curves with equation

y = h(x) + c, (4)

whereh(x) is a nonlinear (h′′(x) 6= 0) function ofx. We consider functionsh defined on
an interval whereh′ has no zeros. For every functionh(x) equation (4) stands for a family
of (equidistant) curves (not straight lines), shifted parallel to they-axis. It is shown that all
potentials which can generate families of the form (4) can be found by quadratures.

On the other hand, it is known that during the motion of a material point of unit mass
along an orbit of the family (1), the inequality

B(x, y) > 0 (5)

must be observed, with

B = E(f (x, y))− V (x, y). (6)

This means that the motion is allowed along those members (or part of the members) of the
family (1) which are lying only inside some regions of thexy plane, limited by the so-called
family boundary curves(FBC) (Bozis and Ichtiaroglou [2]), which are given by the equation

B(x, y) = 0. (7)

The functionB(x, y) is the kinetic energy (expressed in terms of the position coordinates
x, y) of the material point of unit mass, as it moves on any of the orbits (4) in the presence of
the potentialV (x, y). We shall refer to it here astheB-functionand keep in mind that it is
associated with the family (4), which, of course, can have infinitely manyB-functions. The
merit of such a function lies in that, by preassigning to (4) a certainB-function, we can manage
to have conservative motion inside a preassigned regionT ⊂ R2 of thexy plane defined by
inequality (5). We remind the reader that if force fields (not necessarily conservative) are
demanded, in general, there exist such fields to create any preassigned family (1) inside any
preassigned regionT (Bozis [3]).

The question raised and answered in this paper is the following: can any (positive in
T ⊂ R2) function stand for aB-function? In other words: are there potentialsV (x, y)
generating orbits of the form (4) traced with preassigned kinetic energy (6) and, as a
consequence, lying inside a preassigned region (5)? Which is the pertinent family (4) and
which is the corresponding energy dependenceE = E(f )?

It turns out that, for everyh(x), there exists a simpler (positive inT ) functionb(x, y),
whose positiveness inT implies the inequality (5). Due to its simplicity, we prefer to represent
the FBC byb(x, y) = 0 and we focus attention on the problem of obtaining compatible pairs
of b(x, y) andh(x). We show that, if the givenb(x, y) satisfies two conditions, the function
h(x) (and, consequently, the familyf (x, y) = y−h(x) = c) as well as the energy dependence
functionE(f ) and the potentialV (x, y) are determined.
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2. Determining the potentials which generate a special family of curves

For the case of the family of curves given by (4), equation (2) has the simpler form

h′Vx − Vy = 2h′′

1 +h′2
(E(f )− V ), (8)

the prime denoting the derivative with respect to thex variable, and, according to (1),
f (x, y) = y − h(x). The subsidiary system of ordinary differential equations is

dx

h′
= dy

−1
= (1 +h′2) dV

2h′′(E(f )− V ) . (9)

The first of equations (9) gives

y = c1− I (x), (10)

where

I (x) =
∫ x dt

h′(t)
. (11)

Equating the third to the first fraction in (9), we obtain a linear equation inV which has to
be solved after replacingy appearing in the argument ofE by its expression in (10). So the
argument ofE will be y− h(x) = c1− I (x)− h(x), and the equation inV will have the form
dV

dx
+

2h′′(x)
h′(x)(1 +h′2(x))

V − 2h′′(x)
h′(x)(1 +h′2(x))

E(c1− I (x)− h(x)) = 0. (12)

The solution of the ordinary differential equation (12) is

V = 1 +h′2(x)
h′2(x)

[c2 +K(x, c1)], (13)

where

K(x, c1) =
∫ x

E(c1− I (s)− h(s)) 2h′(s)h′′(s)
(1 +h′2(s))2

ds.

Integrating by parts the above integralK, we get

K(x, c1) = − 1

1 +h′2(x)
E(c1− I (x)− h(x))− J (x, c1) (14)

where

J (x, c1) =
∫ x

Ec(c1− I (s)− h(s)) 1

h′(s)
ds (15)

and whereEc denotes the derivative of the one-variable functionE = E(c) with respect to its
argument.

The general solution of the partial differential equation (8) is given by

c2 = A(c1) (16)

with A an arbitrary function ofc1 = y + I (x). So, for the family of curves (4) traced with a
preassigned energy dependenceE = E(c), the potentials creating it are given by

V (x, y) = − 1

h′2
Ē +

1 +h′2

h′2
(Ā− J̄ ), (17)

where we adopt the notation

Ē = E(c = y − h), Ā = A(c1 = y + I )
J̄ = J (x, c1 = y + I )

(18)

with the functionsh andI depending merely onx.
Clearly, if we consider as given a functionh(x) and select arbitrarily a functionE(c), we

can calculate the integralsI andJ by quadratures from (11) and (15), respectively.
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3. Family boundary curves (B-functions andb-functions)

Real motion of the moving point takes place only on those members of the family of curves (1)
or those parts of each member of the family which lie in the region of thexy plane where the
inequality (5) is observed.

We proceed to find the pertinent FBC (7) for the specific set of families (4). As the
corresponding potentials are given by (17), the function in (6) is found to be given by

B(x, y) = 1 +h′2

h′2
(Ē − Ā + J̄ ). (19)

The meaning of (19) is the following: given a family (4), i.e. given a functionh(x), after
selecting specific arbitrary functionsE(c) andA(c1), we can find the functionB(x, y) and
draw conclusions regarding the FBC.

Naturally, whereverB(x, y) > 0, withB(x, y) given by (19), it is also

b(x, y) > 0 (20)

with

b(x, y) = Ē − Ā + J̄ (21)

and conversely. Thus, together with theB-function, we have a simpler functionb(x, y)
which can serve to describe the FBC or, if given in advance, to createprogrammed motion
inside a region. So, in what follows, we shall represent the preassigned allowed region by
inequality (20). The same region, of course, could be represented byθ(x, y)b(x, y) > 0,
whereθ(x, y) is any arbitrary non-negative function inT (Bozis [3]).

On the grounds of the previous analysis we now pose the following question: consider a
preassignedboundary functionb = b(x, y), positive inside a regionT ⊂ R2 which we want
to programme as an allowed region of some orbits (4). Can we find a functionh(x), leading
to appropriate functionsE(c), A(c1) andJ (x, c1), such that equation (21) is satisfied?

If the answer to the above question is in the affirmative, insideT there exist members of
the family (4). These are orbits, traced by the moving point for adequate initial conditions, in
the presence of the potential (17) with kinetic energy equal toB(x, y) = 1+h′2

h′2 b(x, y) at each
point of the orbit.

4. Programmed motion: analysis

Consider a (positive in a regionT ⊂ R2) boundary functionb(x, y) to account for our goal
to obtain orbits of the form (4) inside the regionT . For this version of the inverse problem,
suppose that there is an affirmative answer, i.e. there exists an appropriate functionh(x) for
which (21) can be satisfied.

Since the functionA depends onx, y throughc1, it is

Āy

Āx
= c1,y

c1,x

and, in view of (10) and (11), it must be

Āy = h′Āx. (22)

We want to replace into (22) the function̄A = Ē + J̄ − b given by (21). To this end we
prepare, in view of (3), (15) and (18),

Ēx = −h′Ec, Ēy = Ec, J̄x = 1

h′
Ec +

1

h′
Jc1, J̄y = Jc1. (23)
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In view of (23), the condition (22) is now written as

h′2Ec = b01− h′b10 (24)

whereb10 stands forbx andb01 for by . This notation is in agreement with the following more
general convention which we adopt in what follows: we denote bybmn(m, n positive integers)
the partial derivative ofb(x, y) m times with respect tox andn times with respect toy.

Sinceh′(x) 6= 0, we denote1
h′ by z = z(x) and we write equation (24) as

Ec = z2b01− zb10. (25)

The simpler case ofisoenergetic familiesof orbits (4), for whichEc = 0, will be treated
separately in section 6. In general, we know thatEc depends onx, y throughc, given by
equation (4): thus,cy

cx
= − 1

h′ and we find

(Ec)y + z(Ec)x = 0. (26)

After some straightforward algebra, from (26) and (25) we obtain

b11z
2 + (b02− b20)z− b11 = (b10− 2b01z)z

′ (27)

wherez′ = dz
dx (6= 0 becauseh′′(x) 6= 0).

Condition (27) is free from the energy and (as we restrict ourselves to chooseb, and not
θb, to represent the FBC) it is necessary and sufficient for our purpose to achieve programmed
motion. As it stands, (27) relates the given boundary functionb(x, y) (and up to second-order
derivatives of it) to the function

z = 1

h′(x)
(28)

(and its derivativez′).
To come to knowz andz′, we differentiate twice both members of (27) with respect toy

and we obtain the two equations

b12z
2 + (b03− b21)z− b12 = (b11− 2b02z)z

′ (29)

and

b13z
2 + (b04− b22)z− b13 = (b12− 2b03z)z

′. (30)

Assuming thatb10−2b01z 6= 0 (the special case will be treated in section 6) and dividing (29)
by (27), we obtain the cubic inz algebraic equation

α3z
3 + α2z

2 + α1z + α0 = 0 (31)

with
α3 = 2(b02b11− b01b12)

α2 = 2b02(b02− b20)− 2b01(b03− b21) + b10b12− b2
11

α1 = 2(b01b12− b02b11) + b10(b03− b21)− b11(b02− b20)

α0 = b2
11− b10b12.

(32)

Now dividing (30) by (27) we obtain a second cubic

β3z
3 + β2z

2 + β1z + β0 = 0 (33)

with
β3 = 2(b03b11− b01b13)

β2 = 2b03(b02− b20)− 2b01(b04− b22) + b10b13− b11b12

β1 = 2(b01b13− b03b11) + b10(b04− b22)− b12(b02− b20)

β0 = b11b12− b10b13.

(34)
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It can be checked easily thatβi can be obtained alternatively by differentiating eachαi
(i = 0, 1, 2, 3) with respect toy. A problem may arise when all theαi are zero, so we cannot
make use of equations (31) and (33). This case will be treated in section 6.

Equations (31) and (33) are necessary conditions forz inherited from the unique necessary
and sufficient condition (27) which we wish to satisfy, if this is possible, in the first place, with
a z = z(x). So, if, for a givenb, such az does exist, this has to be the (at least one) common
root of (31) and (33). Of course, for such a root to exist, a sixth-order determinant, called the
resultant of the two polynomials in (31) and (33) (Mishina and Proskuryakov [7], p 164) must
vanish identically. This requirement will lead to a (rather complicated) condition including
derivatives ofb(x, y) up to the fourth order. Yet, it is understood that we need not write down
this condition. Instead, taking for granted that an appropriatez = z(x) to be put in (27) does
exist and that thisz cannot be anything but the common root of (31) and (33), we proceed to
find it as follows.

We multiply (31) byβ3 and (33) byα3 and subtract. Assuming thatα2β3−α3β2 6= 0 (the
special case will be treated in section 6), we obtain

z2 = γ1z + γ0 (35)

with

γ0 = α0β3− α3β0

α3β2 − α2β3
, γ1 = α1β3− α3β1

α3β2 − α2β3
. (36)

In view of (35), we replacez3 into (31) byz3 = (γ 2
1 + γ0)z + γ0γ1 and we find

δ1z + δ0 = 0 (37)

with
δ1 = α3(γ

2
1 + γ0) + α2γ1 + α1

δ0 = α3γ0γ1 + α2γ0 + α0.
(38)

We assume thatδ1 6= 0 (the special caseδ1 = 0 is examined in section 6) and we conclude
by writing down the two conditions which the given functionb(x, y) must satisfy:

(i) The functionz, found from (37), must depend only on the variablex, i.e.

δ0,yδ1 = δ0δ1,y . (39)

(ii) The functionz must satisfy the equation (27), i.e.

δ1{δ2
0b11− (b02− b20)δ0δ1− b11δ

2
1} = (δ1b10 + 2δ0b01)(δ0δ1,x − δ0,xδ1). (40)

Clearly, if we expressed the above conditions (39) and (40) in terms of the given function
b(x, y) only, there would appear partial derivatives ofb up to the fifth order.

5. Programmed motion: synthesis

We want to have monoparametric families of orbits of the form (4) ‘inside’ a preassigned region
T ⊂ R2 given by inequality (20) with the given functionb(x, y) to be defined as in (21).

In view of the analysis in section 4 and aided by a symbolic algebra program (e.g.
MATHEMATICA) we proceed as follows:

(i) For the givenb(x, y)we prepare its partial derivativesbij up to the fourth order and, from
equations (32), (34), (36) and (38), we find all the functionsαi, βi (i = 0, 1, 2, 3) and
γk, δk (k = 0, 1). We make sure that

α2β3− α3β2 6= 0 and δ1 6= 0. (41)

(Otherwise we act as in section 6.)
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(ii) We prepare the partial derivativesδ0,x, δ0,y, δ1,x, δ1,y of the two functionsδk(x, y) (k =
0, 1) and we check the conditions (39) and (40).

After the remark which follows we shall continue with our synthesis by assuming thatwe
do havean appropriateb-function at our disposal.

Remark. As a rule, of course, one does not expect the conditions (39) and (40) to be satisfied.
Consequently, one cannot programme motion insideT ⊂ R2, described by theb-function
at hand. Yet, such an appropriateb-function may be hidden! It may correspond to another
selection of the functionh(x) in equation (4) and, most likely, to different selections of the
arbitrary functionsE andA, as given by the equations (3) and (16).

One then may try to find a goodb-function. Thus, for example:

• If b is given with some free constants, one may try to determine these constants so that
the conditions (39) and (40) are satisfied.

• If this cannot be achieved, we may write (39) and (40) forb → θb(x, y) and try to find
even one(positive inT ) particular solutionθ0(x, y) satisfying these conditions. This
assignment is far from being a simple task, of course.

Assuming that the givenb is appropriate, we now proceed as follows:

(iii) From (37) and (28) we findz andh′ and then, in turn,h(x) up to an additive constant
h0. Then, out of the set of orbits (4), we obtain the specific monoparametric family
f (x, y) = y − h(x) = c. In general, the two equations (31) and (33) have one common
root, so we obtain one family (4) for some members of which we can manage to have them
trapped inside the preassigned region (20). To this end we must determine the appropriate
potential.

(iv) From equation (25) we now determineEc and, as we already know the expression for
c = y − h(x), we determine uniquely (apart from an additive constantE0) the energy
dependence function (3)E = E(c) and, from the first of equations (18), we come to know
Ē, into which the constantsh0 andE0 will enter.

(v) Finally, since the kinetic energy is

B = 1 +h′2

h′2
b(x, y) (42)

we write down the potential

V (x, y) = Ē − B (43)

which gives rise to orbits with equation (4) lying inside the region (20).

Comment. In spite of the fact that the two integration constants,h0 andE0 enter into (43)
throughĒ, the potentialV (x, y) is essentially unique, at least as far as the study of the present
family is concerned. Indeed,h0 andE0 appear in (43) either purely as an additive constant or
through a combination which amounts to a (constant, again) additive arbitrary functionV0(f ),
wheref = y − h(x) = c is the family under consideration. For these reasons we can set both
h0 andE0 equal to zero and this is actually what we do in the example of section 7.



26 M-C Anisiu and G Bozis

6. Special cases

6.1. Isoenergetic families(Ec = 0)

Actually condition (26)—and consequently (27)—as it is written is valid for isoenergetic
families, i.e. families of orbits all traced with the same (constant) value of the energyE0. Yet
the case needs to be treated separately in the sense that, as seen from (24), whenEc = 0, from
the givenb-function we obtain immediately

h′ = b01

b10
(44)

which is acceptable provided that(
b01

b10

)
y

= 0 (45)

or, equivalently,

b = b(c1) (46)

with c1 = y + I andI = ∫ b10
b01

dx.
Then theB-function (42) is

B = b2
10 + b2

01

b2
01

b

where

b = b(c1 = y + I (x))

and the potential is

V = E0 − b
2
10 + b2

01

b2
01

b. (47)

The meaning of the above reasoning is the following: given a boundary functionb(x, y)

which satisfies (45), we can directly obtain from (44)h′ and from (11)I (x), thenc1 = y + I
and check that the givenb is of the form (46). The family of orbitsy − h(x) = c is traced
isoenergetically with energyE0 by the potential (47).

Thus, e.g., givenb = y − x2, we findh′ = − 1
2x , h(x) = − 1

2 ln x, x > 0, I = −x2,
c1 = y − x2, b = y − x2 andV = −(1 + 4x2)(y − x2).

The isoenergetic family isy + 1
2 ln x = c, traced withE0 = 0, by the potentialV .

6.2. The caseb10− 2b01z = 0

Having

z = b10

2b01
(48)

we must also zero the left-hand side of equation (27). This leads to

b11b
2
10 + 2b01b10(b02− b20) = 4b2

01b11. (49)

Since( b10
b01
)y = 0, we have

b = F(y + ι(x)) (50)

whereF is an arbitrary function of its argumenty + ι andι = ∫ b10
b01

dx.
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Inserting (50) into (49) we obtain after some algebra

F ′′

F ′
= − 2ι′′

ι′2 + 2
= k0 (51)

where primes inF andι denote differentiation with respect to their respective argumentsy + ι
andx and where the constantk0 was put to make equal the two functions of different argument.

Solving the two equations (51) we find

b = c∗1ek0y cos2
2c∗2 − k0x√

2
, (52)

wherec∗1, c
∗
2 are integration constants. Then, in turn, from (48) we findz, from (28) we find

h′(x) and, integrating it,h(x) and from (4) we find the family

y +
1

k0
ln

(
sin2 2c∗2 − k0x√

2

)
= c. (53)

From (25) we findEc and then the energy

E = − 1
2c
∗
1ek0c (54)

with which each member of the family (53) is traced.
Finally, from (43) we find the potential

V (x, y) = −c∗1ek0y. (55)

It is worth noticing that, sinceb(x, y) > 0 everywhere or nowhere (depending on the sign of
c∗1), orbits (53) exist everywhere or nowhere in thexy plane.

6.3. The caseαi = 0 (i = 0, 1, 2, 3)

In this case we have not at our disposal the polynomial equations (31) and (33), so we are
obliged to consider only the differential equation (27). However, if all the coefficientsαi = 0
(i = 0, 1, 2, 3) are zero, the functionb must have some particular expressions which we are
going to find.

Equating to zeroα3 andα0 we get

b02b11− b01b12 = 0, (56)

b2
11− b10b12 = 0. (57)

(i) If b11 = 0, it follows thatb is a sum of two functions, one in the variablex and the other
in y. Replacing it in the equationsα1 = 0 andα2 = 0 we get only two possibilities forb
(apart from an additive constant):

b = my + g(x), m ∈ R, g an arbitrary function; (58)

b = r(x2 + y2) + py + qx, r, p, q ∈ R, r 6= 0. (59)

In fact,b can be also given asb = a
k
eky, a, k ∈ R, k 6= 0, which is a special case of (60)

below.
(ii) If b11 6= 0, from (56) we get( b01

b11
)y = 0, henceb01 = C(x)b11; from (57), ( b10

b11
)y = 0,

henceb10 = D(x)b11. It follows b01
b10
= C(x)

D(x)
; sob = U(y +

∫
D(x)

C(x)
dx). Replacing in (56)

we obtain
U ′′

U ′
= 1

D(x)
= k,

so

b = c0

k
ekyekG(x), c0, k ∈ R, k 6= 0, G an arbitrary function, (60)

this special expression ofb also makingα1 andα2 vanish in equation (31).
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For the three cases (58)–(60) we analyse equation (27).
Consider firstb = my + g(x). In this case (27) becomes

−g′′z = (g′ − 2mz)z′

with the solutionz(x) = 1
2m(g

′ ±√g′2 − 4mc∗0), givingEc = −c∗0 andE(c) = −c∗0c.
Forb given by (59), equation (27) has no nonconstant solutionz independent ofy.
For b given by (60) we obtain from equation (27) a differential equation inz with

coefficients depending only onx, having the form

kG′z2 + (k − kG′2 −G′′)z− kG′ = (G′ − 2z)z′. (61)

As an example considerG(x) = G0 = const for whichG′ = G′′ = 0. Then (61) becomes
kz = −2zz′, soz = − k

2x andh = − 2
k

ln x. Hence forb = d0
k

eky , whered0 = c0ekG0, we have

Ec = d0k
2

4 ekyx2 = d0k
2

4 ekc andE = d0k

4 ekc, V = − d0
k

eky .

6.4. The caseα2β3− α3β2 = 0

Apparently, in this case, the task of finding the common roots of equations (31) and (33)
becomes easier. Suppose then that we do have such a (y-independent) rootz = z(x). We
proceed and check if the condition (27) is valid. If so, with this appropriatez we find
successfully: the functionh(x) (from equation (28)), the energy dependenceE = E(f )

(from (25)), the functionB (from (42)) and, finally, the potentialV (x, y) (from equation (43)).
As an example consider as given theb-function on(−∞, 0) or (0,+∞):

b = 1

x4
+
x2

2
− 2y

x2
. (62)

From (32) and (34) we find:α3 = 0, α2 = 32
x6 , α1 = 162+x6

x9 , α0 = 16
x6 andβ3 = β2 = β1 =

β0 = 0.
Out of the two roots of the quadraticα2z

2 + α1z + α0 = 0, only the rootz = − x3

2 satisfies
the condition (27). Thisz leads toh = 1

x2 , y = 1
x2 + c, E = c2 and to the potential

V (x, y) = 1
8(6(2y

2 − x2)− (x4 − 2y)2). (63)

It is understood that only those members or parts of members of the family

y − 1

x2
= c (64)

are actually traced by the potential (63) which lies in the nonshaded region of figure 1,

y 6 x4

4
+

1

2x2
,

where the curves withc = −3,−2, . . . ,2 are displayed.

6.5. The caseδ1 = 0

If δ1 = 0 andδ0 6= 0, equation (37) has no solution, hence we cannot determine a family of
orbits in the regionb(x, y) > 0. If δ1 = 0 andδ0 = 0, equation (37) is an identity and one can
use, for example, equation (35) to determine the common root of (31) and (33).

Thus, givenb = ex+y +xy, we haveα2β3−α3β2 6= 0, so that the case cannot be treated as
in subsection 6.4. For this specific functionb (for which the equationb = 0 is equivalent with
y = −Lambert W( ex

x
) on the intervalx > 0), one hasδ1 = δ0 = 0. Equation (35) becomes

z2 = 1, hence in this case a nonlinearh cannot be obtained.
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Figure 1. The twelve (symmetric in pairs with respect to they-axis) unbounded curvesy = 1/x2+c
(for c = −3,−2,−1, 0, 1, 2) are real orbits, created by the potential (63) and traced in the
nonshaded region of the figure.

7. An example for the general case

Forx > 0, let us start with theb-function

b = b2y
2 + b1y + b0 (65)

with

b2 = −3

x

b1 = 3

x2
(x4 + 1)

b0 = − 1

x3

(
3x4

(
x4

5
+ 1

)
+ 1

)
.

(66)

We want to check if families of the form (4) exist inside the (nonshaded) region of figure 2,
given byb(x, y) > 0, which we engage as the allowed region for such families.

According to the procedure exposed in section 5, we write down the equations (31) and (33)
and see first if they possess anyy-independent common roots. The coefficientsαi , βi , found
from (32) and (34), are (apart from unimportant multiplicative factors)

α3 = −2x4(3x4 − 1)

α2 = x2(3x2y2 − 2x(3x4 + 1)y − 3(3x8− 5x4 + 1))

α1 = x2(3x4 + 1)y2 − 2x(3x8 + 1)y − (3x12− 16x8 + 6x4 − 1)

α0 = x2(x2y2 + 2x(x4 − 1)y + (3x8− 3x4 + 1))
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Figure 2. The six bounded curvesy = 1/x + c (for c = 3, 4, 5, 6, 7, 8) in the nonshaded region of
the figure are real orbits (librational motion), created by the potential (68).

and

β3 = 0

β2 = x2(−3xy + (3x4 + 1))

β1 = −x(3x4 + 1)y + (3x8 + 1)

β0 = −x2(xy + (x4 − 1)).

Out of the two rootsz = −x2 and z = xy+(x4−1)
x2(−3xy+3x4+1) of equation (33), only the first

root is y-independent and this root happens to satisfy the equation (31) also. In this case
α2β3 − α3β2 6= 0 and the rootz = −x2 can be obtained directly from (37), conditions (39)
and (40) being fulfilled. So, we continue withz = −x2 and check the second condition
(equation (27)) for our problem to admit of an affirmative answer. For the case at hand, (27)
is indeed satisfied.

Now, from (28) we findh = 1
x

and from (4) we find the family of orbits

y − 1

x
= c, (67)

inside the nonshaded region of figure 2 being traced the curves withc = 3, 4, . . . ,8.
From (25) we findEc = 3(xy−1)2

x2 and, havingc at our disposal, we understand that
Ec = 3c2, i.e.E = c3, giving Ē = (y − 1

x
)3.

From (42) we find the kinetic energyB and, finally, from (43) we find the potential

V (x, y) = y3 + 3x3y2 − 3x2(x4 + 2)y + 1
5x(3x

8 + 18x4 + 20). (68)



Programmed motion 31

We conclude that, in the presence of the potential (68) and for adequate initial conditions,
members of the family (67) can be traced, but only branches (like the arc AB forc = 3 in
figure 2) on which motion is librational.

8. Concluding remarks

According to Galiullin [5], dynamical systems with programmed (or controlled) motion
‘are solved in such a way that the process occurring in these systems satisfies some preset
requirements’.

The dynamical system here is as simple as one material point moving in the presence of an
autonomous two-dimensional potentialV (x, y). In Galiullin’s terminology, the ‘programme of
the motion’ consists of two elements: (i) the material point moves on a curve with preassigned
equation and (ii) the totality of such motions takes place in a preassigned region of thexy

plane.
The equation of the orbits is of the (very special, indeed) form (4). For this form,

Szebehely’s equation is solvable by quadratures, for any functionh(x). For any specifich(x),
as many potentials as two arbitrary functions introduce can generate the monoparametric
family (4). In fact, to each selection of the arbitrary functions there correspond different
families (4) in the sense that their members exist as real orbits inside different regions of the
xy plane.

So now, in this paper and for this particular solvable inverse problem, we preassign the
allowed region also. We effectuate this, essentially by preassigning a positive functionb(x, y),
related to the (positive) kinetic energyB(x, y)of the moving point and such that its positiveness
implies that the preassigned region is allowed.

To the above additional requirement the system may not respond positively and, in fact,
this is what generally happens. We prove, however, that if the given functionb(x, y) satisfies
certain conditions, there is an affirmative answer to our problem. Once this is assured, in
general, we are led to a unique specification of the basic data of the motion: i.e., (i) the
equation of the family (4), (ii) the energy dependence function and (iii) the potentialV (x, y)

creating the family.
It is true that the method developed in sections 4 and 5 and all the pertinent formulae

refer exclusively to the set of families of orbits (4) for which we cannot offer a convincing
motivation of physical nature but which we selected on grounds of simplicity, i.e. because for
such sets of families we can write down an analytic expression (17) for the potentials. Yet, in
the framework of the inverse problem of dynamics, questions of this sort are interesting. In
fact, the reasoning followed in sections 4 and 5 may be adjusted to include similar solvable
cases of Szebehely’s equation (Grigoriadouet al [6]).

A displeasing feature of the method presented is the inherent difficulty of having infinitely
many ways of representing analytically a preassigned regionT . Out of all these we dealt only
with what we defined as theb-function. We mentioned, however, that more generally we are
led to a (hard to deal with) problem of solving a partial differential equation. So or otherwise,
the calculations involved even in the present version of the problem are almost impossible to
be carried out without the help of a program of symbolic algebra.

Finally, let us note a good feature of equations (39) and (40), which generally constitute
the criteria to be satisfied by the given functionb(x, y): for homogeneous inx, y b-functions,
they are behaving homogeneously. This can be seen easily from the formulae (38), (36), (34)
and (32).
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