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Abstract. Taking as a guide the case of the set of monoparametric fanyiliesh(x) + ¢, for
which Szebehely’s equation can be solved by quadratures for the poténtial) generating the
given set of orbits, we propose the followipgogrammed motion problentan we manage so as
to have members of the given set inside a preassigned ddmaifR? of thexy plane?

We come to understand that, among the various inequalities by means of Wiigh be
ascribed, the simplest s(x, y) > 0 where, for each(x), the functionb(x, y) is related to
the kinetic energy of the moving point (equations (19)—(21)). We then proceed to show that, in
general, ifb(x, y) satisfies two conditions (equations (39) and (40)), the answer to our question is
affirmative: on the grounds of the given appropriate, y), a functioni(x) is found, associated
with a certain potential/ (x, y) creating members of the family = h(x) + ¢ inside the region
b(x,y) = 0.

Some special cases which stem from the method are studied separately. The limitations
and also the promising features of the method developed to face the above inverse problem are
discussed.

1. Introduction

The two-dimensional inverse problem of dynamics consists in finding a poténtiehich
generates a family of curves

fx,y)=c 1)

in the xy Euclidean space. The roots of the problem are to be found in NewRuimisipia
(1687) where a force law compatible with Kepler's laws was deduced. Interest in this old
problem increased after Szebehely [8] presented the partial differential equation

2E()-V)

W(fxvaz—zfxyfxfy*'fyyfxz) =0, (2)
where the subscripts denote partial derivatives. This linedrpartial differential equation is

our tool to find the potentidl (x, y) which can produce as orbits a preassigned monoparametric

family of curves (1), traced in they plane, with adequate initial conditions, by a material
point of unit mass, with energy dependence

E=E(f(x,y) ®3)

given in advance.

fxvx +fyvy -
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20 M-C Anisiu and G Bozis

In spite of its linear character, in practice, equation (2) cannot be solved analytically.
Actually, its solvability is directly connected to the possibility of solving a (generally nonlinear)
system of ordinary differential equations.

Additional assumptions regarding the form of either the known functi¢n y) or the
unknown potentiaV/ (x, y) ease the solution of the problem. Thus, for example, for particular
sets of functionsf (e.g., homogeneous in, y) the compatibility with homogeneous (Bozis
and Grigoriadou [1]) or nonhomogeneous (Baatisl [4]) potentials was already studied.

In this framework, in the present paper a new special case is considered: ttasefof
monoparametric families of curves with equation

y =h(x) +c, (4)

whereh(x) is a nonlinear §”(x) # 0) function ofx. We consider functiong defined on
an interval whereéy’ has no zeros. For every functidrix) equation (4) stands for a family
of (equidistant) curves (not straight lines), shifted parallel toytkaxis. It is shown that all
potentials which can generate families of the form (4) can be found by quadratures.

On the other hand, it is known that during the motion of a material point of unit mass
along an orbit of the family (1), the inequality

B(x,y) =20 )
must be observed, with

B=E(f(x,y)—V(x,y). (6)

This means that the motion is allowed along those members (or part of the members) of the
family (1) which are lying only inside some regions of the plane, limited by the so-called
family boundary curve@BC) (Bozis and Ichtiaroglou [2]), which are given by the equation

B(x,y) =0. (7)

The functionB(x, y) is the kinetic energy (expressed in terms of the position coordinates
x, y) of the material point of unit mass, as it moves on any of the orbits (4) in the presence of
the potentialV (x, y). We shall refer to it here ahe B-functionand keep in mind that it is
associated with the family (4), which, of course, can have infinitely mayfiynctions. The

merit of such a function lies in that, by preassigning to (4) a ce®afanction, we can manage

to have conservative motion inside a preassigned refjian R? of the xy plane defined by
inequality (5). We remind the reader that if force fields (not necessarily conservative) are
demanded, in general, there exist such fields to create any preassigned family (1) inside any
preassigned regiofi (Bozis [3]).

The guestion raised and answered in this paper is the following: can any (positive in
T c R?) function stand for aB-function? In other words: are there potentidgx, y)
generating orbits of the form (4) traced with preassigned kinetic energy (6) and, as a
consequence, lying inside a preassigned region (5)? Which is the pertinent family (4) and
which is the corresponding energy dependefice E(f)?

It turns out that, for everyi(x), there exists a simpler (positive if) functionb(x, y),
whose positiveness ifi implies the inequality (5). Due to its simplicity, we prefer to represent
the FBC byb(x, y) = 0 and we focus attention on the problem of obtaining compatible pairs
of b(x, y) andh(x). We show that, if the giveh(x, y) satisfies two conditions, the function
h(x) (and, consequently, the famif(x, y) = y —h(x) = c) as well as the energy dependence
function E(f) and the potentiaV (x, y) are determined.



Programmed motion 21
2. Determining the potentials which generate a special family of curves

For the case of the family of curves given by (4), equation (2) has the simpler form

1+—I1/2(E(f) - V), ®)
the prime denoting the derivative with respect to thevariable, and, according to (1),
f(x,y) =y — h(x). The subsidiary system of ordinary differential equations is
dx dy (1 +h?)dv

WV, -V, =

WSl 20(E(f) = V) ®
The first of equations (9) gives
y =Cl_1(-x)v (10)
where
ode

Equating the third to the first fraction in (9), we obtain a linear equatio¥ iwhich has to
be solved after replacing appearing in the argument &f by its expression in (10). So the
argument off will be y — h(x) = ¢1 — I (x) — h(x), and the equation i will have the form

d_V . 2h" (x) v 2h" (x)

de A ()1 +h2(x)) B (x) (1 +h72(x))

The solution of the ordinary differential equation (12) is
_1+%(x)
ES)

E(ci—1(x)—h(x))=0. (12)

[c2+ K (x, cp)], (13)
where
. 2K (s)h" (s)
K(.X,Cl):/ E(C]_—I(S)—/’l(s))m A

Integrating by parts the above integ#a) we get

1
K(x,cl)=—mE(cl—I(x)—h(x))—](x,cl) (14)
where
x 1
umq)=/ Ee(ci— I(s) — h(s)) —— ds (15)
h'(s)

and whereE,. denotes the derivative of the one-variable functtor= E (c¢) with respect to its
argument.
The general solution of the partial differential equation (8) is given by
c2 = A(cy) (16)
with A an arbitrary function ot; = y + I (x). So, for the family of curves (4) traced with a
preassigned energy dependelice- E(c), the potentials creating it are given by

1. 1+h? _ .
V(x,y)=—ﬁE+7(A—J), (17)
where we adopt the notation
E=E(c=y—h), A=Alcr=y+1) (18)

J=Jx,ca=y+1I)
with the functionsh and/ depending merely on.
Clearly, if we consider as given a functiaiix) and select arbitrarily a functiofi(c), we
can calculate the integralsandJ by quadratures from (11) and (15), respectively.
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3. Family boundary curves (B-functions and b-functions)

Real motion of the moving point takes place only on those members of the family of curves (1)
or those parts of each member of the family which lie in the region of thelane where the
inequality (5) is observed.
We proceed to find the pertinent FBC (7) for the specific set of families (4). As the
corresponding potentials are given by (17), the function in (6) is found to be given by
+ 2
B(x,y) ==
The meaning of (19) is the following: given a family (4), i.e. given a functign), after
selecting specific arbitrary functior’s(c) and A(c1), we can find the functioB(x, y) and

draw conclusions regarding the FBC.
Naturally, whereveB(x, y) > 0, with B(x, y) given by (19), it is also

b(x,y) >0 (20)

(E—A+). (19)

with
b(x,y)=E—A+J (21)

and conversely. Thus, together with tBefunction, we have a simpler functiob(x, y)
which can serve to describe the FBC or, if given in advance, to cpraggammed motion
inside a region. So, in what follows, we shall represent the preassigned allowed region by
inequality (20). The same region, of course, could be representédxyy)b(x, y) > 0,
wheref (x, y) is any arbitrary non-negative function ih(Bozis [3]).

On the grounds of the previous analysis we now pose the following question: consider a
preassignethoundary functiorb = b(x, y), positive inside a regiof ¢ R? which we want
to programme as an allowed region of some orbits (4). Can we find a furigtionleading
to appropriate functiong (c), A(c1) andJ (x, c1), such that equation (21) is satisfied?

If the answer to the above question is in the affirmative, ingidbere exist members of
the family (4). These are orbits, traced by the moving point for adequate initial conditions, in
the presence of the potential (17) with kinetic energy equ&l(tq y) = 1;—ffb(x, y) at each
point of the orbit.

4. Programmed motion: analysis

Consider a (positive in a regidh c R?) boundary functiorb(x, y) to account for our goal
to obtain orbits of the form (4) inside the regi@h For this version of the inverse problem,
suppose that there is an affirmative answer, i.e. there exists an appropriate fuieidor
which (21) can be satisfied.

Since the functiom depends on, y throughcy, it is

Ay _ay
Ax C1x
and, in view of (10) and (11), it must be
A, =NA,. (22)

We want to replace into (22) the function= E + J — b given by (21). To this end we
prepare, in view of (3), (15) and (18),
1 1

E.=—-HE,, E, = E,, J, = EEC + EJQ, Jy = Jop (23)
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In view of (23), the condition (22) is now written as
h2E. = by — h'b1g (24)

wherebq stands fob, andbg; for b,. This notation is in agreement with the following more

general convention which we adopt in what follows: we denotg,hym, n positive integers)

the partial derivative ob(x, y) m times with respect ta andn times with respect tg.
Sinceh'(x) # 0, we denoteﬁ—, by z = z(x) and we write equation (24) as

E. = 7°bo1 — zb1o. (25)

The simpler case akoenergetic familie®f orbits (4), for whichE. = 0, will be treated
separately in section 6. In general, we know tBatdepends onx, y throughe, given by
equation (4): thus;* = —X and we find

(Eo)y +z(Eo)x = 0. (26)
After some straightforward algebra, from (26) and (25) we obtain
b112% + (bop — b2o)z — b1y = (b1o — 2b012)7’ (27)

wherez’ = & (s 0 becausé”(x) # 0).

Condition (27) is free from the energy and (as we restrict ourselves to choase not
0b, to represent the FBC) it is necessary and sufficient for our purpose to achieve programmed
motion. As it stands, (27) relates the given boundary fundiian y) (and up to second-order
derivatives of it) to the function

1
T

(and its derivative).

To come to knowg andz’, we differentiate twice both members of (27) with respect to
and we obtain the two equations

1272 + (bo3 — b21)z — b1p = (b11 — 2bo22)7 (29)

(28)

and

b1372 + (boa — b22)z — b1z = (b12 — 2bo32)7 . (30)
Assuming thabyo — 2bg1z # O (the special case will be treated in section 6) and dividing (29)
by (27), we obtain the cubic inalgebraic equation

a3+ apz? tarztap =0 (32)
with

az = 2(bo2b11 — bo1b12)

a2 = 2boa(boa — bao) — 2bo1(bos — ba1) + biob12 — b3,

a1 = 2(bo1b12 — bozb11) + b10(boz — b21) — b11(bo2 — b2o) (32)
0pg = bil — blob]_z.
Now dividing (30) by (27) we obtain a second cubic
Bz + Bz + Prz+ o =0 (33)
with
B3 = 2(bosb11 — bo1b13)
B2 = 2bo3(boz2 — b2o) — 2bo1(boa — b22) + b1ob1z — bi1b12 (34)

B1 = 2(bo1b13 — bozb11) + b1o(bos — b22) — b12(boz — b2g)
Bo = b11b12 — bigbsa.
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It can be checked easily thAt can be obtained alternatively by differentiating eagh
(i =0,1,2, 3) with respect toy. A problem may arise when all the are zero, so we cannot
make use of equations (31) and (33). This case will be treated in section 6.

Equations (31) and (33) are necessary conditionsifanerited from the unique necessary
and sufficient condition (27) which we wish to satisfy, if this is possible, in the first place, with
az = z(x). So, if, for a giverb, such & does exist, this has to be the (at least one) common
root of (31) and (33). Of course, for such a root to exist, a sixth-order determinant, called the
resultant of the two polynomials in (31) and (33) (Mishina and Proskuryakov [7], p 164) must
vanish identically. This requirement will lead to a (rather complicated) condition including
derivatives ob(x, y) up to the fourth order. Yet, it is understood that we need not write down
this condition. Instead, taking for granted that an approptiatez(x) to be putin (27) does
exist and that thig cannot be anything but the common root of (31) and (33), we proceed to
find it as follows.

We multiply (31) byss and (33) byxs and subtract. Assuming thatfs — azB2 # O (the
special case will be treated in section 6), we obtain

2 =nz+y (35)
with
_ %03 — 0!3/307 = a1z — 0!3,31. (36)
azfz — a2f3 azfz — azf3
In view of (35), we replace® into (31) byz® = (y2 + y0)z + yoy1 and we find
812+80=0 (37)
with

81 = az(yf +y0) +aoy + o
do = azyoy1 + a2yo * ao.
We assume thay # 0 (the special cas® = 0 is examined in section 6) and we conclude
by writing down the two conditions which the given functibtx, y) must satisfy:

(i) The functionz, found from (37), must depend only on the variab)e.e.

(38)

80.y81 = 8001,y (39)
(ii) The functionz must satisfy the equation (27), i.e.
81{85b11 — (boz — b20)8081 — b1183} = (8110 + 280b01) (8081,x — 80,481). (40)

Clearly, if we expressed the above conditions (39) and (40) in terms of the given function
b(x, y) only, there would appear partial derivativeshafip to the fifth order.

5. Programmed motion: synthesis

We want to have monoparametric families of orbits of the form (4) ‘inside’ a preassigned region
T c R? given by inequality (20) with the given functidr(x, y) to be defined as in (21).

In view of the analysis in section 4 and aided by a symbolic algebra program (e.g.
MATHEMATICA) we proceed as follows:

(i) For the giverb(x, y) we prepare its partial derivativég up to the fourth order and, from
equations (32), (34), (36) and (38), we find all the functianss; (i = 0, 1, 2, 3) and
Vi, Ok (k =0, 1). We make sure that

a2z —azf2 #0 and 81 #0. (41)

(Otherwise we act as in section 6.)
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(i) We prepare the partial derivativés ., oy, 81, 81,, Of the two functionss, (x, y) (k =
0, 1) and we check the conditions (39) and (40).

After the remark which follows we shall continue with our synthesis by assumingvthat
do havean appropriaté-function at our disposal.

Remark. As arule, of course, one does not expect the conditions (39) and (40) to be satisfied.
Consequently, one cannot programme motion ingide R?, described by thé-function
at hand. Yet, such an appropridtéunction may be hidden! It may correspond to another
selection of the functiofi(x) in equation (4) and, most likely, to different selections of the
arbitrary functionsE and A, as given by the equations (3) and (16).

One then may try to find a goddfunction. Thus, for example:

o If b is given with some free constants, one may try to determine these constants so that
the conditions (39) and (40) are satisfied.

o If this cannot be achieved, we may write (39) and (40)ier 6b(x, y) and try to find
even ongpositive inT) particular solutiorfy(x, y) satisfying these conditions. This
assignment is far from being a simple task, of course.

Assuming that the giveh is appropriate, we now proceed as follows:

(iii) From (37) and (28) we find and4’ and then, in turnfz(x) up to an additive constant
ho. Then, out of the set of orbits (4), we obtain the specific monoparametric family
f(x,y) =y — h(x) = c. Ingeneral, the two equations (31) and (33) have one common
root, so we obtain one family (4) for some members of which we can manage to have them
trapped inside the preassigned region (20). To this end we must determine the appropriate
potential.

(iv) From equation (25) we now determirie. and, as we already know the expression for
¢ = y — h(x), we determine uniquely (apart from an additive const&g)tthe energy
dependence function (& = E(c) and, from the first of equations (18), we come to know
E, into which the constants, and Eg will enter.

(v) Finally, since the kinetic energy is
1+n?

B =—7b(x,y) (42)

we write down the potential
Vx,y)=E—B (43)

which gives rise to orbits with equation (4) lying inside the region (20).

Comment. In spite of the fact that the two integration constatisand Eq enter into (43)
throughE, the potentiaV (x, y) is essentially unique, at least as far as the study of the present
family is concerned. Indeed and Eq appear in (43) either purely as an additive constant or
through a combination which amounts to a (constant, again) additive arbitrary fuigtion
wheref = y — h(x) = c is the family under consideration. For these reasons we can set both
ho and E equal to zero and this is actually what we do in the example of section 7.
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6. Special cases

6.1. Isoenergetic familiegE,. = 0)

Actually condition (26)—and consequently (27)—as it is written is valid for isoenergetic
families, i.e. families of orbits all traced with the same (constant) value of the egrgyet

the case needs to be treated separately in the sense that, as seen from (24&), wlerirom

the givenb-function we obtain immediately

b
Bo=2 (44)
bio
which is acceptable provided that
b
<ﬂ) _0 (45)
b0/,
or, equivalently,
b = b(c1) (46)
with ¢y = y + 7 andl = [ 72 dx.
Then theB-function (42) is
bio+ bgy
01
where
b=b(ci=y+I(x))
and the potential is
bio+ bhy
V= Ey— 20 Jup (47)

01

The meaning of the above reasoning is the following: given a boundary furigtiory)
which satisfies (45), we can directly obtain from (44)and from (11)I (x), thenc; = y + 1
and check that the givemis of the form (46). The family of orbits — h(x) = c is traced
isoenergetically with energi by the potential (47).

Thus, e.g., giveh = y — x?, we findh’ = —3=, h(x) = —Inx,x > 0,1 = —x?,
cio=y—x%b=y—x?andV = —(1+ &) (y — x?).

The isoenergetic family is + % Inx = ¢, traced withEy = 0, by the potential/.

6.2. The caséig — 2bg1z =0

Having
b
= 51001 (48)
we must also zero the left-hand side of equation (27). This leads to
b11b3y + 2bo1b10(boz — b2o) = 4bg,b11. (49)
Since(32), = 0, we have
b= F(y+ux)) (50)

whereF is an arbitrary function of its argument+: and: = [ ’;—;‘; dx.
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Inserting (50) into (49) we obtain after some algebra
FH 2 "
L — ko (51)

FT O 2+2
where primes inF and: denote differentiation with respect to their respective argumetts
andx and where the constakg was put to make equal the two functions of different argument.
Solving the two equations (51) we find

2¢h — kox
b = c;ev cod —2——, 52
1 «/é ( )
wherec}, ¢ are integration constants. Then, in turn, from (48) we finftom (28) we find
h'(x) and, integrating itz (x) and from (4) we find the family

1 2¢5 —k
y+—1n <sin2 u) —c. (53)
ko V2
From (25) we findE,. and then the energy
E = —1cje (54)

with which each member of the family (53) is traced.
Finally, from (43) we find the potential

V(ix,y) = —cIe]“’y. (55)

It is worth noticing that, sincé(x, y) > 0 everywhere or nowhere (depending on the sign of
c3), orbits (53) exist everywhere or nowhere in theplane.

6.3. Thecase; =0( =0,1, 2,3)

In this case we have not at our disposal the polynomial equations (31) and (33), so we are
obliged to consider only the differential equation (27). However, if all the coefficignis 0
(i =0,1,2,3) are zero, the functioh must have some particular expressions which we are

going to find.
Equating to zeraz andag we get
bo2b11 — bo1h12 = 0, (56)
b2, — b1gh12 = 0. (57)

(i) If b1y = 0, it follows thatb is a sum of two functions, one in the variahl@nd the other
in y. Replacing it in the equationg = 0 andx, = 0 we get only two possibilities fay
(apart from an additive constant):

b =my+ g(x), m € R, g an arbitrary function (58)
b=rx%+y?+py+gx, rnp,qeR, r#0. (59)
In fact, b can be also given ds= %e"y, a,k € R,k # 0, which is a special case of (60)

below.
(ii) If b11 5 O, from (56) we ge(}%), = 0, henceboy = C(x)byy; from (57), (), = O,
hencebio = D(x)b11. It follows 22 = 58 s0b = U(y + [ 22 dx). Replacing in (56)

D(x)’ C(x)
we obtain
U’ 1
U T Dk
SO
b= %e/‘ye"‘;(”, co.k€R, k#0, G anarbitrary function (60)

this special expression éfalso makingy; andas vanish in equation (31).
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For the three cases (58)—(60) we analyse equation (27).
Consider firsb = my + g(x). In this case (27) becomes

_g//Z — (g/ _ ZWlZ)Z/

with the solutionz(x) = %(g/ + /g2 — 4mc}), giving E, = —c§ andE (c) = —cjc.

For b given by (59), equation (27) has no nonconstant solufiomependent of.

For b given by (60) we obtain from equation (27) a differential equatior; iwith
coefficients depending only on having the form

kG'z2? + (k — kG? — G")z — kG’ = (G' — 27)7. (61)
As an example considét(x) = Go = constforwhichG’ = G” = 0. Then (61) becomes
kz = —2z7/,s0z = —£x andh = —ZInx. Hence fob = L€, wheredy = coe%, we have

2 2 )
E. =% evx? = el andE = Dhefe, v = —Deb,

6.4. The case,83 —azf =0

Apparently, in this case, the task of finding the common roots of equations (31) and (33)
becomes easier. Suppose then that we do have suglinddpendent) root = z(x). We
proceed and check if the condition (27) is valid. If so, with this appropriatee find
successfully: the function(x) (from equation (28)), the energy dependerite= E(f)
(from (25)), the functiomB (from (42)) and, finally, the potentid (x, y) (from equation (43)).

As an example consider as given théunction on(—oo, 0) or (0, +o0):

2
po L
x4 2 x2
From (32) and (34) we findez = 0,0, = ¥, a3 = 162:’9‘6, ao=2andps == p1 =
Bo = 0.
Out of the two roots of the quadratiez? + a1z + ap = 0, only the root, = —X—; satisfies
the condition (27). This leads toh = 5, y = & +¢, E = ¢? and to the potential

(62)

Vix,y) = §(6(2y% — x?) — (x* = 2y)?). (63)
It is understood that only those members or parts of members of the family
1
-5 =c (64)
are actually traced by the potential (63) which lies in the nonshaded region of figure 1,
< x* + 1
IS T
where the curves with = —3, -2, ..., 2 are displayed.

6.5. Thecasé; =0

If 81 = 0 anddy # 0, equation (37) has no solution, hence we cannot determine a family of
orbits in the regiom(x, y) > 0. If §; = 0 andsy = 0, equation (37) is an identity and one can
use, for example, equation (35) to determine the common root of (31) and (33).

Thus, giverb = e'*7 +xy, we havex, 83 — a3f2 # 0, so that the case cannot be treated as
in subsection 6.4. For this specific functibiffor which the equatiotr = 0 is equivalent with
y = —Lambert V\(%) on the intervalk > 0), one ha$; = §o = 0. Equation (35) becomes
z? = 1, hence in this case a nonlingacannot be obtained.
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X

Figure 1. The twelve (symmetric in pairs with respect to thaxis) unbounded curves= 1/x%+c
(for ¢ = —3,-2,-1,0,1, 2) are real orbits, created by the potential (63) and traced in the
nonshaded region of the figure.

7. An example for the general case

Forx > 0, let us start with thé-function

b = boy? + b1y + by (65)
with
3
by=—=
X
3 4

1 x4
bo=—— (3x*[=+1)+1).
o= (' (5 1))

We want to check if families of the form (4) exist inside the (nonshaded) region of figure 2,
given byb(x, y) > 0, which we engage as the allowed region for such families.
According to the procedure exposed in section 5, we write down the equations (31) and (33)
and see first if they possess ayyndependent common roots. The coefficiemtsgs;, found
from (32) and (34), are (apart from unimportant multiplicative factors)
az = —2x*3x* — 1)
ap = x2(3x%y? — 2x(Bx* + 1)y — 3(8x® — Bx* + 1))
o1 = x2@x* + 1)y? — 2x(Bx8 + 1)y — (B2 — 16x8 + 6x% — 1)
op = x2(x%y? + 2x(x* — )y + (8x® — 3x* + 1))



30 M-C Anisiu and G Bozis

2.2 2.4 2.6 2.8 3.2

X

Figure 2. The six bounded curves= 1/x + ¢ (for ¢ = 3, 4, 5, 6, 7, 8) in the nonshaded region of
the figure are real orbits (librational motion), created by the potential (68).

and

B3=0
B2 = x*(=3xy + (3x* + 1))
pr=—x@x*+1y+@3xB+1)

Bo= —x(xy + (x* = D).
xy+(x4—1)

Out of the two rootyy = —x? andz = T E D of equation (33), only the first
root is y-independent and this root happens to satisfy the equation (31) also. In this case
aof3 — asfo # 0 and the root = —x? can be obtained directly from (37), conditions (39)
and (40) being fulfilled. So, we continue with= —x? and check the second condition
(equation (27)) for our problem to admit of an affirmative answer. For the case at hand, (27)
is indeed satisfied.

Now, from (28) we findh = % and from (4) we find the family of orbits

1
y——=c, (67)
X
inside the nonshaded region of figure 2 being traced the curves witB, 4, ..., 8.

From (25) we findE. = 3(%21)2 and, havingc at our disposal, we understand that
E. =3 ieE=c%gvingE = (y — 1)
From (42) we find the kinetic energy and, finally, from (43) we find the potential

V(x,y) = y>+33y? — 3x2(x* + 2)y + 1x(3x® + 18¢* + 20). (68)
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We conclude that, in the presence of the potential (68) and for adequate initial conditions,
members of the family (67) can be traced, but only branches (like the arc AB$o13 in
figure 2) on which motion is librational.

8. Concluding remarks

According to Galiullin [5], dynamical systems with programmed (or controlled) motion
‘are solved in such a way that the process occurring in these systems satisfies some preset
requirements’.

The dynamical system here is as simple as one material point moving in the presence of an
autonomous two-dimensional potenti&lx, y). In Galiullin’s terminology, the ‘programme of
the motion’ consists of two elements: (i) the material point moves on a curve with preassigned
equation and (i) the totality of such motions takes place in a preassigned region.of the
plane.

The equation of the orbits is of the (very special, indeed) form (4). For this form,
Szebehely’s equation is solvable by quadratures, for any funktion For any specifié (x),
as many potentials as two arbitrary functions introduce can generate the monoparametric
family (4). In fact, to each selection of the arbitrary functions there correspond different
families (4) in the sense that their members exist as real orbits inside different regions of the
xy plane.

So now, in this paper and for this particular solvable inverse problem, we preassign the
allowed region also. We effectuate this, essentially by preassigning a positive fumation,
related to the (positive) kinetic ener@yx, y) of the moving point and such that its positiveness
implies that the preassigned region is allowed.

To the above additional requirement the system may not respond positively and, in fact,
this is what generally happens. We prove, however, that if the given furietigry) satisfies
certain conditions, there is an affirmative answer to our problem. Once this is assured, in
general, we are led to a unique specification of the basic data of the motion: i.e., (i) the
equation of the family (4), (ii) the energy dependence function and (iii) the poténtialy)
creating the family.

It is true that the method developed in sections 4 and 5 and all the pertinent formulae
refer exclusively to the set of families of orbits (4) for which we cannot offer a convincing
motivation of physical nature but which we selected on grounds of simplicity, i.e. because for
such sets of families we can write down an analytic expression (17) for the potentials. Yet, in
the framework of the inverse problem of dynamics, questions of this sort are interesting. In
fact, the reasoning followed in sections 4 and 5 may be adjusted to include similar solvable
cases of Szebehely’s equation (Grigoriagbal [6]).

A displeasing feature of the method presented is the inherent difficulty of having infinitely
many ways of representing analytically a preassigned regiddut of all these we dealt only
with what we defined as thiefunction. We mentioned, however, that more generally we are
led to a (hard to deal with) problem of solving a partial differential equation. So or otherwise,
the calculations involved even in the present version of the problem are almost impossible to
be carried out without the help of a program of symbolic algebra.

Finally, let us note a good feature of equations (39) and (40), which generally constitute
the criteria to be satisfied by the given functieix, y): for homogeneous in, y b-functions,
they are behaving homogeneously. This can be seen easily from the formulae (38), (36), (34)
and (32).
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