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Abstract. The direct problem of dynamics in two dimensions is modeled by a nonlinear second-
order partial differential equation, which is therefore difficult to be solved. The task may be made
easier by adding some constraints on the unknown function γ = fy/fx , where f (x, y) = c is the
monoparametric family of orbits traced in the xy Cartesian plane by a material point of unit mass,
under the action of a given potential V (x, y). If the function γ is supposed to verify a linear first-
order partial differential equation, for potentials V satisfying a differential condition, γ can be found
as a common solution of certain polynomial equations.

The various situations which can appear are discussed and are then illustrated by some examples,
for which the energy on the members of the family, as well as the region where the motion takes
place, are determined. One example is dedicated to a Hénon–Heiles type potential, while another one
gives rise to families of isothermal curves (a special case of orthogonal families). The connection
between the inverse/direct problem of dynamics and the possibility of detecting integrability of a
given potential is briefly discussed.
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1. Introduction

The direct problem of dynamics consists in finding families of orbits f (x, y) = c

traced in the xy Cartesian plane by a material point of unit mass, under the action
of a given potential V . Throughout the paper, the subscripts will denote partial
derivatives, and ′ the derivative of functions of one variable.

Any family of orbits is determined by the ‘slope function’ γ = fy/fx . There
are two equations relating the functions V, γ (and their derivatives), which have
appeared in relation with the inverse problem of dynamics in inertial systems, that
is, find all potentials which can give rise to a given family of orbits:

(i) the first-order equation in V given by Szebehely (1974), which is associated
with the energy dependence on the family f ;

(ii) the free of energy second-order linear equation in V (Bozis, 1984).
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These equations are usually used in the framework of the inverse problem. However
they can be rearranged in order to face the direct problem (Bozis, 1995). In particu-
lar, the first-order partial differential equation in the unknown function γ = γ (x, y)

(Eq. (8)) can be used for direct problem considerations only for unknown families
of orbits which are considered a priori as isoenergetic, for example with all their
members traced with energy E = 0. The reason is that, when f (x, y) is unknown,
so is the energy dependence function E = E(f ) in (8). In the absence of any
information on the energy dependence, the second-order equation is sine qua non
for the direct problem. Of course, due to its nonlinearity in γ , it is difficult to be
solved. For this reason, in several papers additional information on the families
of orbits was used in order to obtain solutions of the direct problem. Homogen-
eous families produced by inhomogeneous potentials were studied by Bozis et al.
(1997), as well as families of orbits with γ = γ (x), corresponding to families
f (x, y) = y +h(x) = c (Bozis et al., 2000); in these two cases γ was found as the
common root of some algebraic equations in γ, with coefficients depending on V

and on its derivatives.
The additional condition satisfied by γ may be put in the terms of a first-order

differential equation. Indeed, if f is homogeneous of degree m, then f (x, y) =
xmF(9y/x) and

γ = F ′(y/x)
(mF(y/x) − F ′(y/x) · (y/x))

is homogeneous of degree 0. This happens if and only if
xγx + yγy = 0.

For the family f (x, y) = y+h(x) the corresponding γ is given by γ = 1/h′(x)
and satisfies the equation

γy = 0.
More generally, we may look for γ in a family of functions, that is, γ =

G(g(x, y)) with G arbitrary and g given in advance. Then γx = G′(g)gx , γy =
G′(g)gy and we obtain the partial differential equation

gyγx − gxγy = 0.
This is a special case of a more complicated dependence (Courant and Hilbert,
1962, Chapter I) which provides a quasilinear equation in γ .

In what follows we consider a given potential V and study the existence and the
construction of solutions γ of the direct problem of dynamics, under the hypothesis
that γ satisfies an equation of the form

a(x, y)γx + b(x, y)γy = 0. (1)
We may suppose b �= 0 and denote by r = a/b (the case b = 0, i.e. of functions γ

depending only on the variable y, is similar to that studied by Bozis et al. (2000)).
The above equation has the simpler form

r(x, y)γx + γy = 0, (2)
which we shall use throughout the paper.
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Its solutions generalize the families of trajectories described by a homogeneous
function f, or by f (x, y) = y + h(x). Geometrically, the trajectories from the
two mentioned families can be obtained one from another using an element of a
group of simple transformations: geometrical similarity of center O for the first
one, translation parallel to the Oy axis for the second one. The relation between
Equation (2) and the geometry of the family (3), as well as that between the sym-
metries of the given potential and the possible symmetry of the family deserves a
further study.

In Section 2, we give the basic differential equations mentioned in Section 1
and, using the additional differential relation (2), we indicate how the mathematical
handling of the problem is made possible. In Section 3, we obtain two algebraic
equations which the required family must satisfy. The resultant of these equations
must vanish and this leads to a differential condition which all adequate potentials
must satisfy. In Section 4, certain examples are offered and in Section 5 the method
is recapitulated. Section 6 is devoted to certain comments regarding the question
of possible integrability of the potentials appearing in the inverse or direct problem
of dynamics.

2. Partial Differential Equations Satisfied by γ

Let us consider a potential V under the action of which a monoparametric family
of orbits

f (x, y) = c (3)

is described by a material point of unit mass. This family can be represented in a
unique way by its ‘slope function’

γ = fy

fx

. (4)

To each γ there corresponds a unique family (3).
The nonlinear second-order differential equation relating potentials and orbits

in the form suitable for the direct problem (Bozis, 1995) is

γ 2γxx − 2γ γxy + γyy = h, (5)

where

h = γ γx − γy

Vyγ + Vx

(−γxVx+(2γ γx − 3γy)Vy+γ (Vxx − Vyy) + (γ 2 − 1)Vxy).

(6)

On the other hand, Szebehely’s equation (1974), as written by Bozis (1983), reads

Vx + γ Vy + 2(γ γx − γy)

1 + γ 2
(E(c) − V ) = 0, (7)
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where E(c) is the total energy on each orbit (3) parametrized by the constant c. In
order to solve (7) for E(c), the condition � = γ γx − γy �= 0 must be imposed,
hence it follows also that Vx + γ Vy �= 0. The case � = 0 was studied in detail
by Bozis and Anisiu (2001) and will not be considered here. If for a given V we
can find a solution γ of (5), Equation (7) will allow us to find the energy on the
members of the family, namely

E = V − (Vx + γ Vy)(1 + γ 2)

2�
. (8)

The curves of the family will be lying in the region defined by the inequality (Bozis
and Ichtiaroglou, 1994)

Vx + γ Vy

�
� 0. (9)

As we have mentioned in Section 1, the special families of orbits we are going
to consider are those for which Equation (2) is also satisfied. We differentiate it
with respect to x and obtain

rγxx + γxy = −rxγx. (10)

Then we differentiate (2) with respect to y

rγxy + γyy = −ryγx. (11)

The system of Equations (5), (10) and (11) will allow us to obtain the second-order
derivatives of γ in terms of γ and its first-order derivatives.

Comment: The function r being given, Equation (2) is equivalent to
γ = G(g(x, y)), where G is an arbitrary function and g(x, y) = c is a solution (not
always possible to be found) of the ordinary differential equation dy/dx = 1/r.
The curves g(x, y) = c in the xy plane are isoclinic curves of the various fam-
ilies of orbits (3) which can be traced when (2) is given. If one draws a curve

Figure 1. The curve x3 + xy = 5/108 is approximately traced using the isoclinic curves
y = −3x2 + x/c, c = 0.5, 0.7, 0.9.
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g(x, y) = c1, the inclination of the orbit passing through a point P1 situated on
that curve will be y′ = −1/γ = −1/G(c1). A small straight line arrow P1P2 can
be drawn, P2 being situated on a neighboring isoclinic c = c2; from P2 we can draw
another small segment P2P3 with slope −1/G(c2) and so on. In this way we can
construct approximately the entire family corresponding to one γ = G(g(x, y)).

For another function G there will be another family (3) which will be constructed
on the grounds of the same isoclinic net g(x, y) = c.

In Figure 1 an approximation of the dotted curve x3 + xy = 5/108 from the
family obtained in Example 1 (Section 4) is given. The procedure described above
is applied to the isoclinic curves obtained from γ = g(x, y) = x/(3x2 + y).

3. Algebraic Equations Satisfied by γ

We shall solve the system of Equations (5), (10) and (11) with respect to γxx, γxy

and γyy . These second-order derivatives will depend on γ , γx , γy , on r, rx, ry , and,
of course, on the first- and second-order derivatives of V . In fact, considering (2),
we can express γy in terms of γx . Denoting by

� = (γ + r)2(Vyγ + Vx),

K = (γ + r)(2Vyγ + 3rVy − Vx)

= 2Vyγ
2 + (5rVy − Vx)γ + r(3rVy − Vx),

L = Vxyγ
3 + (Vxx − Vyy + rVxy − 2rxVy)γ

2 +
+ (r(Vxx − Vyy) − Vxy − 2rxVx − (rrx − ry)Vy)γ −
− (rVxy + (rrx − ry)Vx), (12)

the second-order derivatives of γ can be expressed as

γxx = 1

�
(Kγ 2

x + Lγx),

γxy = − 1

�
{rKγ 2

x + (�rx + rL)γx},

γyy = 1

�
{r2Kγ 2

x + (�(rrx − ry) + r2L)γx}. (13)

Remark 1. As we have already mentioned, we have Vyγ +Vx �= 0. We have also
γ + r �= 0, because if we suppose that γ = −r, Equation (2) will imply � = 0,
a situation excluded from the present study. Hence all the denominators in (13) are
different from zero.
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Working with (13) we find that the two compatibility conditions (γxx)y = (γxy)x
and (γxy)y = (γyy)x produce one single relation which, after substituting γxx, γxy

and γyy given by (13) and γy from (2), reduces itself to a first degree algebraic
equation in γx . This equation has the form

(γ + r)Bγx = A (14)

with A, B polynomials in γ of at most fifth, respectively second degree. The
coefficients of A = A5γ

5 + A4γ
4 + A3γ

3 + A2γ
2 + A1γ + A0 are displayed

in Appendix A. The polynomial B may be written as

B = 3V 2
x

(
r

(
Vy

Vx

)
x

+
(
Vy

Vx

)
y

)
(γ + r)2 + (rrx + ry)(Vyγ + Vx)

2. (15)

As indicated in Remark 1, we have γ + r �= 0. In what follows we shall consider
only potentials V and functions r for which B �= 0.

Comment: Important classes of potentials V for which B is identically null
are, in the case when r = x/y, those of homogeneous potentials, or of the form
V (x − c0y), c0 being a constant.

We express γx from (14) as

γx = A

(γ + r)B
, (16)

and γy in view of (2) as

γy = − rA

(γ + r)B
. (17)

The case of A with identically null coefficients will be considered in the next
section.

If A has some coefficients different from zero, we write the compatibility condi-
tion (γx)y = (γy)x, in which we replace γx by (16) and γy by (17); we obtain a first
polynomial equation of seventh degree in γ, whose coefficients Hi, i = 0, 1, . . . , 7
contain the derivatives of V up to the fourth order

H7γ
7 + H6γ

6 + H5γ
5 + H4γ

4 + H3γ
3 + H2γ

2 + H1γ + H0 = 0. (18)

From (16) and (17) we can express, after differentiation, γxx, γxy, γyy in terms
of γ and derivatives of V up to the fourth order. We insert these values in the basic
Equation (5), and then the values of γx and γy from (16) and (17). We are left with
a second algebraic equation in γ , this time of 12th degree,

R12γ
12 + R11γ

11 + R10γ
10 + R9γ

9 + R8γ
8 + R7γ

7 +
+R6γ

6 + R5γ
5 + R4γ

4 + R3γ
3 + R2γ

2 + R1γ + R0 = 0. (19)

The coefficients Rj, j = 0, 1, ..., 12 contain the derivatives of V up to the fourth
order.

The coefficients in (18) and (19) are too long to be written here, but they can be
calculated using symbolic algebra programs (as MATHEMATICA).
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The case of potentials V for which both Equations (18) and (19), or at least one
of them, have null coefficients will be examined in the next section.

We suppose now that some of the coefficients Hi , i = 0, 1, . . . , 7 and some of
Rj , j = 0, 1, . . . , 12 are different from zero. For a common solution of
Equations (18) and (19) to exist, a necessary and sufficient condition is that their
resultant, which is equal to their Sylvester determinant of order 19 (Mishina and
Proskuryakov, 1965, p. 164) vanishes. This will give the necessary condition∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H7 H6 . . . H0 0 0 . . . 0
0 H7 . . . H1 H0 0 . . . 0
· · · · · · · · · ·
0 0 . . . H7 H6 . . . H0

R12 R11 . . . R0 . . . 0
0 R12 . . . R0 . . . 0
· · · · · · · · · ·
0 . . . R12 R11 . . . R0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (20)

to be satisfied by the potential V . Example 1 in Section 4 gives a potential V and
a function r for which it is possible to find a common solution γ of (18) and (19),
which is a solution for the direct problem of dynamics.

4. Special Cases and Examples

The compatibility conditions written for the second-order derivatives of γ as writ-
ten in (13) gave the first degree algebraic equation in γx (14), where we made
the assumption that the quadratic polynomial B has nonvanishing coefficients. We
shall analyze the special cases mentioned in Section 3.

CASE 1. If the fifth degree polynomial A in (14) has all the coefficients equal to
zero, from (16) and (17) we obtain the trivial case γ = const., excluded from the
present study because of the condition � �= 0.

If A has nonvanishing coefficients, we can always obtain the polynomial equa-
tions (18) and (19). We proceed then as in Section 3, unless one of the next two
cases occurs:

CASE 2. If only one of (18) and (19) has all the coefficients equal to zero, we try to
solve the other polynomial equation and then check if the solution satisfies indeed
(5). This situation happens for the Hénon–Heiles potential in Example 2 below.

CASE 3. If both (18) and (19) have null coefficients (case illustrated by Example
3), we have no supplementary constraints on γ , but we may use (16). We insert in
this equation γ =G(g(x, y)) and obtain an ordinary first-order differential equa-
tion in G(g). To obtain the function G it is necessary to perform a quadrature. This



252 M.-C. ANISIU ET AL.

is illustrated by Example 3 but a simple form of the solution cannot be expected in
general.

The next examples illustrate the method described in Section 3 and some of the
special cases mentioned above.

EXAMPLE 1. For V (x, y)=−((3x2 + y)2 + x2) exp(−12y), and the auxiliary
equation (2) with r(x, y) = x/(y − 3x2), the two Equations (18) and (19) are of
degree 7, respectively 12, and have a unique common solution

γ = x

3x2 + y
,

which comes from the family f = x3 +xy. The curves of this family are traced with
energy E = 0 in the entire plane.

EXAMPLE 2. For the Hénon–Heiles potential V (x, y)= (1/2)x2 + 8y2 + x2y +
(16/3)y3, considering (2) with r(x, y)= x/y, all the coefficients H7, . . . , H0 of
Equation (18) are null. In this case no information for γ arises from (18), but
Equation (19) has the solution γ =−x/4y corresponding to the family yx−4 = c.
This family was found also by Bozis et al. (1997) as an example of a homogeneous
family traced under the action of an inhomogeneous potential. The energy on the
family is given by E =−1/24c and the allowed region is (x2 + 8y2 + 12y)y � 0,
in accordance with Anisiu and Pal (1999).

EXAMPLE 3. Let us consider V (x, y)=−(x2 + y2)2 − 2x2 + 2y2 and the coef-
ficient in (2) r(x, y)= x(x2 + y2 + 1)/y(x2 + y2 − 1). In this case both Equations
(18) and (19) are identically null. Integrating (2) gives γ =G((x2 − y2 + 1)/xy),
hence the function g mentioned in Section 1 is g(x, y)= (x2 − y2 + 1)/xy. We
insert this in Equation (16), which after simplification becomes

γx = 2y(x2 − y2 + 1)(γ 2 + 1)

(x2 + y2 − 2y + 1)(x2 + y2 + 2y + 1)
,

and get the differential Equation

G′(g)
G2(g) + 1

= 2

g2 + 4
. (21)

We obtain the solution of (21), G(g)= (g + 2k)/(−kg + 2), where k is a constant.
It follows that

γ = x2 − y2 + 1 + 2kxy

2xy − k(x2 − y2 + 1)
,

so we have in fact a family of functions γ depending on the constant k. For each
fixed value of k, the family of functions is given by f = k((1/3)x3 − xy2 + x) +
(1/3)y3 − x2y − y. The energy is constant E = 1 on each family f and

Vx + γ Vy

�
= −2(2xy − k(x2 + y2 − 1))2

k2 + 1
,

hence the curves may be traced in the entire plane.
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Remark 2. As we have mentioned in the Comment at the end of Section 2, it
may happen that a solution g(x, y)= c of the equation dy/dx = 1/r can be found,
hence γ from Equation (2) will be of the form γ =G(g(x, y)), with G an arbitrary
function. In this situation, a first thought might be to substitute γ =G(g(x, y))

in the basic Equation (5), in order to obtain G. The result will be an equation
in

z = 1

G′ (22)

of the following form

z′ = Pz + Q, (23)

where

P = 1

(gxG − gy)
2(VyG + Vx)

((Vygxx − Vxygx)G
3 +

+ (Vxgxx − 2Vygxy − (Vxx − Vyy)gx + Vxygy)G
2 +

+ (−2Vxgxy + Vygyy + Vxygx + (Vxx − Vyy)gy)G + Vxgyy − Vxygy),

Q = −2VygxG + Vxgx + 3Vygy

(gxG − gy)(VyG + Vx)
. (24)

Generally, it would not be an easy task to obtain z. From (22) we know that z′ must
depend merely on g, so the condition

(Pz + Q)y

(Pz + Q)x
= gy

gx

has to be satisfied. This equation will lead us to a polynomial equation in z, where
z depends again merely on g, and the condition zy/zx = gy/gx must also be im-
posed.

So, if Equation (2) has an easy to obtain solution γ =G(g(x, y)), it is worth
trying to write Equation (22) to see if it happens to have a simple form. Otherwise
it is advisable to follow the general procedure which is synthesized in the next
section.

5. Synthesis and Remarks

The auxiliary equation (2) (i.e. the coefficient r, respectively the coefficients a and
b in (1)) being given in advance, as well as the potential V , one cannot expect
always that a family of functions compatible with the given potential will exist.
In general, this happens only when V satisfies a differential condition obtained
by equating to zero the Sylvester determinant (20) of the polynomials (18) and
(19).
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In order to obtain a solution γ of Equations (5) and (2), we proceed as follows
(the use of a symbolic algebra program is advisable).

We calculate the polynomials A (the coefficients are in Appendix A) and B

from (15) and verify that B is not identically null.
If the polynomial A has all its coefficients equal to zero, we have no acceptable

solutions for our problem (Case 1).
Let us suppose now that A has coefficients different from zero. We write then γx

and γy as in (16), respectively (17), and from the compatibility condition
(γx)y = (γy)x obtain the seventh degree equation in γ (18). We insert then the
second-order derivatives of γ in the basic Equation (5), and then γx and γy as
in (16) and (17). The result will be the 12th degree equation in γ (19). If both the
polynomials in (18) and (19) have coefficients different from zero, we calculate
their Sylvester determinant: if this is different from zero, there is no γ compatible
with V (and r); if it is zero, we find the common roots of the two polynomials
and check if they satisfy the basic Equation (5). Thus we can obtain at most seven
solutions γ . If only one of (18) and (19) has all the coefficients equal to zero (Case
2 of Section 4) we try to solve the other equation and obtain a number of solutions
γ at most equal to the degree of that polynomial equation. If both (18) and (19)
have null coefficients, we use Equation (16) as indicated in Case 3, obtaining at
most a one parameter family of functions γ .

Remark 3. In Example 3 it can be checked that the families corresponding to
k =m, respectively to k =−1/m are mutually orthogonal. We mention that the
additional linear equation (2) does not prevent us from finding orthogonal families
as solutions, because γ and −1/γ satisfy (or not) simultaneously the Equation (2).
It follows that if Equation (5) admits orthogonal families as solutions, they can be
found by the procedure mentioned in Sections 2 and 3.

Remark 4. The pairs of orthogonal families in Example 3 have another special
property, namely they are isothermal. As stated in the paper of Puel (1999), two
families of orthogonal curves u(x, y) and v(x, y) are isothermal if

‖grad v‖2

‖grad u‖2
= α(u)

β(v)
.

Considering the families given by u(x, y) =m((1/3)x3 − xy2 + x)+ (1/3)y3 −
x2y − y and v(x, y)=−(1/m)((1/3)x3 − xy2 + x)+ (1/3)y3 − x2y − y, we
have

‖grad v‖2 =
(

1

m2
+ 1

)
((x2 − y2 + 1)2 + 4x2y2),

‖grad u‖2 = (m2 + 1)((x2 − y2 + 1)2 + 4x2y2).
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It follows that ‖grad v‖2/‖grad u‖2 = 1/m2, hence the potential V produces indeed
isothermal families of curves.

6. Regarding Integrability

There were several attempts to connect the inverse and direct problems treated
on the basis of Szebehely’s and Bozis’ equations with the important question of
integrability. Ichtiaroglou and Meletlidou (1990) identified some families of conic
sections or of straight lines whose presence guarantee the integrability of the po-
tentials producing them. On the other hand, Bozis and Meletlidou (1998) presented
a method to detect nonintegrability of the potential when it is compatible with a
family of geometrically similar orbits.

A potential which produces a ‘nice’ family of orbits is not necessarily integ-
rable. For example, the so-called homogeneous Hénon–Heiles potential V1 = x2y +
(16/3)y3 is compatible with the family of orbits f1(x, y)= x−4y (with γ1 =
−x/4y) (Anisiu and Pal, 1999), and it is known to be integrable. It admits, indeed,
a second integral of the form F = ẋ4 + 4x2yẋ2 − (4/3)x3ẋẏ − 4x4y2 − (2/9)x6

(see, e.g. Morales Ruiz, 1999, p. 104). A different potential of the same type,
V2 = x2y + (4/9)y3, was shown by Bozis and Meletlidou (1998) to be compatible
with the family of hyperbolas f2 = 3x2 − 2y2 (with γ2 =−(2y/3x)); its nonin-
tegrability was proved on the basis of the inverse problem as well as by applying
Yoshida’s criterion (Yoshida, 1987).

In the present study we did not assume that the given potential is integrable
nor we claimed that the aforementioned in Section 3 differential condition (20)
for the potential is a tank of integrable potentials. Due to the simple form of
the potentials which illustrate some of the situations which arise during the ana-
lysis of the problem in Section 3, we can try to check if they are integrable or
not.

The cubic potential in Example 2 has the form V =ϕ(y) − (1/2)α(y)x2 with
ϕ(y)= 8y2 + (16/3)y3 and α(y)=−2y − 1. It satisfies the necessary condition
of integrability given in Theorem 6.2, Case 2.1 (Morales Ruiz, 1999, p. 123),
so we cannot draw any conclusion on its integrability. The same situation ap-
pears for the quartic potential in Example 3, which can be written as V =ϕ(x) −
(1/2)α(x)y2 + O(y3), with ϕ(x)=−x4 − 2x2 and α(x)= 4x2 − 4. It satisfies
also the mentioned necessary condition of integrability, entering this time in
Case 1.

The inverse and direct problems of dynamics are based, at a first view, only on
geometry in the configuration space; in fact, having a potential and a compatible
family of curves, the energy level can be found from Equation (8), and afterwards
further information on the geometry in the phase space. A deeper study of the
relation between inverse problem and integrability may be in the benefit of both
domains.
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Appendix A

In what follows we shall use the notation Vij = ∂i+jV /∂xi∂yj . The coefficients of
the fifth degree polynomial A in (16) are:

A5 = (V 2
11 − V21 V01)r − V 2

01 r20 − V11 V01 r10 − V12 V01 + V11 V02,

A4 = 2(V 2
11 − V21 V01)r

2 + (−V 2
01 r20 − V11 V01 r10 − V30 V01 − V21 V10 −

− V12 V01 + 2V20 V11 + V11 V02)r − 2V10 V01 r20 + 2V 2
01 r11 +

+ 2V 2
01 r

2
10 + (−V20 V01 − V11 V10 + V02 V01)r10 + V11 V01 r01 −

− V21 V01 − V12 V10 + V03 V01 + V20 V02 + V 2
11 − V 2

02,

A3 = (V 2
11 − V21 V01)r

3 + (−2V30 V01 − 2V21 V10 + V12 V01 + 4V20 V11 −
− V11 V02)r

2 + (2V 2
01 r11 − 2V10 V01 r20 + (−V20 V01 − V11 V10 +

+ V02 V01)r10 + V11 V01 r01 − V30 V10 − V21 V01 − V12 V10 +
+ 2V03 V01 + V20 V02 − 2V 2

02 + V 2
20 + V 2

11)r + 4V10 V01 r
2
10 −

− 4V 2
01 r10 r01 − V 2

10r20 − V 2
01 r02 + (−V20 V10 + V11 V01 +

+ V02 V10) r10 + 4V10 V01 r11 + (V20 V01 + V11 V10 − V02 V01)r01 −
− V21 V10 + V12 V01 + V03 V10 + V20 V11 − 2V11 V02,

A2 = (−V30 V01 − V21 V10 + V12 V01 + 2V20 V11 − V11 V02)r
3 +

+ (2V 2
20 − V 2

02 − 2V30 V10 + V21 V01 + V12 V10 + V03V01 −
− V20 V02 − V 2

11)r
2 + (−V 2

10 r20 − V 2
01 r02 + 4V10 V01 r11 +

+ (−V20 V10 + V11 V01 + V02 V10)r10 + (V20 V01 + V11V10 −
− V02V01)r01 + 2V03 V10 − V21 V10 + 2V12 V01 − 4V11 V02 +
+ V11 V20)r−2V10 V01 r02 + 2V 2

10 r11+2V 2
01 r

2
01 − 8V10 V01 r10 r01 +

+ 2V 2
10r

2
10 + V11 V10r10 + (V20 V10 − V11 V01 − V02 V10)r01 +

+ V12 V10 − V 2
11,

A1 = (−V30 V10 + V12 V10 + V21 V01 + V 2
20 − V 2

11 − V20 V02)r
3 +

+ (V03 V10 + V21 V10 + V12 V01 − V20 V11 − 2V11 V02)r
2 +

+ (−2V10 V01 r02 + 2V 2
10 r11 + V11 V10 r10 + (V20 V10 − V11 V01 +

+ V02 V10)r01 + 2V12 V10 − 2V 2
11)r + 4V10 V01 r

2
01 − 4V 2

10 r10 r01 −
− V11 V10 r01 − V 2

10 r02,

A0 = (V21 V10 − V20 V11)r
3 + (V12 V10 − V 2

11)r
2 − (V 2

10 r02 +
+ V11 V10 r01)r + 2V 2

10 r
2
01.
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