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Abstract
The version of the inverse problem of dynamics considered here is: given a
family of planar curves f (x, y) = c, find the potentials V (x, y) which give rise
to this family. Its solution is based on two linear partial differential equations
satisfied by V : one of first order, containing the total energy function E(f ),
given by Szebehely in 1974, and the other one of second order, derived by
Bozis in 1984 by eliminating the energy from Szebehely’s equation. In this
paper, Bozis’ partial differential equation is obtained directly by eliminating the
time derivatives of x(t) and y(t) up to the third order between seven differential
relations based on the equations of motion and on the given family. Szebehely’s
equation is then derived as a consequence. This shows the importance of Bozis’
equation, which is traditionally considered as following from Szebehely’s one.
The connection with the nonconservative case is emphasized.

1. Introduction

We consider the following version of the inverse problem for one material point of unit mass,
moving in the xy inertial Cartesian plane. Given a family of curves

f (x, y) = c (1)

with f of C3-class (continuous and with continuous derivatives up to third order on a domain
of the plane), find the potentials V (x, y) under whose action, for appropriate initial conditions,
the particle will describe the curves of that family. The equations of the motion are

ẍ = −Vx, ÿ = −Vy, (2)

where the dots denote derivatives with respect to the time t, and the subscripts partial
derivatives.
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We emphasize that in this version of the inverse problem a family of curves (1) is given,
which is in fact determined by the ratio fy/fx . Up to now, in the research connected to
the inverse problem of dynamics, the families of curves were selected on the grounds of
theoretical reasons: families of conic sections, of homogeneous functions or of other special
analytic forms. It would be important to consider the inverse problem from the numerical
viewpoint. An orbit will be obtained as a result of a curve-fitting process applied to some
observed data. As Bozis and Blaga (2004) have shown, this single orbit can be classified in
different monoparametric families of curves (1). A practical application would be to find the
Newtonian potential of the nonspherical Earth from observed satellite orbits.

Therefore a family of curves (1) can be obtained either from theory or from measured
data.

By making use of the energy integral, Szebehely (1974) proved that the desired potentials
satisfy the first-order partial differential equation

fxVx + fyVy +
2(V − E(f ))

f 2
x + f 2

y

(
fxxf

2
y − 2fxyfxfy + fyyf

2
x

) = 0, (3)

where E(f ) denotes the total energy, which is constant on each curve of the family (1). Using
the functions

γ = fy

fx

and � = γ γx − γy, (4)

Bozis (1983) wrote Szebehely’s equation in the simpler form

Vx + γVy +
2� (E(f ) − V )

1 + γ 2
= 0. (5)

Remark 1. The function γ is related to the slope of the curves in family (1); more precisely,
it represents the slope at each point of a family f ∗(x, y) = c∗ which is orthogonal to
family (1). The function � has also a geometrical meaning, the curvature K of the members
of family (1) being given by K = |�|/(1 + γ 2)3/2.

Under the action of a potential that satisfies equation (5), the curves (1) are traced by a
material point only in the allowed region, defined by the inequality (Bozis and Ichtiaroglou
1994)

Vx + γVy

�
� 0. (6)

By eliminating the energy from (5) (using the fact that Ey/Ex = fy/fx), Bozis (1984)
obtained the equation of second order which is energy free

−Vxx + κVxy + Vyy = λVx + µVy, (7)

where

κ = 1

γ
− γ, λ = �y − γ�x

γ�
, µ = λγ +

3�

γ
. (8)

The basic equations (5) and (7) of the inverse problem of dynamics present the connection
between geometry (described by γ and �) and dynamics (the planar potential V ). Their
derivation and other related results are described by Bozis (1995) and by Anisiu (2003a,
2003b).

When we are facing an inverse problem related to the family of curves (1), we have
to calculate the functions γ and � from (4) and afterwards plug them into equation (5);
from (8) we get κ , λ and µ and insert them into (7). Therefore we have at our disposal
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two partial differential equations in the unknown function V . If we can get some information
on the energy (e.g. if we are interested in isoenergetic families, with E(f ) = e = const,
the case considered by Borghero and Bozis (2002)), we can use the first-order equation (5).
Otherwise we are bound to work with the energy-free equation (7) in order to find the
potentials (or at least some particular ones) which can give rise to the family of curves (1).
The fact that equations (5) and (7) do not have a unique solution can be used to look for the
potential in various classes of functions with physical significance, such as homogeneous or
quasihomogeneous ones.

We remark that Szebehely (1974) obtained the first-order equation (3) intending to use it
for the determination of the potential of the Earth by means of satellite observations, while
Bozis (1984) used equation (7) to check if a given family of orbits may be generated in the
plane of symmetry outside a material concentration.

In what follows we derive in a unified manner the two basic equations (5) and (7), as well
as inequality (6). The special case of families of straight lines will also be treated.

2. Main results

Let us consider a particle whose motion is described by equations (2), where V is of C2-
class on a domain of the xy plane. We shall use a procedure similar to that followed by
Kasner (1906) while he obtained the differential equation of the trajectories corresponding to
a general (not necessarily conservative) force field. By differentiating (1) with respect to t we
get fxẋ + fyẏ = 0, or, using the notation (4)

γ = − ẋ

ẏ
. (9)

By differentiating (9) we get γxẋ + γyẏ = (ẋÿ − ẏẍ) /ẏ2, or, using (4) again,

−� = ẋÿ − ẏẍ

ẏ3
. (10)

Inserting in (10) ẍ and ÿ from (2), and ẋ from (9) we obtain

�ẏ2 = −(Vx + γVy).

If � = 0 (which corresponds to a family (1) of straight lines, studied by Bozis and Anisiu
(2001)) we have by necessity

Vx + γVy = 0, (11)

which represents Szebehely’s equation for this special case. The straight lines are traced with
arbitrary energy.

Remark 2. The case of a family of straight lines appeared here as a special case in the
mathematical reasoning. Another problem, namely that of Darboux integrability, revealed
the importance of families of parallel or concurrent lines (Grigoriadou 1999). Isolated
straight lines were found for the Hénon–Heiles model by Antonov and Timoshkova (1993) or
van der Merwe (1991). Contopoulos and Zikides (1980), as well as Caranicolas and Innanen
(1992), identified straight lines in galactic models.

Example 1. The central potential V (x, y) = v(r), where r = (x2 + y2)1/2, is compatible
with the family of straight lines γ = −x/y which can be described equivalently by
f (x, y) = y/x = c (Bozis and Anisiu 2001).
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Let us consider now a general family (1) with � �= 0. In this case we have

ẏ2 = −Vx + γVy

�
. (12)

We differentiate (10), divide both members by ẏ and get

γ�x − �y = ẏ(ẋ···y − ẏ···x) − 3ÿ(ẋÿ − ẏẍ)

ẏ5
. (13)

As explained in remark 1, the functions γ and � represent the geometry of the family of
curves (1). The formulae (9), (10) and (13) relate these geometrical entities to the kinematics
derivatives, namely to the velocity and acceleration of the particle describing the curves of the
family.

Two additional equations are obtained by differentiating equations (2) with respect to t,
namely

···x = −(Vxxẋ + Vxyẏ), ···y = −(Vxyẋ + Vyyẏ). (14)

Now we eliminate the derivatives ẋ, ẏ, ẍ, ÿ, ···x, ···y between the seven relations in (2), (9), (12),
(13) and (14), and get

�(−γVxx + Vxy − γ 2Vxy + γVyy) = −(Vx + γVy)(γ�x − �y) + 3Vy�
2. (15)

This is a differential equation which must be satisfied by all the potentials which admit as
trajectories the curves of the family (1). After dividing both members by γ� we get Bozis’
equation (7), with λ and µ given in (8).

A straightforward calculation shows that equation (7) can be written as

γWx − Wy = 0, (16)

where

W = V − 1 + γ 2

2�
(Vx + γVy). (17)

But γ = fy/fx implies fyWx −fxWy = 0. This equation has the general solution W = E(f ),
where E denotes an arbitrary function. It follows that

V − 1 + γ 2

2�
(Vx + γVy) = E(f ). (18)

In view of relations (2), (9) and (10) we obtain

V +
ẋ2 + ẏ2

2
= E(f ), (19)

which means that E(f ) represents the total energy, constant on each curve of the
family (1). Therefore equation (18), obtained this time from Bozis’ equation, is in fact
Szebehely’s equation. From (19) we obtain E(f ) − V � 0, and from (18) it follows that only
the curves of the family (1) or parts of them which are situated in the plane region (6) can be
described by the unit mass particle.

Example 2. For the family of homocentric circles

f (x, y) = x2 + y2 = c (20)

and arbitrary energy E(r)
(
r =

√
x2 + y2

)
, Broucke and Lass (1977) have found the general

solution, in polar coordinates r, θ, of Szebehely’s equation (5) as

V (r, θ) = g(r) +
1

r2
h(θ), (21)
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with g and h arbitrary functions of their arguments. The energy in this case is E = g(r) +
rg′(r)/2, and inequality (6) becomes g′(r) � 2h(θ)/r3. A special case of (21) is the Newtonian
potential V = −1/r (with g(r) = −1/r and h(θ) = 0), under whose action the circles (20)
are traced all over the plane. Another central potential compatible with the family (20) on
the entire plane is Maneff’s (1924) potential V = −1/r − α/r2 (with g(r) = −1/r and
h(θ) = −α, α > 0).

The special form of the family in example 2 allowed the integration of Szebehely’s
equation; when we do not have at our disposal information on the energy, Bozis’ equation is
more suitable. It was used, e.g., by Anisiu and Pal (1999) to find out of the Hénon–Heiles
type potentials

V (x, y) = x2 + a1y
2 + a2x

2y + a3y
3, a1, a2, a3 ∈ R, a1 > 0 (22)

those which are compatible with a family of polytropic curves. This kind of potential was
introduced by Hénon and Heiles (1964) as a model for the motion of a star in a galaxy; it
can be used to represent the gravitational field of the Earth, other planets and their satellites
(Agekian 2003).

Example 3. The curves of the family

f (x, y) = x−4y = c (23)

can be traced by a unit mass particle under the action of the potential

V (x, y) = x2 + 16y2 + a2x
2y + (16/3)a2y

3

with the energy E(f ) = −a2/(24f ), in the region described by the inequality (a2(x
2 + 8y2) +

24y)y � 0. This result can be obtained by inserting γ = −x/(4y), � = −3x/(16y2) and
V from (22) in equation (7), and selecting adequately the coefficients in V . Afterwards the
energy is determined from Szebehely’s equation (5) and the allowed region from (6).

Remark 3. As expected, the general solution of the second-order equation (7) will depend
on two arbitrary functions; the same situation occurs for equation (5), one arbitrary function
being the energy. So, even if the general solution cannot be found, sometimes it is useful to
look for the potential in certain classes of functions (e.g. homogeneous (Borghero and Bozis
2002), or quasihomogeneous, as in example 3). Several pairs (f, V ) can be found in the papers
of Bozis (1995), Anisiu (2003a) and in the references therein.

3. The case of a general force field

Bertrand (1877) raised the problem of finding the force, not necessarily conservative,
depending merely on the position (x, y) of the planets moving on conic sections under the
action of that force. Dainelli (1880) solved the problem of Bernard for arbitrary families of
curves (1) and obtained, using different notation, formulae similar to (32) and (33). In what
follows we derive a partial differential equation satisfied by the force components, and find the
region where real motion is possible; finally we provide the formulae for the components of
the most general force which is compatible with the family of curves (1). These formulae can
be useful whenever the force field is not supposed a priori to be conservative. The advantage
of working with general force fields is that we do not have to integrate partial differential
equations, because we dispose of formulae (32) and (33).

We apply the procedure in section 2 for the system

ẍ = X, ÿ = Y, (24)
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the force components X and Y being of C1-class on a domain of the plane xy. If the
family (1) consists of straight lines (� = 0), instead of (11) we obtain

X + γ Y = 0, (25)

this being the relation satisfied by the components of the force field in this special case.
Let us consider now a general family (1) with � �= 0. Instead of (12) we have this time

ẏ2 = X + γ Y

�
. (26)

The differentiation of equations (24) with respect to t gives
···x = Xxẋ + Xyẏ, ···y = Yxẋ + Yyẏ. (27)

The elimination of the derivatives of x and y between the seven relations in (24), (9), (26),
(13) and (27) leads to

�(γXx − Xy + γ 2Yx − γ Yy) = (X + γ Y )(γ�x − �y) − 3Y�2, (28)

a differential relation satisfied by the force field in order to admit as trajectories the curves of
the family (1). After dividing both members by γ� we get

−Xx +
1

γ
Xy − γ Yx + Yy = λX + µY, (29)

where λ and µ are given in (8). This equation was obtained by Bozis (1983), using a different
method. From (26) it follows that the motion of the particle is possible only in the plane region
(Bozis 1994) described by the inequality

X + γ Y

�
� 0. (30)

It is obvious that Bozis’ equation (7) and the inequality (6) found by Bozis and Ichtiaroglou
(1994) follow from (29), respectively from (30), after replacing X = −Vx and Y = −Vy.

We remark that, if we denote by

ξ = X + γ Y

�
, (31)

equation (29) can be written as γ ξx − ξy = −2Y, or

Y = − 1
2γ ξx + 1

2ξy. (32)

From relation (31) we get then

X = 1
2γ 2ξx − 1

2γ ξy + �ξ. (33)

Therefore for an arbitrary positive function ξ we obtain the components of the force given by
(33) and (32), which were found by a different method by Bozis (1983).

Example 4. For the monoparametric family

f (x, y) = x − x2 − y2

√
x2 + y2

= c (34)

we obtain from (4)

γ = y(3x2 + y2)
√

(x2 + y2)3 − x(x2 + 3y2)
and � = γ γx − γy.

For an arbitrary function ξ we get from formulae (33) and (32) the components X, Y of the
force compatible with the family (34).
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Specifying the following value of the arbitrary function

ξ =
(
x
√

(x2 + y2)3 − x4 + y4
)(

x3 + 3xy2 −
√

(x2 + y2)3
)2

√
(x2 + y2)7

{
2x4 + (y2 − x2)

(
2x

√
x2 + y2 + y2

)} ,

we obtain the obviously nonconservative force with components

X = x(y2 − x2)
√

(x2 + y2)5
and Y = y(y2 − x2)

√
(x2 + y2)5

. (35)

The force (35) was considered by Borghero et al (1999) in view of the direct problem; they
proved its compatibility with the family (34).

4. Conclusions

We assert that Szebehely’s and Bozis’ equations are of equal importance for the inverse
problem attached to a family (1) and a system (2); when we have no a priori information on
the energy, it is useful (and fully justified) to start working with equation (7) and then to obtain
the energy from equation (18).

We have derived the basic equations of the inverse problem in a simple and natural way,
by a process of elimination of the time derivatives of x and y. Doing so, the case of families
of straight lines presented its particularities and the allowed region emerged.

This unifying consideration of conservative and general force field systems explains
also the connection (already mentioned by Bozis (1995)) between Bozis’ equation and the
differential relation (29).
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