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Abstract

The particular version of the inverse problem of dynamics considered here
is: given the ‘slope function’ y = f,/f:, representing uniquely a family
of planar curves f(x,y) = c, find, if possible, potentials of the form
V(x,y) = v(y(x,y)) which give rise to this family. Such potentials V' will
then have as equipotential curves the isoclinic curves y = const of the family
f(x,y) = c. We show that, for the problem of admitting a solution, a necessary
and sufficient condition must be satisfied by the given y (x, y). Inferring by
reasoning from particular to more general forms, we find analytically a very
rich set of slope functions y (x, y) satisfying this condition. In contrast to the
(not always solvable) general case V = V (x, y), in all these cases we can find
the potential v = v(y) analytically by quadratures. Several examples of pairs
(v, v(y)) are presented.

1. Introduction

The inverse problem of dynamics in a broad sense consists of the determination of forces,
parameters and constraints which are required for the realization of a motion of a mechanical
system with some properties given in advance (Galiullin 1984). As Santilli (1978) pointed out,
for a Newtonian system such an inverse problem looks for necessary and sufficient conditions
for the existence of a Lagrangian for which the given system represents the Euler—Lagrange
equations.

The inverse problem considered in the present study seeks potentials V = V(x, y) which,
for adequate initial conditions, give rise to a preassigned family of curves, traced in the
Cartesian plane by a material point of unit mass. This old problem has its origin in the
determination by Newton in 1687 of the force law compatible with Kepler’s laws of planetary
motion. It was afterwards treated by Joukovsky, as reported by Whittaker (1961, section
56), and then brought to the scene again by Szebehely (1974). An account of the history of
the various versions of the problem and of the progress made during the two decades after
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Szebehely can be found in Bozis’ review paper (1995). Many papers from the last decade
may be found in Anisiu’s report (2003). In addition, we mention here the study of certain
isoenergetic families of orbits (Puel 1999, Borghero and Bozis 2002), the estimate of the
role of the inverse problem in the framework of celestial mechanics (Szebehely 1997, Bozis
2003) and Agekyan’s (2003) work in galactic dynamics. A purely mathematical account of the
various versions of the inverse problem was given recently by Ramirez and Sadovskaia (2004).

The version of the planar inverse problem we are dealing with concerns the motion of one
material point of unit mass, moving in the xy inertial Cartesian plane. For a given family of
curves

f(x’ )’) =c (D
we denote by
y = % and L=yy—v. 2

The ‘slope function’ y represents the family (1), in the sense that if the family (1) is given,
y is obtained uniquely; conversely, from a given y we can obtain a unique family (1). The
inverse problem consists of finding potentials V which can produce the planar family of orbits
(1) or, equivalently, of finding potentials V' compatible with a given y. This means that a
material point of unit mass, whose motion is governed by the Newtonian conservative system

X ==V, y=-V, 3)
will describe, with appropriate initial conditions, the curves of the family (1), i.e.,
f (x(), y(t)) = c for t in a real interval.
Szebehely’s equation (1974) relating the total energy function E(f), the potential V and
the ‘slope function’ y reads (Bozis 1995)

(1+y) (Vi +yVy)
T : “4)

In what follows we shall assume that I" = 0. From the viewpoint of this paper, the case ' = 0
is commented upon in remark 5 of section 4.

We shall adopt for the partial derivatives the notation V;; =
y too.

The potential V also satisfies the second-order linear partial differential equation (free of
the energy E(f)) (Bozis 1995, Anisiu 2004)

E=V -

ity

FREmE which will be used for

Voo — Voo +kVii = AVig + uVor (5)
where
1 r,—yrI', 3r
K=——Y, =2 w=2ry+—. (6)
Y vyl 4

If V is a solution of Szebehely’s equation (4) or of Bozis’ equation (5), the solution
of the system (3) with initial conditions %y, Xo, yo, Xo = &(xo, yo) fy(xX0, yo) and yo =
—8&(x0, y0) fr (x0, yo) will have the property that

f (), y(@)) = f(xo0, yo) = co.
The two-variable function ¢ can be determined by solving a linear second-order partial
differential equation in g> (see Gonzales-Gascon et al (1984)). The function g is related
to the potential V by

2 Vity Vy

rro

Real motion of the particle will trace the curves of the family (1) in the region given by
(Vy +yVy)/T" <0 (Bozis and Ichtiaroglou 1994).
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In spite of its linearity, in general, for a given family y (x, y), equation (5) cannot be solved
for V.= V(x, y). For this reason, we consider in this paper the following special version of
the inverse problem described above: supposing that a family y = y (x, y) is given, let us
examine if there exist solutions of (5) of the form

Vi, y)=vy (). (N
This is our basic assumption. Its implications are mostly of a mathematical nature. Indeed, it
will appear that only for adequate families y (x, y) (those satisfying condition (15) of section 2)
equation (5) has solutions of the form (7). The partial differential equation (5) now becomes
ordinary but, as it is still of the second order, it is not generally expected to be solvable. Yet,
in our case, it turns out that its general solution is always found by quadratures.

Itis easily seen from (5) that if V is a solution, ¢; V + ¢; is also a solution (¢, ¢, constants).
For the reasons of simplicity, in what follows the constants ¢; and ¢, will be omitted.

From the physical point of view, the meaning of the assumption (7) is that for y (x, y) =
constant it is also V (x, y) = constant, i.e., the isoclinic curves of the orbits in the xy plane
coincide with the equipotential curves.

The pertinent direct problem is the following: given a potential V = V(x, y), to find
monoparametric families of the form y = h(V (x, y)), traced in its presence by a unit mass
point. For this problem, of course,

(i) not any given potential would be ‘adequate’;

(i1) the calculations involved would be much more complicated. In fact, due to the nonlinearity
of the pertinent differential equation in y = h(V), one would not generally be able to
find solutions by quadratures.

2. A differential condition for the given families

Let us suppose that for a given y there exist potentials of the form (7). We can then write the

partial derivatives of V as follows (with v’ = 3—}3 and with y;; = —(f;gyyj)
Vio = V710, Vor = v'yo1
Voo = v"yfy + vy, Vit = v"viovor +v'vi1, Voo = v"yg, + Vv
Equation (5) becomes
v//
o= R, (8)
where
Ry
R=—, )
R,
with

Ri = 1+ ) vorv20 — (1o + Yo vin + viove2) + (rvio — vo) (Vio — 2y viovor +3¥51)
Ry = (¥y10 — o> (¥ Vo1 + v10)-
(10)

Remark 1. We shall solve the differential equation (8), when possible, in domains where R,
has no zeros. On the other hand, we note that the expression R; is identically zero if and only if

O F'=yro—yn=0 or (i)  yyo1+y0=0. (11)
For (11(i))—a case already excluded in section 1 from our study—R; also vanishes, so, the
ratio v” /v’ becomes indeterminate. If in (11(ii)) we have y5; = 0, we must also have y;o = 0,
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hence y = constant, excluded by the condition I" # 0. It follows that we can express
y = —y10/ Y01 from (11(ii)). We differentiate (11(ii)) with respect to x, then with respect to y,
and substitute y20 = — (yio¥01 + ¥¥11) and yoo = —(y11 + ¥g;) /v in Ry from (10); then we

insert y = —y10/ 01 in the result and obtain after some calculations Ry = —2()/120 + )/021)2/ Y01-
Therefore, for the functions y which satisfy (11(ii)) we have R; # 0. From (8) we get in this
case for v, hence also for V, only the trivial solution of a constant potential.
Remark 2. The condition (11(ii)) is associated with families (1) for which

i+ [ =AW, A = arbitrary functional (12)
known as families of parallel curves (Goursat 1945, p 42). Indeed, each of (11(ii)) and (12)
amounts to the same condition: f f,(fix — fyy) = ( - fyz)fxy.

Remark 3. From equation (8), it is clear that if a function y is given such that Ry = 0
(therefore, according to remark 1, R, # 0), v = y will be its solution. It is not, of course, an
easy or even possible task to find all solutions y = y(x, y) of the equation R; = 0. Trying
to find, e.g., a function y(x, y) of the form y = « + By/x for which R; = 0, we obtain

the complex families (see Contopoulos and Bozis (2000)) y = +2i — y/x, compatible with
V = +2i — y/x, for which the energy is £ = Fi.
Generalizing slightly and trying to make R, = 0 with y = y(y/x), we come to the
first-order differential equation
(w2+2wy+3)d—y =1+y2 (13)
dw

where w = y/x.

The function v, as it can be seen from (7), depends on y only, hence by necessity from
(8) it follows that R (x, y) =7 (y (x,y)), i.e.,

Ry/Rx = v01/710 (14)
Working out this condition, we obtain
(1+ )/2)(0301/30 +az Y2 +anyi2 +apsyos + 612020]/220 + 611111)/121 + 110202)/022

+ axo11Y20¥11 + a2002720Y02 + 01102)/11)/02)

= (Yyi0 — 701)((31/2 — Dy = 8yrviovo — (¥ = 3)vg)

X ()/021 Y20 — 2Y10Y01 Y11 + )/120)/02), (15)
with

azx = vy v vor + 10 (Y V10 — Yor)

axr = =yo1(¥vo1 + ¥10) (¥ Y10 — v01) 2y ¥10 + Yo1)

a = y10(y vor + v10) (¥ ¥10 — Yo) (¥ Y10 + 2y01)

aos = =y vor + ¥10) (¥ 10 — vo1)

a0 = =Y ¥ (2y*vo1 + 3y v10 — Yor)

aini = =2y (yyio + 37 ¥gv10 +3v01vio + 751

an: = ¥in(y*v10 — 37 vo1 — 210
Yo1(3v > vorvio + 5y v + 62 ¥y + 3y vorvio — vi)
axon = =y (vvih + 3v Yo V10 + 3vovio + ¥i1)

anm = —Vlo()/shzo =3yXymvio — Sy viy — 6y Ve — 3)/01)/10)
expressed in terms of first-order partial derivatives of y.

(16)

azo11
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So, condition (15) is necessary for y in order that (8) possesses a solution V = v(y (x, y)).
In fact, if y is a solution of (15) for which R, # 0, we obtain from (8)

v(y) =c /eXP (/ V()/)dy> dy +ca, a7)

with ¢y, ¢, constants, and with V given by (7). In what follows we shall omit ¢; and c¢;, as
stated at the end of section 1. The meaning of (17) is that the inverse problem (for orbits
satisfying (15) and R, # 0) is solved by quadratures, in the sense that solutions of the form
(7) can be found.

It is then natural to focus our attention to condition (15) as the tank from which we can
and we must select adequate families y (x, y) for which (17) would be a compatible potential.

3. Certain adequate classes of families

By ‘adequate’ we mean families y (x, y) satisfying condition (15), i.e., families for which the
version of the inverse problem considered here does indeed give a solution of the form (7).

It appeared to us impossible to obtain the totality of solutions y = y(x,y) of (15), a
nonlinear partial differential equation of the third order in the unknown function y (x, y). We
did, however, manage to find solutions of (15) of certain forms, as expounded in the present
section and then, in turn, of more general forms as reported in section 4.

(a) We start by observing that all terms in (15) include as a factor second- or third-order
derivatives of y. Therefore, all slope functions

Y =Yoo+ V1ix+ 02y (18)

(Y0, v1, v» constants) satisfy (15).
With (18), we obtain from (10)

Ri= (v —v)(=2riny +vi+3v3)

(19)
Ry = (yni —v)(nry?+(vi —v3)y —nra).
and
—2koy + 1 +3k?
ry) = —2 0 =2 (20)
(y — ko) (koy + 1) 71

As stated in section 2, from the functions of the form (18), we choose only those with R, # 0,
hence the ones for which at least one of y; and y; is different from zero. Let us suppose that
both y; and y, are different from zero; the case when y is a function of one variable (x or y)
will be treated later.

From (17), we obtain

_ 2k0)/ — kg +1
22 (koy + 1)2

The equipotential lines are in this case parallel straight lines.
We remark that for y given by (18), the expression

v(y) @

A= yvo1y20 — (¥vio + Yo V11 + Yi0Yo2

in (10) is equal to zero. We have in general that

Y10 Y10
Yo1/ Yoi/y
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hence it will also be zero for y = g(yp + y1x + y»y), with g an arbitrary function. It can be
easily checked that for

Yy =g+t yix +1y), (22)

the values of R, and R, are those from (19) multiplied by g, where ¢ denotes the derivative
of g with respect to its unique argument. It follows that r(y) will be given by the same
formula (20), independently of the arbitrariness of the function g. Therefore, the potential
corresponding to (22) is again given by (21).

All the functions y of the form (22) give rise to potentials (21), for which all isoclinic
curves of the family (1) are also equipotential. From (4) we find that all families (22),
independently of the selection of the arbitrary function g(yp + y1x + y»y), are isoenergetic,
i.e., all their members are traced with the constant value for the energy E = ko /2.

Example 1. For y = (x + y)? (corresponding to the family of orbits (1) with f(x,y) =

Xty— . . X +y)2
x:yyﬂl exp(2y)) we obtain from (21) v(y) = (Vj:—l)z, e, Vix,y) = W&;’% and E = 1/2.
The very same potential v(y) = WLDZ is also compatible with y = T corresponding to
the family f*(x, y) = 2L exp(2x), traced also with E = 1/2.

x+y+1

(b) Another general result regarding condition (15) is the following: equation (15) is satisfied
for any arbitrary function of the form

y = g(w), w= % (g(w) # w). (23)

It turns out that the corresponding function r is

. g2 +1—gw?+2gw+3)
g(g —w)(1+gw)

where g is the derivative of g with respect to its unique argument w.

Keeping in mind that R; was the numerator of , equating it to zero will give equation (13)
obtained directly in section 2. We remark that the condition yyy; + y10 # 0, discussed in
remark 1 of section 2, becomes g(w) # w, which means that no circles x> + y?> = ¢ are
allowed.

Since we know y = g(w) (hence dy = gdw), we calculate the integral [ Rdy =
[ Rgdw, ie.,

; —/Rd _/‘l+g2—g(u}2+2gw+3)dw 25)
1= r= (g — w)(1 +gw) '

Then, we proceed to the calculation of the potential

(24)

V(w) = fexp(il)g dw. (26)

The equipotential lines are straight lines through the origin.
Application 1. Let us apply the last two formulae for
y = kow™ 27)

with ko, m constants (for m = 1 we take ko # 1, to exclude the circles x> + y = ¢).
For m # 1, we find from (25)
1 w2m(1 + kowm+l)m—l
n
m—1 (w — kgw™)3m—1
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and from (26) we obtain

(1 +k0wm+1)wm72
(1 — kown=1)wr
which, apart from a multiplicative and an additive constant (depending on m, ko), leads to

V(w) = dw (28)

2m

V(w) = (1+kgw™™) (1 — kow™ )Tn 29)
valid (for any m # 1 and any k) for families of the form (27). With the aid of (4), it can be

shown that, independently of the value of m, all families (27) are isoenergetic, traced with the
total energy E = 0.

Example 2. Let us consider in (27) m = —1. It is found that each family y = ko/w
1
(corresponding to f(x, y) = x* y) is compatible with the potential
K2x2 + y?
Vix,y) = 2. 30
(x,y) kox? — 32 (30)
The total energy of all members of the family is, as expected, £ = 0.
For ko = —1/4 one obtains the family f(x, y) = y/x*, which was proved (Bozis et al
1997) to be traced under the Hénon—Heiles (1964) potential
x? 2 16 4
Vilr, y) = = +8y"+x7y + €19

with the energy E; = —x*/(24y). It follows that this family is common to the Hénon—Heiles
potential V; and to the potential (which can be expressed in terms of y) obtained from (30),
namely

Va(x, y) = —(x% + 16y%) /(x? + 4y?). (32)

Example 3. For m = 1 and ky # 1, we have the family of curves (27) y = koy/x
(corresponding to f(x,y) = x% + koy?). From (25), we obtain

In(w' 3% (kgw? + 1)k~ 1)

N =1
and

2k
V(w) = —w (1 +kw?). (33)

Remark 1. Slope functions of the form y = y(x) or y = y(y) satisfy (15). In fact, all
functions y of the form (22) with y; = 0 or y» = 0 belong to this class. We obtainr = 1/y
and the potential V = V(x) = —y?(x), compatible with y for the first case. In the second
case, r = —3/y and the potential V = V(y) = —y ~2(y) is compatible with y = y(y). In
both cases, the energy is equal to 1.

(c) The following result generalizes and covers the previous two cases of this section.
If vo, 1, v2, 80, 81, 62 are constants, any function y (x, y) of the form

Yot yix + 2y .
= - ‘), = arbitra 34
14 g(80+51x+82y> 8 ry (34)

satisfies condition (15). This can be shown by direct computations.

For 6o = 1,61 = 6, = 0 (34) reduces to (22), whereas for yp = y; = 69 = 6, = 0,
81 = y» (34) reduces to (23). The ratio r = R;/R;, (not given here) for this case can be
calculated and can be shown to constitute a generalization of formulae (20) and (24).

The examples in this section are new; the homogeneous potential (32) has the interesting
property that it produces the family y = —x/(4y) which is also compatible with the
quasihomogeneous Hénon—Heiles potential (31).
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4. A richer solution of equation (15)

We observed that all slope functions (34) separately make each side of equation (15) zero. In
fact any function y given by (34) satisfies the second-order partial differential equation

Vo720 — 2V10Y01v11 + Vipyor =0 (35)

whose left-hand side appears as a factor in the right-hand side of equation (15). This led us to
try to find the general solution of this equation. To this end, we write (35) as

Y10 (@> — Yol (&> =0 (36)
vio/y Yo/

whose general solution is

1)) 37)
Y10

with A arbitrary function of y = y (x, y).
Then from (37), we readily obtain

x+yA(y) = B(y) (38)

where B(y) is also arbitrary. So, all functions y defined by (38) satisfy (35), as expected.
But, to our surprise, it turns out that all y defined by (38) satisfy the third-order equation (15)
as well.

On the other hand, in view of (38), we can calculate yiq, Y01, ¥20, Y11, Yoz in terms of y,
A, A’, A", B’, B” (where primes denote differentiation with respect to y) and insert them into
(10) in order to calculate R = r(y) from (9). In so doing we find

1+ y)A —3A7+2yA — |
A=y)(yA+1)

In conclusion, we see that, for all families y given by (38), there exist potentials of the
form (7) which generate them and which can be found by quadratures. From (37) we obtain
the ratio y91/y10 = A(y) and insert it in Szebehely’s equation (4), also taking into account
that V(x, y) = v(y(x, y)). So, we write (4) as

2 ’
E=v+(1+y)(1+yA)v‘ (40)
2A-y)

From (40), and in view of (8), we compute Ey, E, and we find them identically equal to
zero. This means that £ = constant for all members of each family y. It is called that
the isoenergeticity above was established for families y (x, y) which make each member of
equation (15) zero. It is plausible that (not known to us) the solutions of (15) which are not
included in the set (38) correspond to nonisoenergetic families.

(39)

Remark 1. We assume that A # y and A # —1/y. For A = y, the above ratio r becomes
indeterminate. The case A = —1/y corresponds to families of straight lines and has been
excluded up to this point. (See remark 5.)

Remark 2. It is striking that the arbitrary function B(y) of (38) does not appear explicitly
in (39). This means that, for two different y defined by (38) for the same A(y) but different
B(y), the functions V = v(y) which satisfy equation (8) are the same. However, just because
the two y are different, the corresponding potentials V = V (x, y) defined by (7) will be, as
expected, different.
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Remark 3. Equation (38) introduces two arbitrary functions A(y), B(y) and, as such, is of
course less from what one should expect as general solution of the third-order equation (15).
Yet it is a very rich source of solutions y = y(x, y) of (15), containing, e.g., all forms of
solutions found in section 3.

Indeed, let us consider the constants yy, y1, ¥2, 80, 81, 62 and the arbitrary function
G = G(y) and let us choose as
:82G )/2, B(y) = 30G+V0.

3G —n 566G —n

Then (38) leads to (34), which, as already mentioned, covers (22) and (23).

A(y)

Remark 4. For a compatible pair (y (x, y), V(x, y)) let us call s the common ratio

Vi
Yo _ oy @41)
vio  Vio
. . . V V V
Then (36) is written as s, = sy, i.€., (V_?:J)y = V_?:J(v_?:))x or
Vg Vag — 2VioVor Viy + Vi Vo = 0. (42)

In conclusion, if the family y = y(x,y) satisfies (35), the corresponding V(x,y) =
v(y(x,y)) satisfies (42).

Remark 5. Up to this point, we worked with I' # 0. As seen from equation (5), I' = 0 is
associated with
VityVy=0 (43)

and with a family of straight lines in the plane (Bozis and Anisiu 2001). As we seek solutions
of the form (7), equation (43) gives (y, + y¥,)v" = 0, meaning that, either the potential v(y)
must be constant or

Ye+vyy =0. (44)
Condition (44) coincides with (11(ii)) and implies the presence of the families (12). At any
rate (44)and I’ =0, i.e.,

Y¥xr =¥y =0 (45)
are incompatible.

Example 1. For A = y?, B = 2y, equation (38) gives

l£+£1—x
y=ZN TN (46)
y
and equation (39) becomes
=3yt +ay+2y —1
_ 14 4 (47)

Yoy =D+ 1)
Then, from (17) and (47) we obtain (except for a multiplicative and an additive constant)

_ v 48
v(y) = m (48)
and from (7) and (46)
—v2_ _
Vi, y) = Xy —y 2(1 £ /1 —xy) (49)

P+ £ J/T=xy)3)?3
The compatibility of (46) and (49) as far as equation (5) is concerned can be checked by direct
computations.
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5. Discussion

One basic result of the present study is condition (15). It provides a very rich tank of adequate
families y = y(x, y) for which we can solve the (generally not solvable) partial differential
equation (5) of the inverse problem of dynamics, i.e., we can find by quadratures potentials of
the form V (x, y) = v(y(x, y)).

The idea for looking for such potentials emerged from the fact that potentials of this type
appeared in certain examples, as V (x, y) = (x* + y*)/(x — y)* and y(x, y) = y*/x? in the
paper of Borghero and Bozis (2002). Dealing with the direct problem, Bozis et al (2000)
found the compatible pair V (x, y) = —1/x% and y (x, y) = £(k; — ko/x?)'/?. In addition, the
motivation for selecting this particular form (7) for the unknown potential V (x, y) was also
of mathematical nature, i.e., we did so in order to ease the algebra by shifting from the partial
differential equation (5) to the ordinary differential equation (8). Due to the linearity of (5) in
V, it was expected that (8) would be solvable by quadratures. But, of course, this happens for
‘adequate’ families y (x, y). Naturally, then our central interest was directed to the study of
the differential condition (15).

Seen as a partial differential equation in y, equation (15) is nonlinear of the third order
whose general solution would be desirable. As the task of finding such a solution appeared
impossible to us, we treated equation (15) by proceeding from relatively simple to more
complicated forms of solutions. The solutions of the forms (22) and (23) lead to the potentials
(21) and (26), respectively. As already mentioned in section 3(c), an analogous result can be
established for the slope functions of the more general form (34). Formulae like (21) and (26)
are useful per se and, for this reason, we studied these cases separately.

The potentials of the form (21) are integrable. A further study is needed for the integrability
of potentials of the form (26).

Another basic result is equation (38) with the two arbitrary functions A(y) and B(y). It
stands for the general solution of (35) and gives a very rich set of functions y = y (x, y) which
make both sides of (15) zero and for which the pertinent potential v = v(y) can be found by
quadratures from

v'(y)
v'(y)
with r(y) given by (39).

In section 4, we indicated how the subset of functions y presented in section 3 can be
obtained from (38). The totality of pairs (y (x, y), V (x, y)) which we established as solutions
to our problem described in section 1 satisfy both equations (35) and (42). These equations
are solved to completion.

In view of all the examples presented in this study, we now direct our attention to the fact
that all pairs (y, v(y)) correspond to families y traced isoenergetically in the presence of the
potential v(y). This is actually a general fact for families y which satisfy equation (35) and it
was proved in section 4.

Finally we note that, in all three cases of section 3, the ordinary differential equation
dy/dx = —1/y can be solved by quadratures and the pertinent monoparametric family can
be found explicitly in the form f(x, y) = c. Yet this is not generally the case for functions

y (x, y) given by (38).

= r(y) (50)
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