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In the framework of the inverse problem of dynamics, we face the following question with reference to the motion of
one material point: Given a region T, of the zy plane, described by the inequality ¢g(z,y) < co, are there potentials
V = V(x,y) which can produce monoparametric families of orbits f(x,y) = c (also to be found) lying exclusively
in the region T,,? As the relevant PDEs are nonlinear, an answer to this question (generally affirmative, but not with
assurance) can be given by the procedure of the determination of certain constants specifying the pertinent functions. In
this paper we ease the mathematics involved by making certain simplifying assumptions referring to the homogeneity of
both the function g(x,y) (describing the boundary of T..) and of the slope function v(z,y) = fy,/f= (representing the
required family f(x,y) = c¢). We develop the method to treat the so formulated problem and we show that, even under
these restrictive assumptions, an affirmative answer is guaranteed provided that two algebraic equations have in common

at least one solution.

1 Introduction

The inverse problem of dynamics — finding the forces which
give rise to a family of orbits — has been of interest since
Newton discovered the inverse square law for the motion of
the planets. In modern days the problem has received spe-
cial attention after the publication by Szebehely (1974) of
the partial differential equation for the potential generating
a given family of orbits. Szebehely’s equation was aimed to
be used for the determination of the potential of the Earth
by means of satellite observations. The form of Szebehely’s
equation allowed Bozis & Ichtiaroglou (1994) to state that
the orbits of the family are actually traced only in a re-
gion which is limited by the family boundary curves (FBC).
Later on, Bozis (1996) and Anisiu & Bozis (2000) consid-
ered the following related problem: given a planar region,
find the potential and the families of curves described by
a particle precisely in the given region (programmed to re-
main trapped into it).

In this paper we approach the problem of the pro-
grammed motion for a general planar region and families of
curves with homogeneous slope, which contain as a special
case the orbits v = —x/(4y) found by Bozis et al. (1997)
for the Hénon-Heiles (1964) potential V (z,y) = 1/2 2? +
8y + 22y + 16/3 y3 in the region (z2 + 8y? + 12y)y < 0.

The system of the second order differential equations
for the motion of one material point allows both for real and
nonreal orbits to result from a real or complex force field.
In particular, a planar orbit traced by one material point in
the presence of a two-dimensional force field (conservative
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or not, in an inertial or in a rotating frame Oxy) may be es-
caping or trapped in a region of the plane depending on the
initial conditions given to the orbit. For conservative force
fields, the requirement that, at any point along the orbit,
the total energy E of the moving particle must be greater
than the potential V' (x, y) at this point, determines the well
known zero velocity curves (ZVC). Each ZVC, with equa-
tion E — V(z,y) = 0, is associated with one specific orbit
and with all possible orbits having the same energy E (e.g.
Szebehely 1967).

On the other hand, in the framework of the inverse prob-
lem, Szebehely’s (1974) partial differential equation, as mo-
dified later by Bozis (1983), relates, in an inertial frame,
slope functions v(x,y) = f,/f. of monoparametric fami-
lies of orbits f(x,y) = const. to potentials V' (z, y) which
can produce these families (for adequately chosen initial
conditions, of course) and to the energy dependence func-
tion E = E(f(x,y)). This PDE also allows both for real
and complex pairs (V (z, y),v(x, y)), accompanied by com-
plex values of the total energy E as well (Contopoulos &
Bozis 2000). Naturally, families of complex orbits are of
pure mathematical interest, whereas real orbits are actually
observed and, so or otherwise, good to have in Physics. Out
of these real orbits, those which are trapped in the interior
of a certain finite region 75,1, of the plane are of interest
in many physical situations. Our possibility of managing
to have orbits of this nature partly answers the more gen-
eral question of programmed motion in mechanics (Gali-
ullin 1984).

To succeed to program motion in the above sense, we
are helped by the so-called family boundary curves (FBC).
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Those are curves defining regions B(x,y) > 0 where mo-
tion of the particle may take place (as the particle moves
on various members of the same family), with total energy
generally varying from member to member (Bozis & Ichtia-
roglou 1994). We know that to each pair (V, ~y) of a potential
and a family there corresponds a specific FBC. An essential
difficulty which arises is due to the fact that infinitely many
pairs (V,~) may lead to the same geometrical entity repre-
senting the region 75,1, which we have preassigned.

In the present study we face this problem aided by
some homogeneity assumptions referring both to the form
of the slope function ~(z,y) and to the form of the equa-
tion g(z,y) < co representing T,.1,. In Sect. 2 we remind
the reader of the definition of the boundary function B(z, y)
and we put the problem in its general prospect. In Sect. 3 we
derive differential relations involving the boundary function
B(x,y) and the slope function (z, y), respectively B(z, y)
and the potential V(x, y). We find also a formula giving ex-
plicitly the slope function ~(z,y) in terms of B(z,y) and
V(x,y). In Sect. 4 we describe some aspects of the problem
and we focus on what we define as the basic programmed-
motion problem which then we study in detail in Sect. 5
with homogeneous functions. In Sect. 6 we offer an exam-
ple for the basic programmed motion. In Sect. 7 we make
some general concluding remarks.

2 The boundary function

Monoparametric families of orbits f(z,y) = ¢, which are
produced by a given potential V' (x, y) and which have the
‘slope function’ y(z,y) = f,/ fz, satisfy the second order
nonlinear PDE (Bozis 1995)

'72'70000 = 2VYay + Yy = h, (1)
where
h= v,

— (V¥ = 1)Vy).

Having in mind a pair (V(x,y),v(x,y)) satisfying the
above PDE (1), let us denote by B(z, y) the *boundary func-
tion’
Bla,y) = 2%, ©)
’Yy — YV
Families of straight lines for which v, —~, = 0 and
Ve + vV, = 0 (Bozis & Anisiu 2001) are excluded from
our study, as both h and B are indeterminate.

As we know (Bozis & Ichtiaroglou 1994), in general,
the inequality

B(z,y) 2 0 (4)

determines the region Ty, of the xy plane where the po-
tential V' (z,y) creates real orbits or real parts of the or-
bits belonging to the family with slope function v(z, ). On
these grounds, we shall refer to B(z,y) as the ‘boundary
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function’ for the compatible pair (V (z,y),v(z,y)). Appar-
ently, the pair (—V'(z,y),v(z,y)) is compatible outside the
region Top.

Conversely, if we have in mind only a specific region
Tor, Of the zy plane which we want to make the exclusive
allowed region for certain unknown families created by an
unknown potential, the hidden function B(z,y) is also not
known to us. In fact, the boundary function B(z,y) is not
known even if one of the functions v(x, y) or V(x, y) is not
given.

We restrict ourselves to regions which are described by
one inequality, say

b(z,y) =0, (5)

and impose the condition that the function B(x,y) corre-
sponding to a pair (V (z,y), v(z,y)) defines the same re-
gion (4) as the inequality (5) does. We interpret this by stat-
ing that there must exist a nonvanishing function O(z, y),
in a region Ty broader from the region Ty, such that

with
O(z,y) > 0, (z,y) € To, O(z,y) # o0, (7)

where ©(z,y) denotes the (one-variable) function ©(x, y)
evaluated at the points of the curve b(z,y) = 0.

For the special case of the families f(x,y) = y— H(z),
Anisiu & Bozis (2000) solved the problem of programmed
motion by taking B = b, i.e. © = 1. The generalizing step
made in the present study refers to this multiplier ©(z, y)
which is now allowed to be any function satisfying the con-
ditions (7).

3 PDEs relating the boundary functions to
families of orbits and to potentials

We now obtain a PDE (Eq. (11) and its counterpart Eq. (13)
below) relating slope functions -y(z, y) and boundary func-
tions B(z,y) as follows: Solving Eqg. (3) for vy, — v, and
taking derivatives in z and y we obtain respectively

VVex — Yoy = h17 VYVzy — Vyy = h27 (8)

where hy and ho are functions of v and B and first order
partial derivatives of them, and also of first and second order
derivatives of V. We now see that the algebraic system of
the three Egs. (1) and (8) in vz, Yay, Vyy 1S indeterminate
and this impliesthat h—~yh,+ha = 0 or, after some algebra,

B, +72V,

s ©)
We solve Egs. (3) and (9) for V,;, V,, and we find
Vw =-B x + 1 B, — Bw P

(Y72 =) + 37(By —7Be) (10)

Vy = _%(By —vBz).

The above formulae (10) serve to determine the potential,
when a compatible pair (B(z,y), v(x,y)) is given. This
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compatibility is ensured by the requirement that V., = V.
and implies that the PDE

—Byy + k*Byy + Byy = N"B, + "B, +v* B, (11)
where
k= 17v2 A* = Yz +277y
/Y ? /Y )
* 29 Y — 3,
wr = W’ (12)

¥ = 2(V2 Yy —Yyy 1 V2y)
vy

is satisfied. Equation (11) can also be derived directly from
Szebehely’s equation (Anisiu 2003).
An alternative form of formula (11) is
2B(’Y%ﬁy — VYyy T ’Yz'Yy) + (B: + 2’YBy)FYz
+ (2yBy — 3By)yy + Bayy?
+ (Bgz — Byy)y — Bzy = 0.
This is better suited for finding v when B(z, y) is given.

Inserting in Eq. (1) the function v(x, y), as given by (9),
we find the PDE

B [(By — 2V,)?Byy — 2B, (By + 2V,) By,

+ B%Byy + 2VyyB§ — 2V BBy

— 4V, VoyB,] = B2(Ve By + VB, + 2V,2),
which relates potentials V' and boundary functions B, and
which is nonlinear in both variables V and B. Equation (14)

can also be derived from the corresponding equation given
by Bozis (1996) for nonconservative fields.

(13)

(14)

3.1 Remarks

1. If we insert (10) into (1), we obtain again the same
PDE (11), relating families v(z, y) to boundary func-
tions B(z, y).

2. If (11) is satisfied by the pair (v, B) which is associ-
ated with the potential V/, it is also satisfied by the pair
(v, ko B), now associated with the potential koV, where
ko is a constant. This remark also applies to Eq. (14).

3. Asseen from (11), for a certain family - there may exist,
in general, as many boundary functions B as two arbi-
trary functions allow. Each of these B’s specifies which
members of ~ are lying inside which region. Each B,
of course, is associated with one (except for an additive
constant) of the potentials given by (10) which can gen-
erate the given family.

4. If ~ is homogeneous of degree zero, then so is k*,

whereas \*, u* are of degree —1 and v* is of degree
—2. If, in addition to that, B is homogeneous of degree
n, all terms in (11) are of degree n — 2.
Moreover, due to the linearity of (11), if the function
B(x,y) is weighted homogeneous of degrees e.g. n;
and ny (i.e. B is the sum of two homogeneous expres-
sions of degrees n; and ns), then the entire Eq. (11) will
lead to a weighted homogeneous expression of degrees
n1 — 2 and ny — 2. We shall make use of this remark in
Sect. 5.
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3.2 Example

Consider the family of concentric circles v = y/x produced
by all potentials

V(r,0) = g(r) + rizh(o), (15)

where r, 0 are polar coordinates and g(r), h(6) arbi-
trary functions (Broucke & Lass 1977). The corresponding
boundary function is found from (3):

cos? 6 ,dg
el 0% T A

r2 ( dr (16)

B(r,0) = 2h).

All formulae (9) to (14) can be verified for this particular
example. The presence of the arbitrary functions ¢(r) and
h(6) is helpful in conceiving the meaning of the formulae
and also of the above Remark 3.

4 Some aspects of the programmed-motion
problem

a The usual situation a physicist is confronted with is to
have to deal with a specific potential (direct problem).
In this case one may think of the following two aspects
of programmed motion;

al One may ask to find families of orbits inside (or
outside) a preassigned region of the zy plane de-
scribed by the inequality (5). Clearly, such a require-
ment may not admit of an affirmative answer. In-
deed, there is an ‘immense’ but ‘specific’ set of com-
patible pairs (V (z,y), v(x, y)) corresponding to the
given V. According to (3), each of these pairs is ac-
companied by a certain function B which, once V'
and b are given, cannot generally be forced to be of
the prescribed form (6)—(7), basically because of the
restriction (7).

a2 As seen from (14), for the given potential, there may
exist, in principle, infinitely many functions B (in
fact, as many as two arbitrary functions allow) and,
consequently, infinitely many allowed regions. To
each compatible pair (B(x,y), V(x,y)) there cor-
responds one monoparametric family ~(x, y), given
by (9). Thus, e.g. to a certain potential of the form
(15) (i.e. for a specific selection of the functions g(r)
and h(1)) there correspond infinitely many func-
tions B(x, y). Only one of these is given by (16) and
this corresponds to the family of circles produced by
(15).

b Let us now disregard the assumption that the potential is
known and suppose that only the region is given in ad-
vance by the unique inequality (5). We shall refer to this
as the basic programmed-motion problem. The question
is: What families can be created in the given region and
which are the potentials generating these families?

To answer this question we introduce the function
B(x,y), as given by (6), into the Eq. (11) and we ob-
tain a linear PDE with coefficients which are functions
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of the known function b(z, y) and of the unknown func-
tion v(z, y). This equation reads

b(—Ozz + KOyy + 0Oyy)

(17)
- L0, -MO,—-NO =0,
where
K =Fk* L=MNDb+2b, — k*by,
M = bu* — k*by — 2b,, (18)

N =v"b+ XNy + p* by + bya — K by — byy

and where k£*, \*, u*, v*, given by (12), depend merely
on ~ and its derivatives.

Atfirst sight, it seems as if, except for b, we can also give
in advance the family ~ and ask for solutions ©(z, y) of
the linear PDE (17) with the provision that the inequali-
ties (7) are also satisfied. However, this last requirement
implies that such solutions © of (17) may not exist for
any preassigned +. Indeed, the fact that b is fixed a priori
reduces the set of boundary functions B(z,y) (as Eq. 6
suggests) and, according to (11), does not allow for any
functions  to belong to this set.

5 Basic programmed motion with homogen-
eous functions

In this section we outline the procedure to be followed in
order to face the basic programmed-motion problem, as we
defined it in Sect. 4 (b). In order to ease the mathematics,
we put some additional assumptions regarding the homo-
geneity of the functions involved. Specifically we assume
the following:

(i) The allowed region is given in the form
9(z,y) < co, (19)

where g is homogeneous of degree m # 0, and ¢ is a
nonzero constant. Comparing (19) to (5) we take

b=1co—xMby(2), z= %, (20)
where by # 0.

(if) The required slope functions v are homogeneous of de-
gree zero. i.e.
7 =1(2). (21)

(iii) The functions © to be determined are also homogeneous
of degree k, i.e.
@(x,y) = ijeo(Z),
where ©¢ # 0.
Inserting (20), (21) and (22) into (17), we rewrite (as im-
plied by Remark 4 of Sect. 3) this equation so that its left
hand side is a weighted homogeneous expression, i. e.
Rlxk + RQSUerk =0,
where R, and R; are functions of z.

Both R; and R, must vanish identically, and this leads

to the two equations (the dots representing differentiation
with respect to 2)

200(zy + 1)5 + 200242 + k14 + ko = 0,

(22)

(23)

(24)

(© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

2boOo (27 + 1)¥ + 26000 2* + miy +mg =0,  (25)
where (arranged in 6, ©9 )

k1 =k10©0 + k140, ko=kooOo + k040 + ko4aOo (26)
with

k1o = 2(1 — k)y + kz, kig = 42y — 22 + 3,

koo = k(1 — k), koa= (1 — k)(v* — 227 — 1), (27)
koga = 27? + (1 — 22)y — 2,
and
my = mi100¢ + mldé()a ) (28)
mo = mooOg + moeaOo + ModdOoo
with (arranged in by, by, bo)
m1g : —bo(2(k +m — 1)y — (k+m)z) 29)
+bo(4zy — 22 4+ 3), mag = bo(4zy — 22 +3),
moo = —bo (k+m)(k+m—1)~y
—bo(k+m—1)(42 — 22y — 1)
+bo(v—2) (v +1), (30)
moa = —bo(k+m—1)(y? —22y—1)
+ 2bo(y = 2) (2 + 1),
modd = bo(y —2)(zy +1).

Our hypotheses (bg # 0, ©¢ # 0 and straight lines ex-
cluded) assure that the coefficient of 4 in (24) and (25) is
different from zero.

One can see easily that one of the two Egs. (24) and
(25), say (25), may be replaced by the simpler equation

(mq1 — bok1)y + mo — boko = 0. (31)
If we set
Qo = wOy, by = rby (32)
we also have
O = (W + w?)Og, by = (7 +r?)bo. (33)
From (31) we then obtain (for m; — boky # 0)
. Doy?+T1y+1T

- ’YAW —|—10 (34)
where
[y =Too +Torw, I'y =19 + Tyw, To = =T, (35)
Too = (1—k—m)r + z(# +72), Doy = 22r—m
Tio =m(1 —2k—'m) —2(1—k—m)zr (36)

+ (1 =207 +1r?)

i1 =2(r +mz —rz?),
and
Ay =2(m —2rz), Ag=rz*—mz—3r. (37)

Also, the coefficients in the two Eqgs. (24) and (25) may
be freed from ©, and be expressed in terms of the ratio
w = ©y/Oy, given by (32). Besides that (and although b,
is known) the calculations suggest that, instead of b, it is
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simpler to use r = bo/bo, also given by (32). We take these
remarks into account and, as we are interested only in for-
mula (24), we rewrite it here as

2(1 + v2)5 + 22%% + K1 + Ko = 0, (38)
with the coefficients arranged in powers of ~ as follows

K1 =Kuvy+ K, Ko= Koy + Koy + Koo, (39)
where

Ky =42w+2(1 - k), Kig=—(2—3)w+kz (40)
and

Koz = (1 — k)w + z(w + w?),
K01 :k(l—k)—2z(1—k)w
+ (1 — 23 (w0 + w?).

Koo = =Koz
(41)

So, now we have to deal with the two Egs. (34) and (38),
where the coefficients K, K, in (38) are given by Egs.
(39)—(41) and the coefficients in the fraction (34) are given
by Egs. (35)—(37).

We consider m, r = bo/bo, co (i.e. the boundary func-
tion b given by Eq. 20) as known and we try to find appro-
priate ~’s satisfying the Egs. (34) and (38). To this end we
prepare 4 from (34) and insert into (38). In so doing, we
obtain the quintic in - algebraic equation
a5y’ + asy! + azy’ + a2y’ + a1y + ag = 0, (42)
where the coefficients as, au, ..., g are functions of z and
w and its derivative of the first order.

We now differentiate (42) in z and we obtain 4 which
we equate to 4 given by (34). In so doing we obtain the
sixth order algebraic equation
Bevo+B57° +Bav + 837 + B P+ 817 +Bo=0  (43)
with the coefficients (g, 35, ..., Bo functions of z and of w,
w, w. We are interested in the common roots of the Egs. (42)
and (43) and this leads us to the eleventh order Sylvester
determinant which is an ODE in w of the second order. A
solution w of this equation (for a suitable %) allows us to
solve the problem to completion.

A special case arises from the fact that the above reason-
ing was made under the hypothesis mi —byk; # 0, imposed
from formula (34) on. Therefore we have to analyze also the
case when mq — bok1 =0, i. e.

Ay + Ay =0. (44)
We express v from Eq. (44) and substitute it in mq—boky =
0,i.e I'yy2 + Ty + Ty = 0. We obtain then the value of
w, and substitute v and w in Eq. (38); if there is any & for
which the expression becomes identically null, we have a
solution for the problem.
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6 Example

As an example of the basic problem of programmed motion
let us try to find families of orbits and the corresponding
potentials creating them in the region

3
S22y 4y <O,

. (45)

which represents the interior of an ellipse. Apparently, the
region (45) lies in the negative y’s, in fact it is tangent to the
x-axis at the origin, its center is at the point (0, —1/2) and
its semi-axes (parallel to the coordinate axes x and y) are
\/2/3 and 1/2, respectively.

At first we write (45) in the form (19) as

2
g(z,y)=— (i;;—i—y):—x <832+2)’ co=1. (46)

Therefore

3
m = 17b0(2) = <825 + Z) ) Co = 17 (47)
and, in view of (20),
312
b = — 1. 48
(z,9) » +y+ (48)

Aided by a Maple program, we formed, for the case at hand,
the two Eqgs. (42) and (43) and we checked that, for & = 3,
their Sylvester determinant vanishes when w = 1/z. So, in
view of the Eq. (32) and the inequality (7) we obtain
@0(2) = =%, (49)
meaning that, for the case at hand and according to (22), it
is

O(x,y) = —2%y. (50)
The function © satisfies the condition (7) with T, =
{(z,y) : y < 0}. According to (6), (48) and (50), we find

B(z,y) = — (gafl + 22y + xzy) . (51)
With the function w(z) = 1/z, we write the Egs. (42) and
(43) and we look for a common solution of the form v =
~v(z), z = y/z, which is

M (52)

3

Finally, with the aid of (51) and (52), we find from (10) the
potential

Vix,y) = —%(33:4 + 362%y? + 8y*)

53
— iy(QxQ +4y?). 53)
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7 General comments

In Sect. 4 we discussed some aspects of the question of
the programmed planar motion. We were led to focus atten-
tion on what appeared to us as the most meaningful version
of the problem which we called basic programmed-motion
problem. We treated this problem, having at our disposal (i)
the Eq. (9), offering explicitly the slope function ~ in terms
of B and V" and (ii) the two nonlinear PDEs (13) and (14),
relating v, B, and V', B, respectively. Due to the complexity
of these tools we were led to study the problem in some de-
tail under certain additional assumptions regarding the ho-
mogeneity of the functions involved. Specifically we con-
sidered the case of an allowed region of the form (19), com-
bined with a family of homogeneous orbits (21). In addi-
tion to that and in order to facilitate the calculations, we re-
stricted ourselves to consider multiplying functions ©(x, y)
which are also homogeneous.

The example in Sect. 6 has indicated that an affirmative
answer to the programmed-motion problem can be obtained
in spite of all the above restrictive assumptions. Yet, this is
not generally what one expects. For another preassigned re-
gion of the form (19) the two algebraic equations (analo-
gous to Egs. 42 and 43) could be such as not to provide a
common solution.

So, then, what is it that we generally expect, if we free
ourselves from some or all the homogeneity assumptions?

We argued in Sect. 4 (b) that Eqg. (17) would generally
have no ‘adequate’ solution © (z, y) for any ~(x, y). In fact,
the finding of such pairs (V, ~) is our objective. (Once ~ and
O are found, we also have B = 00.) Of course, in view
of (14), to any potential V' (z, y) producing a family ~y(z, y)
which we may suspect as possibly lying in the given re-
gion b(x,y) > 0, there correspond infinitely many but defi-
nite functions B(z, y). However, none of these functions is
obliged to provide (as the inequality (3) suggests) the same
information with b(z,y) > 0.

On the other hand, the PDE (13) is more promising in
offering an affirmative answer. Given the function b(z, y),
we can select appropriate functions ©(x, y) (or, even bet-
ter, select forms of functions ©(z, y), introduced by certain
constants) and consider B = b©. Then, introduce this B in
(13) and try to obtain solutions of (13) for ~(x, y) again of
a certain form by determining the constants.

(© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Thus, e.g. for b(x,y) = —a? +3x+y, let us try
O(z,y) = 2%2+2017y+0O2y? (Which is a non-negative def-
inite quadratic expression for ©2 < ©,). With B(z,y) =
bO, let us now search for solutions ~ of the form ~(x, y) =
Yo + mM1y/x, with 1 # 0 (no straight lines). The formula
(13) leads to a polynomial in x, y including fifth and fourth
degree terms which becomes identically equal to zero if and
onlyif: 91 =0, =0and vy, =1,v; = —2.

Therefore the family with v = 1 — 2y /x, whose mem-
bers are lying ‘in one side’ of the parabola y > 22 — 3z
is f(x,y) = 4y — 2 — 32%y and, as can be found from
(10), is produced by the potential V (z, ) = 32* — 623y +
622y% — 1023 + 1222y — 12292 — 293

Notice that the function b = —x2 + 32 + y, used in
the above example, can be put in the form (20). Thus, the
same result can be found by the straightforward method de-
veloped in Sect. 5.

We remark that, for slope functions of the form v =
~v(y/z), the allowed region was found to be of the form
(20) for potentials of the Hénon-Heiles type by Bozis et al.
(1997), and for quartic perturbations of a harmonic oscilla-
tor by Anisiu (2007).
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