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Two-dimension potentials which generate spatial families of orbits
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We consider the following case of the 3D inverse problem of dynamics: Given a spatial two-parametric family of curves
f(x, y, z) = c1, g(x, y, z) = c2, find possibly existing two-dimension potentials under whose action the curves of the
family are trajectories for a unit mass particle. First we establish the conditions which must be fulfilled by the family
so that potentials of the form w(y, z) give rise to the curves of the family, and we present some applications. Then we
examine briefly the existence of potentials depending on (x, z), respectively (x, y), which are compatible with the given
family.
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1 Introduction

The three-dimensional version of the inverse problem of dy-
namics has already a history of more than 25 years. Fol-
lowing Szebehely’s (1974) presentation of the problem in
two dimensions, Érdi (1982) was the first to address the 3D
problem by considering a monoparametric family of spatial
orbits. Seen from this viewpoint, the treatment of the prob-
lem is essentially similar to the study of the motion of a par-
ticle describing a monoparametric family of (spatial) orbits
on a fixed surface (Mertens 1981). There followed studies
which put the problem in a more accurate perspective: A
two-parametric family of spatial curves is given and the po-
tential giving rise to these curves is required (Bozis 1983;
Váradi & Érdi 1983; Bozis & Nakhla 1986; Shorokhov
1988; Puel 1992). At almost the same period, the problem
was generalized to account for holonomic systems with n
degrees of freedom (Melis & Borghero 1986; Borghero &
Melis 1990).

Assuming that a two-parametric set of orbits

f (x, y, z) = c1, g (x, y, z) = c2, (1)

in the Oxyz space can be traced by a material point in the
presence of an unknown potential V = V (x, y, z) with en-
ergy dependence function E = E(f, g) which is consid-
ered to be known, one aims to finding the potential. From
its mathematical viewpoint, the problem consists in solv-
ing a linear system of two PDEs in the unique unknown
function V = V (x, y, z). It was soon made clear that this
problem has no solution unless the ‘given’ energy function
E = E(c1, c2) satisfies certain conditions depending on the
given functions f(x, y, z) and g(x, y, z) (Bozis & Nakhla
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1986; Shorokhov 1988). In fact, if some specific condi-
tions are satisfied, the problem admits of a unique solution
V = V (x, y, z), up to an additive and a multiplicative con-
stant.

In a manner analogous to that used in the 2D case, Bozis
& Kotoulas (2005) and also Anisiu (2005) eliminated the
energy and produced a system of two linear in V (x, y, z)
PDEs, one of the first and one of the second order (Eqs.
(5) and (6) below). If this system is compatible and can be
solved for a given family of orbits (1), then the correspond-
ing energy with which each member of the family is being
traced can be found (Eq. (7) below).

In this paper we shall deal with these two energy-free
PDEs, taking into account that, in spite of their linearity, the
above system cannot be treated in a straightforward man-
ner. Further assumptions, regarding either the form of the
given orbits or the form of the required potential or both
may simplify the problem. This practice was followed by
Bozis & Kotoulas (2005) and by Kotoulas & Bozis (2006)
and will be followed in the present paper also: We look for
two-dimension potentials which can possibly give rise to 3D
families of orbits (1), given in advance. We study in detail
the case of potentials of the form V = w(y, z).

In Sect. 2 we give the general energy-free PDEs of the
inverse problem. In Sect. 3 we write down these equations
for the case at hand and we pursue their solution by estab-
lishing the necessary and sufficient conditions on the ‘given’
family so that such solutions w = w(y, z) do exist. If all
types of 2D potentials creating a given family are required,
the cases w = w(x, z) and w = w(x, y) must be studied
separately. This can be done, of course, in a manner quite
similar to that followed here. In Sect. 4 we examine some
special cases exempted at a first step, so that the analysis
could continue. In Sect. 5 we apply the theory to two rather
broad sets of spatial curves and enrich the library of the ex-
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isting examples. Finally, in Sect. 6 we discuss shortly the
case w = w(x, z) of 2D potentials and we comment on the
case w = w(x, y).

2 The energy-free equations of the spatial
inverse problem of dynamics

In a three-dimensional frame we deal with two-parametric
families of orbits written in the form (1), which are in
an one-to-one correspondence with a pair (α, β) of ‘slope
functions’ defined by

α =
fzgx − fxgz

fygz − fzgy
, β =

fxgy − fygx

fygz − fzgy
. (2)

The indices denote partial derivatives. Equations (1) then
constitute the general solution of the ODE system

d y

d x
= α (x, y, z) ,

d z

d x
= β (x, y, z) . (3)

There exist in this case two energy-free PDEs (one of the
first and one of the second order) relating families (α, β)
and potentials V (x, y, z) (Bozis & Kotoulas 2005; Anisiu
2005).

Let us assume that α0 �= 0 and adopt the notation

ε̄ = (1, α, β), α0 = ε̄ gradα, β0 = ε̄ gradβ,

Θ = 1 + α2 + β2, n =
Θ
α0

, n0 = ε̄ gradn.
(4)

The two equations satisfied by the potential in the 3D
inverse problem are

(αβ0 − α0β) Vx − β0Vy + α0Vz = 0, (5)

αVxx +
(
α2 − 1

)
Vxy + αβVxz − αVyy − βVyz +

1
n

((2 + αn0 + α0n)Vx + (2α − n0)Vy + 2βVz) = 0.

(6)

For any compatible pair of potential V (x, y, z) and orbit
(α, β) the energy is given by

E(f, g) = V + Θ (αVx − Vy) /2α0, (7)

and real motion is allowed in the region

αVx − Vy

α0
≥ 0. (8)

The potentials producing families of straight lines, for
which both α0 and β0 are identically zero, must satisfy
(Bozis & Kotoulas 2004) the equations

αVx − Vy = 0, βVx − Vz = 0. (9)

If α0 = 0 but β0 �= 0 equation (6) is replaced by
a second-order differential equation presented in Anisiu
(2005) and Kotoulas & Bozis (2006).

3 Potentials V = w(y, z) which generate
spatial families of orbits

We shall consider exclusively potentials of the form

V = w(y, z). (10)

The material point moving under the action of such a poten-
tial will have a uniform motion in x, i. e. ẋ(t) = const. As
a consequence, the orbits cannot be closed. For V given in
(10) the system of the two PDEs (5) and (6) becomes

wz = Gwy (11)

and

Θ(α + βG)wyy + Ψwy = 0, (12)

where

G =
β0

α0
(13)

and

Ψ = βΘGy + α0 (n0 − 2(α + βG)) . (14)

Equation (11) comes directly from (5) but, to obtain (12)
from (6), we used (11) and, with its help, we expressed wyz

and wzz in terms of wy and wyy .
It is seen from Eq. (11) that the function G must be in-

dependent of x, i. e.

Gx = 0. (15)

We assume that α + βG �= 0 and we put

H =
Ψ

Θ(α + βG)
. (16)

For the PDE (12), now written as

wyy + Hwy = 0, (17)

to have a solution of the form (10) it must be

Hx = 0. (18)

Solving Eq. (12) for wy we obtain

wy = D(z) exp(−
∫ y

H(u, z) du) (19)

(with D(z) momentarily arbitrary function of z), and from
Eq. (11) we obtain wz . The compatibility condition (wyz =
wzy) for wy and wz , as these are given by Eqs. (19) and (11)
respectively, is

D′(z) − D(z)J = 0, (20)

where the function J is given by

J = Gy(y, z) − G(y, z)H(y, z) +
∫ y

Hz(u, z) du. (21)
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The function J must depend merely on z, i. e. it must be

Jy = 0. (22)

This last condition (22) can also be written as

Gyy − GyH − GHy + Hz = 0. (23)

For a given family (1) the ‘integration function’ D(z) is
specified from (20). It is

D(z) = d exp(
∫

J(z) d z), (24)

where J(z) is given by (21) and d is a constant. From Eqs.
(7) and (8) we conclude that real motion is allowed in the
region defined by the inequality

wy

α0
≤ 0, (25)

and the particle moves with total energy

E = w(y, z) − Θwy

2α0
. (26)

We summarize by the following

Proposition 1. For α0 �= 0, α+βG �= 0 and for any family
(α, β) satisfying the conditions (15), (18) and (22) (equiv-
alently 23), there exists a two-dimension compatible poten-
tial w = w(y, z). The potential is given by the (compatible)
Eqs. (19) and (11) with D(z) given by (24). The family is
lying in the region (25) and is traced with total energy given
by Eq. (26).

4 Special cases

a. α0 = 0, β0 = 0
The case is trivial. Only if the given orbits are families of
straight lines we are led to α0 = β0 = 0 and the corre-
sponding potential obtained from (9) is w(y, z) = const.
b. α0 = 0, β0 �= 0
The Eq. (5) is still valid but Eq. (6) must be replaced by an-
other second order PDE, as mentioned at the end of Sect. 2.
Here we write down directly the pertinent system of the Eqs.
(5) and (6) for 2D potentials of the form w = w(y, z). This
system reads

wy = 0, wzz =
2β − ñ0

ñβ
wz , (27)

where

ñ =
Θ
β0

, ñ0 = ñx + αñy + βñz. (28)

The system (27) has as solution a 1D potential w =
w(z), provided that the ratio (2β − ñ0) / (ñβ) is indepen-
dent of x and y.
c. α0 �= 0, α + βG = 0, Ψ �= 0
The case is trivial. From (12) we obtain wy = 0, and from
(11) wz = 0 i. e. w = const.

d. α0 �= 0, α + βG = 0, Ψ = 0
Then Eq. (12) is satisfied identically. The potential is found
from (11), provided that the condition (15) holds, and it will
not be uniquely determined.

Although at first sight questionable, the equations

Gx = 0, α + βG = 0, nβGy + n0 = 0 (29)

may hold simultaneously; for example, for the family f =
y sinx + z cosx = c1, g = −z sinx + y cosx = c2 with
the slope functions α = z and β = −y, it is αα0 +ββ0 = 0
and Ψ = 0. Equation (11) can be easily integrated and gives
V = F (y2 + z2), with F an arbitrary function. The energy
is E =

(
1 + f2 + g2

)
F ′(y2 + z2) + F (y2 + z2), and the

allowed region F ′(y2 + z2) ≥ 0.

Proposition 2. If one of the conditions a or c from above
holds, the problem has only the trivial solution w(y, z) =
const.

If condition b is fulfilled and the ratio (2β − ñ0) / (ñβ)
is independent of x and y, the potential will depend only on
the z-variable, otherwise no potential can be found.

Finally, if the given family satisfies condition d and
Gx = 0, we shall obtain a family of potentials w(y, z); if
Gx �= 0 there will be no such potential.

5 Applications

Application 1 Let f1, f2, g1, g2 be constants such that

f1(1 + g2) = g1(1 + f2) (30)

and

g1(f2g2 − 1)(1 + g1 + g2) �= 0. (31)

For any specific values of these constants (satisfying Eq.
30) we consider the family of curves in the inertial frame
Oxyz

f = xf1yzf2 = c1, g = xg1 yg2z = c2, (32)

where c1, c2 are parameters. It can be checked that (32) con-
stitutes a spatial two-parametric set of orbits produced by
the 2D potential field

w(y, z) = d1(y2 + z2)
1+g1+g2

g1 (33)

traced with total energy

E=−d1

(
1 + g2

g1

)2(
fk0g2g−k0 +f−k0gk0f2

) 1+g2
g1 , (34)

where

k0 =
2

f2g2 − 1
, (35)

and d1 is an arbitrary constant.
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Remarks:

1. In the formulae (32), the variable y in f and the variable
z in g were taken to be raised to the power 1. Obviously,
if the nonzero exponents are not so, they can always be
done equal to one.

2. The condition g1 �= 0 does not reduce the generality
of the family (32), because the x-variable must appear
at least in one of f and g, hence we can suppose that
g1 is nonzero (otherwise we may perform the change
f → g → f , y → z → y).

3. The condition f2g2 − 1 �= 0 ensures the fact that α, β,
α0, β0 and k0 are meaningfull, that is the denominator
of these expressions is nonzero. It also guarantees that
the two surfaces in (32) do not coincide.

4. For the family (32) we get (taking into account condition
31)

α0 = r(r − 1)
y

x2
, β0 = r(r − 1)

z

x2
, (36)

where

r =
g1f2 − f1

1 − f2g2
. (37)

It is r �= 0 because of g1(f2g2−1) �= 0 (if g1f2−f1 = 0,
then f2g2 − 1 = (f1g2 − g1)/g1 = (g1f2 − f1)/g1 = 0,
contradiction). It is also r �= 1 because of g1(1 + g1 +
g2) �= 0, since in view of (31) f2(g1 + g2)− (f1 + 1) =
(g1f2 − f1)(1 + g1 + g2)/g1.

5. The case f1 = 0 is not excluded, and in view of (30) it
must be f2 = −1. The pertinent family f = y z−1 =
c1, g = xg11 yg2 z = c2 leads to potential and energy
found directly from (33) and (34) for f1 = 0, f2 = −1.

6. The exponents f1, f2 do not appear in the potential (33),
so, in view of (30) also, we understand that the family
(32) is essentially three-parametric.

7. As seen from (25), real motion is allowed all over the
space for negative d1 and nowhere for positive d1.

Application 2 It can be checked that, for any values of the
constants f1, g1, g2 such that not both f1 and g1 are zero,
the family

f = f1x
2 + y2 + z2 = c1, g = g1x + g2y + z = c2 (38)

is produced by the potential

w (y, z) =
d2

(y − g2z)2
(39)

and is traced with energy

E =
d2 (f1 − 1)

c1g2
1 + f1(c1 + c1g2

2 − c2
2)

, (40)

d2 being an arbitrary constant.

Remarks:

1. The first of Eqs. (38) is a family of surfaces of revolution
around the x-axis. (For f1 > 0, c1 > 0 we have an el-
lipsoid of revolution, for f1 < 0 we have a hyperboloid
of one or two sheets, depending on whether c1 > 0 or
c1 < 0 respectively.)

2. The (integrable) potential (39) is independent of f1 and
g1, so, the family (38) is essentially four-parametric.
Notice, however, that, besides c1 and c2, the total en-
ergy depends on the constants g1 and g2.

3. Depending on the values of the constants and the pa-
rameters involved and also on the sign in front of the
potential (39), real motion of the massive particle takes
place either everywhere (nowhere) in the 3D space or
inside (outside) a cylinder whose generatrice is parallel
to the x-axis. This remark is valid for all potentials of
the form w = w(y, z) which we study here.

6 Concluding remarks

For any family of spatial curves (1), we established the con-
ditions which, if fulfilled, allow for the existence of a com-
patible 2D potential V = w(y, z) of the form (10). These
are

Gx = 0, Hx = 0, Jy = 0 (41)

with the functions G, H, J given by (13), (16), (21) respec-
tively, in terms of the given family.

For a specific family (1), the above conditions (41) are
not expected to be satisfied, of course, meaning that no com-
patible potential of the form (10) exists. Yet, for that specific
family, a compatible 2D potential may exist e. g. of the form

V = w∗(x, z). (42)

Working with (42) and following the same steps as in
Sect. 3, we come up with the following three conditions for
the family (1):

G∗
y = 0, H∗

y = 0, J∗
x = 0, (43)

where

G∗ = β − α
β0

α0
,

H∗ =
ΘαβG∗

x + α0(2 + αn0 + α0n + 2βG∗)
αΘ(1 + βG∗)

,

J∗ = G∗
x − G∗H∗ +

∫ x

H∗
z (u, z) du.

(44)

The two PDEs (5) and (6) become

w∗
z = G∗w∗

x, (45)

αΘ(1 + βG∗)w∗
xx + (ΘαβG∗

x

+ α0(2 + αn0 + α0n + 2βG∗))w∗
x = 0

(46)
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Let us apply the above reasoning to the same set of or-
bits (32) for which we found the potential (33), under the
restriction (30) for the four exponents f1, f2, g1, g2. In place
of (30) we now put the restriction

(f1 + f2) g2 = 1 + g1. (47)

The corresponding potential is

w∗(x, z) = d3(x2 + z2)f1+f2+1, (48)

and each orbit is traced with total energy

E =−d3(f1 + f2)2
(
c�0
1 c−�0f2

2 +c−�0g1
1 c�0f1

2

)
f1+f2 , (49)

where

�0 =
2

f1 − f2g1
, (50)

and d3 is an arbitrary constant.
Let us check now if the family (32), this time under the

restriction (30), which can be described in the presence of
the potential w(y, z) given by (33), is compatible with a
potential w∗(x, z). It can be easily seen that G∗ = 0 and
the one-variable potential

w∗(x) = d4x
2(1+g1+g2)

1+g2 (51)

will be compatible with the given family, traced with the
energy

E = −d4

(
g1

1 + g2

)2 (
fk0g2g−k0 + f−k0gk0f2

)
, (52)

with k0 given by (35). Examples of one-dimension poten-
tials producing planar families of curves are to be found in
Anisiu & Bozis (2007).

With the aid of the criteria (41) and (43) we can decide
whether a given family (α, β) is or is not derived from a 2D
potential of the form (10) or (42), respectively. If we want
to find all the two-dimension potentials, there remains to us
the obligation to check whether the family is derived from a
potential of the form

V = w∗∗(x, y). (53)

To face the question, we recall that the transformation x →
x, y → z → y implies that α → β → α and α0 →
β0 → α0. So, instead of checking (α(x, y, z), β(x, y, z)),
we check the family

(β(x, z, y), α(x, z, y)) . (54)

If the conditions (43) are fulfilled for (54), we understand
that there exists a potential V = w∗∗(x, y) creating the
given family. The above trick may be applied also in case
that the given family leads to α0 = 0, β0 �= 0. If we look
for a potential as (53) for the family (32) under the restric-
tion (30), we find again (51).

As for application 2, it can be checked that for f1 = 1,
beside the potential w(z, y) given by (39), the problem ad-
mits of solutions

w∗(x, z) = d5
(g1z−x)2

,

w∗∗(x, y) = d6
(g2x−g1y)2

,
(55)

the orbits being traced isoenergetically.
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