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a b s t r a c t

The palindrome complexity function palw of awordw attaches to each n ∈ N the number of
palindromes (factors equal to their mirror images) of length n contained inw. The number
of all the nonempty palindromes in a finite word is called the total palindrome complexity
of that word. We present exact bounds for the total palindrome complexity and construct
words which have any palindrome complexity between these bounds, for binary alphabets
as well as for alphabets with the cardinal greater than 2. Denoting by Mq(n) the average
number of palindromes in all words of length n over an alphabet with q letters, we present
an upper bound for Mq(n) and prove that the limit of Mq(n)/n is 0. A more elaborate
estimation leads toMq(n) = O(

√
n).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and notations

Let an alphabet A with q ≥ 1 letters be given. The free monoid A∗ generated by A is the set of all finite words on A. Let
w = a1...an be a word; the integer n is the length ofw and is denoted by |w|. The empty word is denoted by ε and its length
is 0. The word u = ai...aj, 1 ≤ i ≤ j ≤ n is a factor (or subword) of w; if i = 1 it is called a prefix, and if j = n a suffix of
w. The reversal (or the mirror image) of w is denoted by w̃ = an...a1. A word which is equal to its mirror image is called a
palindrome.
For the q-letter alphabet A, let An be the set of all words of length n over A. We denote by PALw the set of all factors in the

word w which are nonempty palindromes, and by PALw(n) = PALw ∩ An the set of the palindromes of length n contained
inw. The (infinite) set of all palindromes over the alphabet A is denoted by PALA, while PALA(n) = PALA ∩ An is the set of all
palindromes of length n over the alphabet A.
The palindrome complexity function palw of a finite or infinite word w attaches to each n ∈ N the number of palindrome

factors of length n inw, hence
palw(n) = #PALw(n).

Palindromes in infinite words are widely studied. A nonexhaustive list of these papers contains [3,9,4,1,8,6] and [7]. In [2]
some properties related to the palindrome complexity of finite words are considered.
The total palindrome complexity of a finite wordw ∈ A∗ is equal to the number of all nonempty palindrome factors ofw,

i.e.:

P(w) =
|w|∑
n=1

palw(n).

This is similar to the total complexity of words (see [12–15] for finite words, [11] for infinite words).

∗ Corresponding author.
E-mail addresses:mira@math.ubbcluj.ro (M.-C. Anisiu), anisiu@math.ubbcluj.ro (V. Anisiu), kasa@ms.sapientia.ro (Z. Kása).

0012-365X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2009.08.002

http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:mira@math.ubbcluj.ro
mailto:anisiu@math.ubbcluj.ro
mailto:kasa@ms.sapientia.ro
http://dx.doi.org/10.1016/j.disc.2009.08.002


110 M.-C. Anisiu et al. / Discrete Mathematics 310 (2010) 109–114

If A is an alphabet with q letters, we define the average number Mq(n) of palindromes contained in all words of length
n by

Mq(n) =

∑
w∈An

P(w)

qn
.

In Section 2 we determine all the possible values of the total palindrome complexity in a constructive way. In Section 3
we show that limn→∞Mq(n)/n = 0 and, moreover,Mq(n) = O(n1/2).

2. Values of the total palindrome complexity

An upper bound for the total palindrome complexity was given in [10], which is one unit greater than in Proposition 1,
due to the fact that the empty palindrome was counted there too. We remind that we consider in P(w) only nonempty
palindromes. For the sake of completeness we give a direct proof of this result.

Proposition 1. The total palindrome complexity P(w) of any finite wordw satisfies P(w) ≤ |w|.

Proof. We proceed by induction on the length n of the wordw. For n = 1 we have P(w) = 1.
We consider n ≥ 2 and suppose that the assertion holds for all words of length n − 1. Let w = a1a2 . . . an be a word of

length n and u = a1a2 . . . an−1 its prefix of length n− 1. By the induction hypothesis it is true that P(u) ≤ n− 1.
If an 6= aj for each j ∈ {1, 2, . . . n− 1}, the only palindrome inw which is not in u is an, hence P(w) = P(u)+ 1 ≤ n.
If there is an index j, 1 ≤ j ≤ n − 1 such that an = aj, then P(w) > P(u) if and only if w has suffixes which are

palindromes. Let us suppose that there are at least two such suffixes aiai+1 . . . an and ai+kai+k+1 . . . an, 1 ≤ k ≤ n− i, which
are palindromes. It follows that

ai = an = ai+k
ai+1 = an−1 = ai+k+1
. . .
an−k = ai+k = an,

hence ai+k . . . an = ai . . . an−k. The last palindrome appears in u (because k ≥ 1) and has been already counted in P(u). It
follows that P(w) ≤ P(u)+ 1 ≤ n. �

This result shows that the total number of palindromes in a word cannot be larger than the length of that word. We
examine now if there arewordswhich are ‘poor’ in palindromes. In the next lemmawe construct finitewordswn of arbitrary
length n ≥ 9, which contain precisely 8 palindromes. A general method to construct words whose palindrome factors are
contained in a prescribed finite set is given in [6].
Let us denote byw

p
q the fractional power of the wordw of length q [5,14], which is the prefix of length p ofwp.

Lemma 1. If wn = (112122)
n
6 , n ≥ 9, then P(wn) = 8.

Proof. Inwn there are the following palindromes: 1, 2, 11, 22, 121, 212, 1221, 2112. Because 121 and 212 are situated inwn
between 1 on the left and 2 on the right, these cannot be continued to obtain any palindromes. The same is true for 2112
and 1221, which are situated between 2 on the left and 1 on the right, excepting the cases when 2112 is a suffix. So, there
are no other palindromes inwn. �

Remark 1. If u is a circular permutation of 112122 and n ≥ 9 then P(u
n
6 ) = 8 too. Because we can interchange 1 with 2, for

any n there will be at least 12 words of length nwith total complexity equal to 8.

We shall give now, beside the upper delimitation from Proposition 1, lower bounds for the number of palindromes
contained in finite binary words. (In the trivial case of a 1-letter alphabet it is obvious that, for any wordw, P(w) = |w|.)

Remark 2. It can be easily checked that for all the short binary words (up to |w| = 7), the palindrome complexity takes
always the maximal possible value given in Proposition 1; from the words with |w| = 8, only four (out of 28) have
P(w) = 7, namely 11221211, 11212211 and their complemented words.

Theorem 1. If w is a finite word of length n on a 2-letter alphabet, then P(w) = n for 1 ≤ n ≤ 7; 7 ≤ P(w) ≤ 8 for n = 8;
8 ≤ P(w) ≤ n for n ≥ 9.

Proof. Up to 8 the statement follows from direct computation as pointed out in Remark 2. Any word w of length 9 has the
total palindrome complexity P(w) ≥ 8. Indeed, adding a letter 1 or 2 before or after the palindromes of length 8 which have
complexity 7 (mentioned in Remark 2) also add a new palindrome. For n > 9, Lemma 1 gives words vn for which P(vn) = 8.
The maximal value is obtained for words of the form an, a ∈ A, n ∈ N. �

In the following lemmas we construct binary words which have a given total palindrome complexity greater than or
equal to 8.
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Lemma 2. If uk,` = 1k21221`2 for k ≥ 2 and 1 ≤ ` ≤ k− 1, then P(uk,`) = k+ 6.
Proof. In the prefix of length k of uk,` there are always k palindromes (1, . . . , 1k). The other palindromes different from
these are 2, 22, 121, 212, 1221 and 21`2 (for ` ≥ 2), respectively 212212 (for ` = 1). In each case P(uk,`) = k+ 6. �

Lemma 3. If vk,` = (1k2122)
k+`+5
k+4 for k ≥ 2 and k ≤ ` ≤ n− k− 5, then P(vk,`) = k+ 6.

Proof. Since ` ≥ k, the prefix of uk,j is at least 1k21221k2, which includes the palindromes 1, . . . , 1k, 2, 22, 121, 212,
1221 and 21k2, hence P(vk,`) ≥ k+ 6. The palindromes 121 and 212 are situated between 1 and 2, while 1221 and 21k2 are
between 2 and 1 (excepting the cases when they are suffixes), no matter how large is `. It follows that vk,` contains no other
palindromes, hence P(vk,`) = k+ 6. �

Remark 3. If k = 2, then the word v2,` is equal tow`+7, withwn defined in Lemma 1.
We can determine now precisely the image of the restriction of the palindrome complexity function to An, n ≥ 1.

Theorem 2. Let A be a binary alphabet. For 1 ≤ n ≤ 7, P(An) = {n}; for n = 8, P(An) = {7, 8}; for n ≥ 9, P(An) = {8, . . . , n}.
Proof. Having in mind the result in Theorem 1, we have to prove only that for each n and i so that 8 ≤ i ≤ n, there exists
always a binary word wn,i of length n for which the total palindrome complexity is P(wn,i) = i. Let n and i be given so that
8 ≤ i ≤ n. We denote k = i− 6 ≥ 2 and ` = n− k− 5.
If ` ≤ k − 1, we take wn,i = uk,` (from Lemma 2); if ` ≥ k, wn,i = vk,` (from Lemma 3). It follows that

∣∣wn,i∣∣ = n and
P(wn,i) = k+ 6 = i. �

Example 1. Let us consider n = 25 and i = 15. Then k = 15 − 6 = 9, ` = 25 − 9 − 5 = 11. Because ` > k − 1, we use
v9,11 = (192122)

25
13 = 19212219212, whose total palindrome complexity is 15.

We give similar results for the case of alphabets with q ≥ 3 letters.

Corollary 1. If w is a finite word of length n over a q-letter (q ≥ 3) alphabet, then P(w) = n for n ∈ {1, 2}; 3 ≤ P(w) ≤ n for
n ≥ 3.

Proof. If w is written with at most two letters then the result follows from Theorem 1, otherwise w contains at least one
occurrence of each of the three letters thus its total palindrome complexity is at least 3. �

Theorem 3. Let A be a q-letter (q ≥ 3) alphabet. Then for 1 ≤ n ≤ 3, P(An) = {n} ; for n ≥ 4, P(An) = {3, . . . , n}.
Proof. It remains to prove that for each n and i so that 3 ≤ i ≤ n, there exists always a word wn,i of length n, for which
the total palindrome complexity is P(wn,i) = i. Such a word iswn,i = ai−31 (a1a2a3)

n−i+3
3 , which has i− 2 palindromes in its

prefix of length i− 2, and other two palindromes a2 and a3 in what follows. �

Open problem. Find the number of wordsw of length nwhich satisfy P(w) = n (named in [6] fullwords).

3. Average number of palindromes

We consider an alphabet A with q ≥ 2 letters. We remind that the average number Mq(n) of palindromes contained in
all the words of length n over A is defined by

Mq(n) =

∑
w∈An

P(w)

qn
,

where P(w) is the total palindrome complexity of the wordw.
In order to obtain upper bounds forMq(n), we write∑

w∈An
P(w) =

∑
w∈An

∑
π∈PALw

1 =
∑
w∈An

n∑
k=1

∑
π∈PALw(k)

1

=

n∑
k=1

∑
w∈An

∑
π∈PALw(k)

1

and denote
Sn,k =

∑
w∈An

∑
π∈PALw(k)

1,

which represent the number of occurrences of the palindromes of length k in all words of length n (counted once if a
palindrome appears in a word, and once again if it appears in another one). We use the fact that the number of palindromes
of a given length k over an alphabet Awith q letters is qb(k+1)/2c in order to give upper bounds for Sn,k.
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Lemma 4. For each 1 ≤ k ≤ n, the following inequalities hold:

Sn,k ≤ qn+b(k+1)/2c, (1)

Sn,k ≤ (n− k+ 1)qn−k+b(k+1)/2c. (2)

Proof. For each 1 ≤ k ≤ n, it follows that

Sn,k =
∑
w∈An

∑
π∈PALA(k)

1 ≤ qnqb(k+1)/2c.

The other upper bound is obtained by writing

Sn,k =
∑

π∈PALA(k)

∑
w∈An

π∈PALw(k)

1 ≤
∑

π∈PALA(k)

(n− k+ 1)qn−k

= (n− k+ 1)qn−k+b(k+1)/2c. �

Upper bounds forMq(n) have been obtained in [2] for n odd, respectively even. From this we could prove thatMq(n) <
q+2n/(q−1). However in the following theoremwemake amore precise estimation and show that, in fact, the palindrome
subwords are rather rare in long words, whatever q ≥ 2 is.

Theorem 4. For an alphabet A with q ≥ 2 letters, the average number of palindromes Mq(n) satisfies

lim
n→∞

Mq(n)
n
= 0.

Proof. For p ∈ N, we apply the inequality (1) for 0 ≤ k ≤ p and (2) for p < k ≤ n and obtain

Mq(n) ≤
1
qn

(
p∑
k=1

qn+b(k+1)/2c +
n∑

k=p+1

(n− k+ 1)qn−k+b(k+1)/2c
)

=

p∑
k=1

qb(k+1)/2c +
n∑

k=p+1

(n− k+ 1)q−k+b(k+1)/2c

≤

p∑
k=1

qb(k+1)/2c + n
n∑

k=p+1

q−k+b(k+1)/2c. (3)

We divide by n and take lim supn→∞:

lim sup
n→∞

Mq(n)
n
≤ (0+ · · · + 0)p times +

∑
k>p

q−k+b(k+1)/2c

=

∑
k>p

q−k+b(k+1)/2c.

The series
∞∑
k=1

q−k+b(k+1)/2c =
q+ 1
q− 1

being convergent, we get for its remainder limp→∞
∑
k>p q

−k+b(k+1)/2c
= 0, hence we get

lim sup
n→∞

Mq(n)
n
≤ 0

and the conclusion of the theorem follows. �

A more elaborate estimation allows us to give the order of convergence for the sequence Mq(n)/n. The idea is to select,
for a fixed n, the integer p from which we pass from the inequality (1) to the inequality (2) in an optimal way, in order to
obtain the best result for this method.

Theorem 5. The following inequality holds

Mq(n) ≤
q+ 1
q1/2 − 1

q1/4 n1/2. (4)
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Proof. From (3) we obtain for 0 ≤ p < n that

Mq(n) ≤ up + nvp,

where

up =
p∑
k=1

qb(k+1)/2c, vp =

∞∑
k=p+1

q−k+b(k+1)/2c.

We have

up =
{(
q3/2 + q1/2 − 2q1−p/2

)
qp/2/(q− 1), for p odd

2
(
q− q1−p/2

)
qp/2/(q− 1), for p even,

and

vp =

{
2q1/2q−p/2/(q− 1), for p odd
(q+ 1) q−p/2/(q− 1), for p even.

It follows

up ≤
(
q3/2 + q1/2 − 2q1−p/2

)
qp/2/(q− 1) ≤ q1/2

q+ 1
q− 1

qp/2

and

vp ≤
q+ 1
q− 1

q−p/2,

therefore

Mq(n) ≤
q+ 1
q− 1

(
q1/2qp/2 + nq−p/2

)
. (5)

We denote p0 :=
⌊
logq

(
nq−1/2

)⌋
. The integer p0 is actually the floor of the minimal point x0 of the function x 7→

q1/2qx/2 + nq−x/2. In fact, this minimal point x0 satisfies q1/2qx0/2 = nq−x0/2, hence x0 = logq
(
nq−1/2

)
.

If p0 ≥ 0 it is easy to see that p0 < n, and qp0 ≤ nq−1/2 < qp0+1. For p = p0 in (5) we get

Mq(n) ≤
q+ 1
q− 1

(
q1/2

n1/2

q1/4
+ n
q3/4

n1/2

)
=
q+ 1
q1/2 − 1

q1/4n1/2.

If p0 < 0 (which happens in the case n < q1/2), we apply (5) for p = 0 and get

Mq(n) ≤
q+ 1
q− 1

(
q1/2 + n

)
.

The inequality q1/2 + n ≤ q1/4
(
q1/2 + 1

)
n1/2 is equivalent to

q1/2

n1/2
+ n1/2 ≤ q1/4

(
q1/2 + 1

)
. (6)

The function n 7→ q1/2/n1/2 + n1/2 is strictly decreasing for 1 ≤ n < q1/2, hence (6) holds and (4) follows in this case
too. �

Remark 4. From Theorem 5 it follows that Mq(n) = O(n1/2). For a binary alphabet (q = 2) we have M2(n) < 9 n1/2. More
generally,Mq(n) < 6 q3/4 n1/2.

Remark 5. Even for relatively small numbers (e.g. q = 2 and n = 100) it is practically impossible to compute Mq(n)
using a computer. That is why, in order to check numerically the result in Theorem 5, we approximated Mq(n) with∑

w∈K P(w)/(#K), where K ⊂ A
n is a set of at least 100 random words.

For q = 2, ignoring the decimal digits, the inequality (4) becomes 53 < 86 for n = 100, 79 < 121 for n = 200 and
182 < 272 for n = 1000. Similarly, for q = 3 we get 38 < 71 for n = 100, 57 < 111 for n = 200 and 132 < 227 for
n = 1000.

The numerical values in Remark 5 allow us to infer that the bound in Theorem 5 cannot be essentially improved and to
state the following
Open problem. It would be interesting to study if the sequence Mq(n)n−1/2 is convergent and even to find its asymptotic
development.
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