. mathematics

Article

Linear Approximation Processes Based on Binomial Polynomials

Octavian Agratini **

check for
updates

Academic Editor: Xiangmin Jiao

Received: 11 June 2025
Revised: 22 July 2025
Accepted: 24 July 2025
Published: 27 July 2025

Citation: Agratini, O.; Craciun, M.
Linear Approximation Processes
Based on Binomial Polynomials.
Mathematics 2025, 13,2413. https://
doi.org/10.3390/math13152413

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Maria Criciun

t

Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, 57 Fantanele Street,
400320 Cluj-Napoca, Romania; craciun@ictp.acad.ro

* Correspondence: agratini@ictp.acad.ro

* These authors contributed equally to this work.

Abstract

The purpose of the article is to highlight the role of binomial polynomials in the construction
of classes of positive linear approximation sequences on Banach spaces. Our results aim to
introduce and study an integral extension in Kantorovich sense of these binomial operators,
which are useful in approximating signals in L, ([0,1]) spaces, p > 1. Also, inspired
by the coincidence index that appears in the definition of entropy, a general class of
discrete operators related to the squared fundamental basis functions is under study. The
fundamental tools used in error evaluation are the smoothness moduli and Peetre’s K-
functionals. In a distinct section, numerical applications are presented and analyzed.

Keywords: binomial polynomial; umbral calculus; linear positive operator; r-modulus of
smoothness; Peetre’s K-functionals; Kantorovich-type operator; Hardy-Littlewood maxi-
mal operator; index of coincidence

MSC: 41A36; 41A25

1. Introduction

The roots of this paper are based on binomial polynomials, which have their origin in
the so-called Heaviside calculus created by G. Boole. We point out that the first rigorous ver-
sion of this calculus belongs to Gian-Carlo Rota and his collaborators, see for example, [1,2].
To achieve a self-contained exposition, we will recall the notions of a polynomial sequence
of binomial type and some facts needed in the subsequent analysis accompanied by several
examples. Thus, we arrive at the main part of the paper: applications of the binomial
sequences in the construction of linear approximation processes. In particular cases, some
classical operators are highlighted. We will examine new extensions of these operators,
both integral in the Kantorovich sense and connected with squared fundamental functions,
proving approximation properties of the new constructions.

We mention the role of binomial polynomials in Approximation Theory by exploiting
the technique of the umbral calculus or symbolic calculus. This calculus is a successful
combination of the differences among calculus and certain chapters of Functional Analysis
and Probability Theory. We emphasize that this kind of study is still in the spotlight of many
papers. Through the integral constructions presented in the manuscript, we manage to
approximate functions from larger normed spaces. In other recent works, various methods
were employed to solve linear and nonlinear differential equations with the help of bases
generated by some specific polynomials.

Considering I C R an interval, we work in different spaces: C(I) the space of con-
tinuous real-valued functions defined on I, L,(I) the space of all p-th power integrable
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functions on I (1 < p < o). The main tools used are the r-modulus of smoothness, K-
functional, and Hardy-Littlewood maximal operator. In a separate section, the theoretical
aspects are complemented by numerical examples that confirm our results.

2. Preliminaries

Set Ng = {0} UN. For any n € Ny, we denote by I, the linear space of polynomials
of degree no greater than n and by IT}; the set of all polynomials of degree #. In our study,
we only consider polynomials with real coefficients. We set

IT:= | J I,
n>0
which represents the commutative algebra of polynomials with coefficients on the field R.

A sequence p = (pn)u>0 such that p, € II; for every n € Ny is called a

polynomial sequence.

Definition 1. A polynomial sequence b = (by,),>0 is of binomial type if for any (x,y) € R x R
the following equality

by = ("o (x)b, (1), No, 1
(49 = L () stus), meto )

holds.

Remark 1. Knowing that deg(by) = 0, we obtain by(x) = 1 for any x € R and by induction we
obtain b, (0) = 0 for any n € N.

The trivial example of the binomial sequence is e = (e;),>0, ex(x) = x". Some
nontrivial examples are given below:
(i) The generalized factorial power with step a: p = (pn)n>0,
po(x) = x4 :=1and p,(x) = x" .= x(x —a)... (x — (n —1)a), neN.
Particular cases: for a = —1, we obtain the lower-factorials denoted by (x),; fora =1,

we obtain the upper-factorials denoted by (x),.
(ii) Touchard polynomials: t = (t,),>0,

ta(x) = f S(n, k)xk,
k=0

where S(1, k) represent the Stirling numbers of the second kind defined by

n

X" =Y S(n,k)(x).

k=0

The Dobinski formula says
ta(x) =e ") ka,
k=0 """

see [1].
(iii) Abel polynomials: @ = (a§f>)n20, a#0,

aé”> =1, aflﬂ>(x) =x(x —na)" !, neN

(iv) Gould polynomials: g = (gﬁ,”’b))nzo, ab # 0,

g(()a,b)zl’ g,(f’h)(X): * <xan>’ n e N.
n

b
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In what follows, set £ as the space of all linear operators T : Il — II. For a given
a € R, E* € L stands for the shift operator defined by the relation

(E'p)(x) = p(x+a), pell

Definition 2. An operator T € L, which is switched with all shift operators, that is TE* = E*T,
a € R, is called a shift-invariant operator.
The class of these operators is denoted by L.

Definition 3. An operator Q is called a delta operator if Q € Ls and Qe is a nonzero constant.

Let £; denote the set of all delta operators.
According to [2] (Proposition 2), for every Q € L5, we have

Q(IT,) c QUI,4), neN.

We present some well-known examples of delta operators. Here, I stands for the
identity operator on the space I1.

(i) The derivative operator, denoted by D.

(ii) The operators used in calculus with divided differences. Let 1 € R be a fixed
number. We set

Ah = Eh -1, Vh =] E*h, (Sh = Eh/Z _ E*h/ZI

representing the forward difference, the backward difference, and the central difference
operator, respectively.
(iii) Abel operator A; = DE“, a # 0. For any p € I,

(Ap) () = P (x4 a),

Writing Taylor’s series in the following manner

© DY

a __
oL
we can also get A, = D(e?P).
(iv) Touchard operator
D? D?
T:=log(I+D) :D—7+?—...,

for any polynomial, with the sum being finite.
Another representation of this operator is based on divided differences as follows

(T,)(x) = /0°° e x,x — tpldt, pell

(v) Gould operator, G, j, := A,E* = E**YE“, ab # 0.

Definition 4. Let Q be a delta operator. A polynomial sequence p = (pn)n>0 is called the sequence
of basic polynomials associated with Q if

(i) po(x) =1 forany x € R;

(ii) pn(0) = 0 forany n € N;

(iii) (Qpn)(x) = npy_1(x) forany (n,x) € N x R.

Remark 2. If p = (pn)n>0 is a sequence of basic polynomials associated with Q € Ly, then
{po,P1,---, Pn-1,€n} is a basis of the vectorial space I1,. Taking this fact into account, by in-
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duction, it can be proved [2] (Proposition 3) that every delta operator has a unique sequence of
basic polynomials.

For example, (e;),>0, (x""),>0, and (x + (n — 1)h)L";hg represent the sequence of
basic polynomials associated with Q = D, Q = Aj, and Q =V, respectively. Also,
a= (a,<f> Jn>0and g = ( g,(f’b) )n>0 are the sequence of basic polynomials associated with the
Abel operator A, and Gould operator G, .

We conclude this paragraph by presenting the connection between the delta operator

and the binomial type sequences.

Theorem 1 ([2], Theorem 1). (a) If p = (pn)n>0 is a basic sequence for some delta operator Q,
then it is a sequence of binomial type.

() If p = (pn)u>o is a sequence of binomial type, then it is a basic sequence for some
delta operator.

3. Operators of Binomial Type

We consider a delta operator Q and its sequence of basic polynomials p = (pn)n>0-
For every n > 1, we consider the operator L?: C([0,1]) — C([0,1]) defined as follows

1800 = oty & (3o - 05 (5). wen @

According to Sablonierre [3], they are called Bernstein—Sheffer operators, but as Stancu
and Occorsio stated [4], these operators can be named Popoviciu operators because, in fact,
they were first defined in a note published by T. Popoviciu [5].

Remark 3. Since any compact interval is isomorphic to [0, 1], the use of this compact interval does
not restrict the usefulness of the operators.

The operators LY, n € N, are linear and reproduce the constants. Indeed, choosing
y:=1—x1in (1), we obtain Ley = ey. Moreover, these operators interpolate functions at
the ends of their domain.

The positivity of these operators is given by the sign of the coefficients of the
series ¢(t) = ¢+ cat +... (g # 0). More precisely, Popoviciu [5], and later
Sablonniere [3] (Theorem 1), have established.

Lemma 1. LY is a positive operator on C([0,1]) for every n > 1 ifand only if c; > 0 and ¢, > 0
foralln > 2.

We specify that the above series ¢ is connected with a sequence of basic polynomials
(Pn)n>0 by the relation
90 = ¥ Pu(X)
n>0 n!
see [2] (Corollary 3).
In what follows, we point out significant results of the operators defined by (2), see,
e.g., [3] (Theorems 2 and 3).

Theorem 2. If the operators L, n>1, defined by (2) satisfy the conditions of Lemma 1, then the
following statements are true:

(i) LY is an isomorphism of I1,, preserving the degree, i.e., L,?q € Iy whenever q € 11,
0<k<n.

(ii) The behavior of operators on Korovkin test functions is as follows
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L,?e]- =¢, j€{0,1}, neN, 3)
Liex=er+an(er —e), n>2, )
1 rn—2(1) ;
where a, = " 1+ (n—-1) (D) )’ the sequence (1, (x))n>0 being generated by
tl’l
9" (B exp(xg(t)) = ) ra(x) 7. ®)
n>0 :
(iii) LY converges uniformly to f € C([0,1]) if and only if the condition
tim (r,2(1)/pa(1)) = 0 ©
holds.
(iv) If
1
a0 /a1 =0 ), )

then there exists an integer k > 1 for which ¢ € 11, and we have
ILEf = flleo < (1 + \/I?/Z)wl (f:1/+/n).

In the above, || - ||« is the sup-norm of the Banach space C([0,1]), and w; (f; -) is the
first modulus of continuity of f. We recall

wi(f;0) = sup{|f(x) = fFW)|: v,y €[01], [x—y| <é}, >0 ®)

We specify that relations (3) imply that the operators reproduce affine functions;
consequently, they are of Markov type.

Remark 4. Choosing certain particular cases of delta operators in (2) already presented in the
previous section, we reobtain some classical linear positive operators of a discrete type.

(i) In the case Q = D, we obtain the well-known Bernstein operators. In this case, (4) becomes
LPey = ey + (e1 — €3) /.

Statement (iv) of Theorem 2 shows that the Bernstein operators LY (k = 1), could be considered
as the best positive operators of binomial type associated with any function ¢ € I1,.

(i) IfQ = &V“, « # 0, the basic polynomials were indicated as
palx) = (x+ (1 = D™,

In this case, L,(,2 become Stancu operators [6] denoted by
] . k
BN = ¥ wnatsa)f (£
k=0

where

7

n x[k,ﬂx] 1—x [n—k,—a]
W (; ) = <k> (1[71,704)]

« being a parameter which may depend only on the natural number n. We have

(Ples)(x) = —— (“‘> +x<x+a>).

1+ n
(iii) If Q = A, is an Abel operator, assuming that the parameter a is non-positive and depends
on n, a:= —ty, one obtains the Cheney—Sharma operators G, [7]. If (nt,),>1 converges to zero,

then (G;;),>1 converges to the identity operator of the space C([0,1]).

Definition 5. Let U belong to L, and let X be the multiplication operator defined as follows
X : 11— IL, Xp = eyp. The operator U’ = UX — XU is called the Pincherle derivative of U.
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For example, by using this definition, we get I' = 0, (D¥) = kD¥! (k € N),
(E*) = aE".

A slight modification of the operators defined by (2) was given by Lupas [8]. They
have the following display

T2N0 = 555 & () moptn - nor (1)

n €N, f e C([0,1]). These are also of Markov type and

L9e; = &3 + (e1 — €2)pu(Q)

where
n(n—1)

pn(n)
see [8] (Equation (3)). We recall that Q' is invertible (First Isomorphism Theorem, [2]).
For an operator L acting between metric spaces X, Y, a topic of study is determining

pn(Q) :=1— (Q 2pua)(n), n>2,

the limit of the sequence of its iterates (L¥)~1, where
L'f=Lf, LFf=L(I*1f), k>1, feX

The study was carried out for different classes of binomial operators, see, e.g., [9] (p. 562),
where X =Y = C([0,1]).

To the best of our knowledge, the Lupas operators defined above have not been treated
so far. As a new example based on the result from [9] (Theorem 5), we get

lim IID f— Fllw=0, fec(o1)),

for each n € N, where f* = f(0)eg + (f(1) — £(0))e.

4. An Integral Extension of Binomial Operators

In Ref. [10], we modified the operator L% into an integral form of Kantorovich sense,
the advantage of the construction allowing it to approximate any integrable function. These
new operators are described as follows:

0 B n (k+1)/(n+1)

(KRA() = (1) Y pual) [ 5 (0 ©)
where .

pust®) = s () paai =), xe o) (10

We reiterate that the assumptions of Lemma 1 are maintained throughout the
entire paper.

After the variant in (9), using Sheffer sequences, another Kantorovich construction for
the operators considered in [11] was studied in [12], with the results being obtained for
functions f belonging to C([0, 1]).

ForQ =D, K,? becomes the nth genuine Kantorovich operator, see, e.g., [13] (Section 5.3.7).
The Kantorovich-type generalized operators use mean values of f on suitable intervals and
consequently perform better than the classical discrete operators that use node networks.

First, we are taking the following information from [10] (Lemma 1)

Kieo=ep, KPei =

n
e+ o,
A1 T 2 )% a1
Q. n 1
Kn62— wl)z{(n1)(1qn)62+(2+(n1)qn)€1+3’1€0},

where g, = r,-2(1)/pn(1), and the sequence (7,,(x)),>0 is indicated by (5).



Mathematics 2025, 13, 2413

7 of 25

The above identities are useful in establishing the first three central moments of the
operators, defined as follows

nj(x) := K3 ((e1 — xeg)),x), 0<j<2.

By an easy calculation, we obtain

o) =1 o) = 7 (5 %),

n+1

(12)
nn—1)[1 1
= (= 1— — 1].
]ln,z(X) (Tl+1)2 <n+%)x( x>+3(1’l+1)2, X € [Ol ]
Since x(1 — x) < 1/4 occurs, from relation (12), we obtain
2
Hn2 < 0 + qn. (13)

In what follows, we will work in the space L, ([0,1]) € L{([0,1]), p > 1 endowed with

the usual norm
1 1/p
ey = () 15 Pax)

Our aim of this section is to establish an upper bound of approximation error by using
the first modulus of smoothness of f measured in L, ([0, 1]) spaces, p > 1.
We recall

wi(fit)p = P [8ufllp, feLp([01]), t=0.
0<|h|<t

Also, another tool we use is the K-functional of f € L,([0,1]) := X defined for each
t > 0 as follows

Kt £;X,Y) = inf{||f — gllx + t(lIgllx + g7 ]Ix) : g €Y},

where Y = W, ,(I), see Peetre [14]. Here, the space Y consists of those functions on [0, 1]
for each of the first 7 — 1 derivatives that are absolutely continuous on [0, 1], and the "
derivative belongs to L,([0,1]). Also, Johnen [15] (Equation (6.2)) considered the modified
K’-functional defined by

K'(t£:X,Y) =inf{|[f — gllx +t|gM]lx: g€ Y}

The following connections between these functionals and the modulus of smoothness
w1 (f;-)p are valid [15] (Equations (6.3) and (6.4))

K'(t, £;X,Y) <Kt £;X,Y) <min{1, t}| fl]lx + 2K'(t, £; X, Y),
awi(fit)y <K (L FXY) <cw(fit)y, 0<t<1, (14)

where c; and c; are positive constants depending only on p.

Theorem 3. Let Kg, n > 1, be defined by (9) such that nlgn gn = 0, see (6) and (11). For
fe L,,(I), I=[0,1],p>1,

IKSf = FllL, 1) < Cwr(f; Vo), (15)

where C is a constant depending on p and v, = p + qn.

Proof. In the first stage, we prove

IKSg —8&llL,) < Apvnllg'llL, o) (16)
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for any ¢ € W, 1(I) and p > 1, where A, is a constant depending only on p. To achieve
this, we use the Hardy-Littlewood maximal operator M defined for any h € L,(I) and
p > 1 as follows

u
(Mh)(x) = sup —— / h(t)dt‘. (17)
uel |#—=x[|/x
U#x
For p > 1itis bounded in L,(I), thus we can write
MBI < Aplbll o) 18)

Ap being a constant depending only on p, see, e.g., [16] (Chapter 1, Theorem 1). By
using (17), we can write

/-(k+1)/(n+l)( ( ) ( ))d
k/(n+1) s gLx))au

(k+1)/(n+1) uo
t)dt
/k/(n+1) </x g( ) )
(k+1)/(n+1)

< O DM () Y pas() [

|(KRg)(x) — g(x)| = (n+1)

i Punk (x)
k=0

<1+ 1) Y pus() du
k=0

Using the Cauchy—Schwarz inequality for both integrals and sums, we get

[(K29)(x) — g(x)|

Wy " 1/2 e (k+1)/(n+1) s 1/2

< ! _

<( g)(x)(lg)pn,m)) ((n+ VL) [ ) )
= (M) (%) (2 (%)%

Based on (13), we conclude

0 . 2 1/2
HKng_gHLV(I) < Mg ||LP(I) n +an

and relation (18) leads us to (16).
In the second stage, by using (16), for any f € L,(I) and g € W), 1(I), we get

HKr?f—fHLp(I) < |KF(f—g) - (f =&, + ||Kr(zgg—g||Lp(1)
< ||K79€0||L,,(1)||f—gHL,,(z) + Apvnllg L, )
< C(If = glle, ) + Vialls' I, )

where C = max{1, Ap}. Taking the infimum over all ¢ € W, 1(I) and using (14), we obtain

IKZf = FllL, 1y < CK (/v £ Lp(D), Wy (1)) < Car (f, Vo),

where C is a constant depending only on p. The inequality (15) is completely proven. [

Remark 5. The approach of the above proof is not valid for p = 1 because the boundary of the
maximal operator indicated in (17) fails. For the case p = 1 or p > 1, the modulus of smoothness
of order r of a function f € L,(I) can be used under the condition r > 3. Our statement is based
on[17].

5. Operators Involving Squared Binomial Polynomials

We present a general class of discrete operators related to the squared binomial basis
polynomials. They have the following form
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I P — pi,kmf("), xe 01, f € C([0,1]), 19)
k;}l’i,k(x) k=0 "

where n € N, (p, k)o<k<n is defined by (10).

n
We are working on the natural hypothesis that ) | pi,k(x) > 0, for all x € [0,1]. There
k=0
is currently a growing interest in studying these classes of operators.

Obviously, they are linear and positive operators. Without involving delta oper-
ators, constructions described by (19) have already appeared in the literature, for ex-
ample, see Abel’s paper [18], who obtained a complete asymptotic expansion of these
discrete operators.

In the particular case Q = D, the operators defined by (19) arise from the Bernstein
operators. (Z,?)nzl were investigated by Herzog [19], and later, new properties were
revealed by Gavrea and Ivan [20] and Holhos [21].

Remark 6. The proposed new operators can be correlated with Probability Theory. A discrete

probability distribution P = (pj) > is associated with the index of coincidence IC(P) =} | p3,
A>0
see [22] (Equation (1)), which is used in the definition of entropy. For example, if the random

variable X follows the binomial distribution with parameters n € N and x € [0, 1], the probability
mass function is of the form

P(X=k) = (Z) K1 —x) k= Puik(x), 0<k<mn,

n
and its index of coincidence is given by Z pi/k(x), which is exactly the expression that appears
k=0
inLP.

We propose to indicate an upper bound of the convergence rate of the new sequence

towards the identity operator in the space C([0, 1]).

Theorem 4. Let TJ,?, n > 1, be defined by (19) such that 0 < p,i(x) < 1,0 < k < nand (7)
takes place. For sufficiently large n, the following relation

= ~ 1
LR f = flloo < May (f;%) fec(on)),
holds, where M > 1 is a constant independent of f.

Proof. Returning to L,? and n > 2 operators, based on (3) and (4), we get

0 < LR((er — xe0)% %) = anler —e2)(x) < - + ”;nii?.

Keeping the assumptions that appear in Theorem 2 (iv), that is

82-o(3)

further, we use [18] (Lemma 1) from which we extract the following statement: for any

(arbitrary small number) £ > 0, the second central moment of the operators L§ denoted by
Jin2 satisfies the estimate

fin2(¥) = L ((e1 — xep)%x) = O(n™ 1) (n — oo).

Choosing e = 1/2, a constant M > 0 exists such that for sufficiently large n,
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~

Hno(x) < , x€1]0,1]. (20)

Bl

To obtain a quantitative result of the error of approximation by using the modulus
of continuity defined at (8), we apply the following inequality based on the paper
of Shisha and Mond [23]: if A is a linear positive operator defined on C([a,b]), then it
takes place

(AF)(x) = F] < 1F)] | (Aeo) () — 1)
+ () @) + 5/ (M) ()22 (@) Jan (130

for every x € [a,b] and § > 0. Here, ¢x(t) = |t — x|, (t,x) € [a,b] X [a,]]. Taking into
account that E,? eo = ep, the above relation correlated with (20) and selecting § = 1/ /n, we

arrive at .
(LR )~ fF0l < A+ VM)an ( fi 5= ),
vn
for sufficiently large n. By applying sup , the conclusion of the theorem is proven. [

x€[0,1]

Corollary 1. Let IS, n>1,be defined by (19) so that the conditions of Theorem 4 are met. Then,
r}gr;o(fgf)(x) = f(x) wuniformly on [0,1]

for any function f € C([0,1]).

Proof. If f € C([0,1]), then f is uniformly continuous on [0, 1] and satisfies lim;_,q+ w1 (f;6) =0,
see, e.g., [13] (Lemma 5.1.1 (2)). Based on Theorem 4, the conclusion follows. [

We emphasize that this established result avoided the use of the Bohman—-Korovkin
theorem, i.e., the calculation of the first and second order moments.

Similarly to the integral extension applied to L n>1, operators, we can realize
the Kantorovich variant of the class defined by relation (19). Its expression will have the

following form

N n (k4+1)/ (n+1)
Q _
(K f)(x) = <n+1)k,§0vn,k(x) /k s f(hat, feLy(01]), p>1 (21
where )
v = P o e, 22)

- Yi Pi,k(x) ’
Obviously, they are positive linear operators.
Theorem 5. Let K, n > 1, be defined by (21). The following identity
; RQ —
Yim [[Ki'f = fll, ) =0
holds for any function f € L,(I), p > 1and I = [0,1].
Proof. First, we calculate the first three moments of the introduced operators. Clearly,
RS = ep. (23)

We will express the next two moments using the I, n>1 operators. By direct
calculation, we easily obtain
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— -~ 1
KQe; = —— LY , 24
nel +1 n61+2(n+1) ( )
N n? - noo~ 1
KQ — LQ ,LQ _, 25
neZ (n+1)2 n€2+(n+1)2 Hel+3(n+1)2 ( )
Based on Corollary 1, relations (23)—(25), and the Bohman-Korovkin theorem,
we deduce
lim Kf = f uniformly on I = [0,1] for any function f € C(I).
n o0

On the other hand, the following classes of functions are nested as follows:
Ly(I) € Ly(I) € C(I) forall p > 1.

Since C(I) is dense in Ly (I), we utilize [13] (Theorem 4.2.3, Corollary 4.17), and the
statement of our theorem is proven. [

Finally, we make a reference to L,-stability of localized integral operators for any
p € [1,00). It is known that a bounded operator L8 on L,([0,1]) is said to have L,-stability
if there exists a positive constant C such that

Al < [[LRe| < clfl, . vf € Lo,

see, e.g., [24].

In our case, we take L,? = K,? and L,? = I?nQ, see Equations (9) and (21). The
above inequalities are satisfied due to the properties of basis of binomial polynomials, see
Equations (10) and (22), respectively.

6. Numerical Results

For the sake of clarity, in this section, in tables and figures, we will use the follow-
ing simpler notations for special cases of operators belonging to the classes of operators
discussed in the previous sections:

e for binomial operators (defined by relation (2)):
- B:= LD (classical Bernstein operator)
1
- S:=1L Ve (Stancu operator)
- C:=L (Cheney-Sharma operator)
e for the Kantorovich form of the binomial operators (defined by the relation (9))
- BK:= K? (classical Kantorovich operator),
1
-  SK:=Kj Ve (Stancu-Kantorovich operator),
- CK:= K;? * (Cheney—Sharma-Kantorovich),
*  for operators involving squared binomials (defined by the relation (19))
-  Bm:= EE (modified Bernstein),
~1
- Sm:=1L} Ve (modified Stancu),
- Cm:= L (modified Cheney-Sharma).

e  for the Kantorovich variant of the operators involving squared binomials (defined by
the relation (21))

-  BmK:= Ian (modified Bernstein—Kantorovich),
A1
-  SmK:=Kj Ve (modified Stancu-Kantorovich), and
- CmK:= I?nA“ (modified Cheney-Sharma—Kantorovich).

In Figure 1, we present the Stancu basis w, x(x) and the Stancu basis modified
Wy (x) = w?, (x)/(LTf_ow?(x)) for n = 50, while in Figure 2, we represent the same
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basis but in 3D and only for x € [0.05, 0.95]. We note that due to the form of the modified
basis, the modified Stancu operators at point x give higher weights to values f(k/n) closer
to x and lower weights to values farther apart compared to the classical operators. This
behavior is evident in the sharper peaks of the modified basis functions, which are more
localized around their respective k/n positions. We mention that this feature also applies to
the other modified operators compared to the binomial classical ones, because the weights
vy, k defined by the relation (22) have a form similar to w,, ; compared to the corresponding
weights p,, . This can be an advantage for certain functions and a disadvantage for others.
For example, for functions that have a slower variation near the ends of the interval and
faster in the rest, the residuals of the modified binomial operators are smaller than those of
the classical binomial operators, which is illustrated in the following figures.

1 T T T T
Stancu basis
09 Stancu basis mod

0.8

0.7

0.6

05

whp and Wy

04

0.3

."‘ “"’\
LI ST ——
OO SNSRI PSRRI
AT _".’..’AO‘Q‘Q‘Q‘%o‘o‘o‘v‘vo‘o.o.0‘0‘0.’.‘.’.

X

Figure 1. The Stancu basis and Stancu basis modified for n = 50 and a = 1/1%/2.

I Stancu basis
I Stancu basis modified

0.2
0.15 4

o
fn
/

Wk and TI“I;..E:

0.05 -

k 0 X

Figure 2. The Stancu basis and Stancu basis modified for n = 50, « = 1/n%/2 and x € [0.05, 0.95].
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6.1. Example 1

This example refers to the approximation of the function
fi(x) = sin(6x)log(x* + 1)tan((x — 1)2), (26)

using binomial operators and modified binomial operators. First, in Figure 3, we present
the shape of this function, the Stancu operators and modified Stancu operators with squared
binomial polynomials for n = 20, n = 50, and n = 150 for this function. We observe that the
modified Stancu operators with squared binomial polynomials (plotted with dashed line)
have a better approximation than the classical Stancu operators (plotted with continuous
line) for the same , in this case, being closer to the function for almost all values of x.

001 T T T T T T T T T

0.005

-0.005

=1 (x)=sin(6x)log(x* + tan((x- 1)°)
-0.01+ S(x) for n=20
Sm(x) for n=20
S(x) for n=50
= = =8m(x) for n=50
S(x) for n=150
= = = Sm(x) for n=150

_0-02 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-0.015

Figure 3. Stancu operators and modified Stancu operators with squared binomial polynomials for
n € {20,50,150} for the function f;.

Figure 4 shows the absolute residual values for the operators: classical Bernstein
(B), modified Bernstein (Bm), classical Stancu (S), modified Stancu (Sm), classical Cheney—
Sharma (C), and modified Cheney—Sharma (Cm) applied to the function f; defined by (26).
First, we can see that the global maximum error for all operators occurs at the minimum
point of the function f;, that is, at x ~ 0.723, and the second maximum of the absolute
residuals occurs at the maximum point of the function x ~ 0.397. The minima for the
classical binomial operators occur at the inflection points of the function, i.e., at x ~ 0.2909,
x =~ 0.5799, and x ~ 0.8476, while for the modified operators, the first minimum of the
error is before the first inflection point and the last one is after the last inflection point. This
is due to the fact that the operators are convex linear combinations of the values of the
function f(k/n) so that in the convexity areas of the function, the values of the operators
are higher than the values of the function and in the concavity areas, the values of the
operators are lower than the values of the function, and then the residual changes the sign
around the inflection points of f;. We observe that the absolute residuals of the modified
binomial operators are significantly smaller than those of their classical counterparts for
almost all values of x € (0,1) (except for a few values around the inflection points of the
function), so this function is better approximated by these operators. The same conclusion
can be drawn from Table 1, where we have analyzed the absolute values of the residuals
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for the classical operators and for the modified ones for x from 0 to 1 with step 0.1. We
mention that the values for the residuals for x = 0 and for x = 1 are 0 because all these
operators interpolate the ends of the interval [0, 1]. In the interior of this interval for most
values of x, the absolute residual values of the modified operators are significantly lower
than the absolute residuals of the classical operators. For example, at x = 0.1, the residual
for Bm is approximately 36% of the residual for B. Also, at this point, the residual for Sm is
approximately 36% of the residual for S. At x = 0.5, the residual for Bm is approximately
50% of the residual for B, and the residual for Sm is approximately 51% of the residual
for 5. At x = 0.9, the residual for Bm is approximately 4% of the residual for B, and the
residual for Sm is approximately 18% of the residual for S. These ratios demonstrate that
modified operators generally provide better approximation performance for this function,
especially near the endpoints of the interval.

-4
3 X1O T T T T T T T T T
it,-B]
25 |= = =If-Bm]
t, -S|
o - = =[f,~Sm|
T 2[ ‘
S If,—C]|
o 1
@ - -|f1—Cm|
@ 1.5
=
@)
7
o]
< 1
0.5
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4. Absolute residuals for classic and modified operators for n = 500 applied to the function f;
defined by (26).

Table 1. Values of the absolute residuals for the classical and modified binomial operators for the
function f; defined by (26).

x |f1 — B |fr — Bm| If1— Sl |fr — Sm| lf1—C| |f1 — Cm|
0.0 0 0 0 0 0 0

0.1 8316 x 107®  3.025x107® 8698 x107® 3.111x10°® 9.098 x 107  3.199 x 10~°
0.2 3829 x 1075 1301 x1075 3997 x1075 1331x1075 4172x1075 1360 x107°
0.3 1189 x 107°  1.265 x 107>  1.249 x 107°  1.355 x107° 1.313 x 107°  1.449 x 10~°
0.4 1.659 x 107* 8318 x 107> 1.733 x107* 8.687 x 107°>  1.809 x 107*  9.072 x 10~°
0.5 1.871 x 107* 9459 x 107° 1952 x10~* 9.878 x107° 2.038 x 10* 1.031 x 10~*
0.6 6302x 1075 2014x107° 6580x107° 2053x10°5 6.870x10°° 2091 x 10°°
0.7 2662 x 1074 1282 x107% 2779 x107% 1336 x107% 2901 x107% 1393 x 1074
0.8 1188 x 107% 8526 x 107>  1.241 x107*  9.020 x 107°  1.297 x 107*  9.541 x 10~°
0.9 6.630 x 1075 2.352x 1077 6917 x107° 1258 x10°¢ 7217x10°° 2.885x10°°

1.0 0 0 0 0 0 0
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We mention that the run time on an HP computer having an Intel(R) Core(TM) i5-6500
CPU @ 3.20 GHz processor for computing the values of the operators S and Sm applied to
f1 on 500 values of x was: 1.77 s for n = 100, 5.29 s for n = 300, and t = 8.48 s for n = 500.
Similar run times were obtained for the other operators studied in this paper.

6.2. Example 2

In our second example, we analyze the approximation of the function
folx) = (sin(x)sin(1 - x))3, (27)

using binomial operators and modified binomial operators. Figure 5 shows the absolute
residual values for this function for the binomial operators Bernstein, Stancu, and Cheney-
Sharma and for their modified versions involving squared binomial polynomials (Bm,
Sm, and Cm). Similarly to the behavior discussed for Figure 4, we can see that the global
maximum error for all operators occurs at the maximum point of the function f,(x), that
is, at x =0.5. The minima of the error for the classical binomial operators occur at the
inflection points of the function, i.e., at x ~ 0.2881 and x ~ 0.7119, while for the modified
operators, the first minima of the error is before the first inflection point and the second one
is after the second inflection point. We observe that the absolute residuals of the modified
binomial operators are much smaller than those of the classical operators for almost all
values of x € (0,1) (except for a small interval around 0.3 and 0.7, i.e., in the neighborhood
of the inflection points of the function), so this function is better approximated by these
operators. The same conclusion can be drawn from Table 2, where we have analyzed the
absolute values of the residuals for the classical binomial operators and for the modified
ones for x from 0 to 1 with step 0.1 (see also the first four columns of Table 4). We can
remark that for the values of x in (0,0.21) and (0.73,1), the errors for modified operators are
less than a quarter of the errors for classical binomial operators analyzed, indicating better
performance of the modified operators near the endpoints. More specifically, at x = 0.2, the
residuals for the modified operators range from approximately 9% to 12.5% of the residuals
for the classical operators, at x = 0.8, the residuals for the modified operators are less than
13% of the residuals for the classical operators and at x = 0.9, the residuals for the modified
operators are less than 23% of the residuals for the classical operators. Around x = 0.3
and x = 0.7, the ratios of the absolute residuals are around 2, indicating that the modified
operators perform worse than the classical ones in the region around the inflection points
of the function. At x = 0.5, the ratios are approximately 0.5, which shows that the modified
operators reduce the residuals by about 50% at the global maximum of the function. So,
the modified operators (Bm, Sm, Cm) generally exhibit smaller residuals compared to their
classical counterparts (B, S, C) for most values of x for this function.

Table 2. Values of the absolute residuals for the classical and modified operators for the function f,
defined by (27).

X |f2 — B | fo — Bm| |f2— 5] |fo— Sm| |f2—C| |f2— Cm|
0.0 0 0 0 0 0 0

0.1 1.936 x 107> 4.431x107® 2022 x107% 4391 x107® 2112x107% 4.339 x 107°
0.2 2723x107° 3408 x107® 2843 x 107> 3.096 x 107® 2968 x 107°  2.750 x 107
0.3 5821 x107¢ 1131 x107° 6.093x 107® 1220 x107° 6.378 x 107® 1314 x 107>
0.4 5542 x 1075 3.068 x1075 5788 x1075 3218 x1075 6.045x10°5 3375x107°
0.5 7.869 x 107> 3952 x107° 8218 x107° 4128 x107° 8582 x107° 4.312x107°
0.6 5542 x 1075 3068 x107° 5788 x107° 3218x107° 6.045x 107> 3.375x107°

0.7 5821 x 107 1.131x107° 6.093x107® 1220x107° 6.378x10°® 1.314x10°°
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Table 2. Cont.

x |f2 — Bl |f2 — Bm| |f2 — S| |f2 — Sm| |f2—Cl |f2 — Cm|
0.8 2723 x 1075 3408 x107® 2.843x107° 3.096 x 107® 2968 x 107>  2.750 x 10~°
0.9 1936 x 1075 4431 x107° 2.022x107% 4391x107® 2.112x107° 4.339 x 10~°¢
1.0 0 0 0 0 0 0
-5
x10
9 T T T T T T T T T
Al If,~B| i
~ — —|f,~Bm|
7 |f2—S| N
w .| |= = =I,-Sm| i
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Figure 5. Absolute residuals for classic and modified operators for n = 500 for the function f, defined
by (27).

Figure 6 and Table 3 compare the absolute residuals for the classical binomial Kan-
torovich operators and for those involving squared binomial polynomials. We remark that
at endpoints, we have very small but non-zero residuals (1.181 x 10~?) for all operators,
since Kantorovich-type operators do not interpolate endpoints exactly. For all interior
points, the modified Kantorovich operators with quadratic binomial polynomials consis-
tently produce residuals about half the size of classical versions, so the conclusion we can
draw is that the latter approximate this function better than the others.

Table 3. Values of the absolute residuals for the classical and modified operators of Kantorovich type
for the function f, defined by (27).

x |[f2—BK| |fp—BmK| |f,—SK| |fa—SmK| |f—CK| |fz—CmK|
0.0 1181 x107° 1181 x107° 1.181x107° 1.181x107° 1.181x107° 1.181 x 10~°
0.1 2995x 1075 1497 x107° 3.081x 107 1493 x107° 3171 x 107> 1487 x107°
0.2 4765x107° 2394 x107° 4.883x 107> 2362x107° 5007 x 107>  2.326 x 10~°
0.3 1.091 x 107 5521 x107® 1.063x1075 4.635x10° 1.034x107° 3.693 x 10~°
0.4 4957 x 107> 2489 x 107> 5203 x 107> 2638 x 107> 5459 x 107>  2.795 x 10~
0.5 7843 x107° 3942 x107° 8191 x107° 4117x10™° 8553 x 107>  4.300 x 107>
0.6 4957 x 1075 2489 x 107° 5203 x 107> 2638 x 107> 5459 x 107>  2.795 x 10~°

0.7 1.091 x 107> 5521 x 107  1.063 x 107  4.635 x 107®  1.034 x 107°  3.693 x 107
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Table 3. Cont.
x |f2 — BK]| |f2 — BmK]| |f2 — SK| |f2 — SmK]| |f2 — CK] |f2 — CmK|
0.8 4765 x107° 2.394x107° 4883 x107° 2362x107° 5007 x107° 2326 x10~°
0.9 2995 x 1075 1497 x107° 3.081x 107> 1493x107° 3.171x107° 1.487 x107°
1.0 1181 x107° 1.181x107° 1.181x107? 1.181x10° 1.181x107° 1.181x10°
-5
9 X 1 0 T T T T T T T
|f2—BK|
8 Hom - - |f2_BmK| -
|f2—SK|
7 n - _
- - |f2 SmK]|
f.-CK
06 3 CK 8
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S 2
ke
g 5
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- Vit i
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’ A 4 A} y \
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V4 ‘ ’ \
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Figure 6. Absolute residuals for classic binomial and modified operators of Kantorovich type for
n = 500 for the function f, defined by (27).

Table 4 presents the ratios between the absolute residuals for modified operators and
their classical counterparts applied to the function f»(x) = (sin(x)sin(1 — x))3 for different
values of x (from 0.1 to 0.9, with a step of 0.1). The columns from 2 to 4 display ratios for
three types of modified operators versus classical ones,

|f2 = Bm| Ifa = Sm| |fa = Cm| Cm|
Bm,B Sm,S Cm,C
r2(BmB) = gy 2O = g OO = T
while columns from 5 to 7 show similar ratios, but for the modified Kantorovich type versus
the classical Kantorovich ones, i.e.,

|fo — BmK]| |fa = SmK] |fa = CmK|
ro(BmK, BK) = Th=BK| r2(SmK, S) = TH=SK| SK\ and r,(CmK,CK) = Th=CcK

Blue values are values smaller than one, indicating smaller residuals for the modified
operators, suggesting better approximations, while red values indicate larger residuals for
modified operators, suggesting less accurate approximations.
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Table 4. Ratios between the absolute residuals for modified operators and their classical counterparts
for the function f, defined by (27).

X r2(Bm,B)  1r2(Sm,S) 12(Cm,C) r(BmK,BK) r2(SmK,SK) r2(CmK,CK)

0.1 0.2289 0.2172 0.2054 0.4998 0.4846 0.4698
0.2 0.1252 0.1089 0.0927 0.5024 0.4837 0.4645
0.3 1.9430 2.0023 2.0602 0.5060 0.4360 0.3572
0.4 0.5536 0.5560 0.5583 0.5021 0.5070 0.5120
0.5 0.5022 0.5023 0.5024 0.5026 0.5026 0.5027
0.6 0.5536 0.5560 0.5583 0.5021 0.5070 0.5120
0.7 1.9430 2.0023 2.0602 0.5060 0.4360 0.3572
0.8 0.1252 0.1089 0.0927 0.5024 0.4837 0.4645
0.9 0.2289 0.2172 0.2054 0.4998 0.4846 0.4689

6.3. Example 3

In this example, we consider the following function
f3(x) = x?exp(x® — x°)cos(87x), (28)

that exhibits several local extrema, allowing us to further illustrate the strengths and
limitations of the operators discussed. The comparison will focus on the accuracy of the
classical and modified operators, as well as their Kantorovich variants, in approximating
this function across the interval [0, 1].

Figure 7 presents the shape of the function f3, along with the Stancu operators and
modified Stancu operators with squared binomial polynomials for n € {20, 50, 150,200}.
The function f3 has three maxima and three minima in the interior of the interval [0, 1].
Analogously to the other functions, analyzing the absolute residuals of the function f3 in
Figure 8, we can see that the maxima of the error for all operators occur at the extrema points
of the function f3. Modified Stancu operators (dashed lines) show a closer approximation
to the function than the classical Stancu operators (solid lines) for the same n. Moreover,
for example, the modified operator for n = 150 performs better than the classical operator
for n = 200. Similar conclusions can be drawn for the other modified operators compared
to the classical ones.

Figure 8 displays the absolute residuals for the classical and modified operators
(Bernstein, Stancu, Cheney-Sharma, and their modified versions) when approximating
the function f3 for n = 500. The plot shows that, for almost all values of x € (0,1), the
modified operators (those involving squared binomial polynomials) yield significantly
smaller absolute residuals compared to their classical counterparts. The largest errors for
all operators are observed at the extrema of the function, while the residuals are minimized
near the endpoints and at certain interior points. This figure and Table 5 show that the
modified operators provide a more accurate approximation of f3 across most of the interval,
especially near the endpoints, with the exception of small neighborhoods around inflection
points (visible in the figure before x = 0.8, i.e, in the vicinity of the last inflection point of
this function in [0, 1]), where the classical operators perform similarly or slightly better.
A similar behavior can be seen in Figure 9, which displays the absolute residuals for the
classical binomial Kantorovich operators (BK, SK, CK) and their modified counterparts
involving squared binomial polynomials (BmK, SmK, CmK) when approximating the
function f3, defined by Equation (28) for n = 500 (see also Table 6 and the last three
columns of Table 7).
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Figure 7. Stancu operators and modified Stancu operators with squared binomial polynomials for
n € {20,50,150,200} for the function f3.
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Figure 8. Absolute residuals for classic and modified operators for n = 500 for the function f3.
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Table 5. Values of the absolute residuals for the classical and modified operators for the function f3
defined by (28) for n = 500.

X |fs — B | fs — Bm| |fs — S| |fs — Sm| Ifs —C| |fs — Cm|
0.0 0 0 0 0 0 0
0.1 1199 x 1073 4954 x10~% 1.239x 1073 5068 x10~* 1280x1073 5.181 x 10~*
0.2 7017 x 1073 3.888x 1073 7.311x1073 4.066x10~% 7.615x1073 4.250 x 1073
0.3 2183 x1072 1159 x 1072 2268 x 1072 1.207x1072 2356x10°2 1.257 x 102
0.4 3373x 1072 1.773x 1072 3506 x 1072 1847 x1072 3.644x1072 1.924x 1072
0.5 3921 x 1072 2.042x 1072 4.081x1072 2130x 1072 4.248x1072 2221 x10°2
0.6 1599 x 1072 7.622x 1073 1.664x 1072 7917 x10~% 1.732x10"2 8221 x1073
0.7 2143 x 1072 1188 x 1072 2238x1072 1.246x1072 2336x10°2 1306 x 102
0.8 6.836 x 1073 1.256 x 1073 7126 x 1073 1208 x10~3 7427 x1073 1.154 x 1073
0.9 3616 x 1073 8399 x 107* 3779 x 1073 8341 x10~* 3950x 1073 8260 x 10~*
1.0 0 0 0 0 0 0
0045 T T T T T T T T T
0.04 y5
: = = = |f_-BmK
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Figure 9. Absolute residuals for classic binomial and modified operators of Kantorovich type for
n = 500 for the function f3 defined by (28).

Table 7, similar to Table 4, presents the ratios of absolute residuals for modified
operators to their classical counterparts, evaluated for the function f3 (denoted by r3(Bm, B)
etc.) at points x from 0.1 to 0.9 in steps of 0.1. All ratios for these points are less than 1
(displayed in blue), indicating that the modified operators consistently produce smaller
absolute residuals than their classical counterparts for all x values shown. The ratios are
generally between 0.15 and 0.56, showing a significant reduction in residuals. The lowest
ratios occur at x = 0.8 and x = 0.9 for Bm versus B, Sm versus S, and Cm versus C,
showing that modified operators are especially effective at these points. The Kantorovich-
type ratios are also below 1, in fact, they are below 0.56, but tend to be slightly higher
than the corresponding non-Kantorovich ratios, indicating a smaller (but still present)
improvement. The modified operators outperform their classical counterparts in terms of
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absolute residuals across the interval [0, 1] for the function f3 defined by the relation (28),
the improvement being more pronounced at higher x values.

Table 6. Values of the absolute residuals for the classical and modified operators of Kantorovich type
for n = 500 for the function f3.

x |fs — BK]| |fs — BmK| |fs — SK]| | fs — SmK| |fs — CK| | fs — CmK|
00 1324x10°° 1.324 x 107° 1.324 x 107° 1.324 x 107° 1.324 x 107° 1.324 x 107°
0.1 1518 x 1073 8.395 x 104 1.556 x 103 8.492 x 10~4 1.594 x 1073 8.587 x 1074
02 6.623x1073 3.407 x 1073 6.922 x 1073 3.587 x 1073 7.233 x 1073 3.775x 1073
03 2191 x 1072 1.167 x 1072 2276 x 1072 1.215 x 1072 2.363 x 1072 1.265 x 1072
04  3.383x 1072 1.789 x 1072 3517 x 1072 1.863 x 1072 3.654 x 1072 1.940 x 1072
05  3.909 x 102 2.037 x 1072 4.069 x 102 2124 x 1072 4234 x 1072 2215 x 1072

06 1728 x1072 9.008 x 1073 1.792 x 1072 9.298 x 1073 1.859 x 1072 9.598 x 1073
0.7  1.926 x 1072 9.683 x 1073 2.021 x 1072 1.026 x 1072 2.120 x 102 1.086 x 1072
0.8  1.126 x 1072 5.719 x 1073 1.154 x 1072 5.669 x 1073 1.184 x 1072 5.613 x 1073
09 5565x1073 2.771 x 1073 5.729 x 1073 2.765 x 1073 5.900 x 1073 2.756 x 1073
1.0 1.061x10°5 1.061 x 1072 1.061 x 107> 1.061 x 1075 1.061 x 107> 1.061 x 10~°

Table 7. Ratios between the absolute residuals for modified operators and their classical counterparts
for n = 500 for the function f3.

X r3(Bm,B) r3(Sm,S) r3(Cm,C) r3(BmK,BK) r3(SmK,SK) r3(CmK,CK)

0.1 0.4131 0.4089 0.4048 0.5529 0.5458 0.5388
0.2 0.5541 0.5561 0.5581 0.5144 0.5182 0.5219
0.3 0.5308 0.5321 0.5335 0.5326 0.5339 0.5351
0.4 0.5256 0.5268 0.5280 0.5287 0.5297 0.5308
0.5 0.5210 0.5219 0.5229 0.5212 0.5221 0.5231
0.6 0.4767 0.4757 0.4748 0.5213 0.5188 0.5163
0.7 0.5546 0.5569 0.5591 0.5027 0.5076 0.5124
0.8 0.1837 0.1696 0.1554 0.5080 0.4911 0.4741
0.9 0.2323 0.2207 0.2091 0.4979 0.4826 0.4671

6.4. Example 4

In this example, we shall present the approximation of the following function with
two jump discontinuities

a2 for x € [0,1/2)],
fa(x) = ¢ Vx, forx € (1/2,3/4], (29)

sin(3x/2), forx € (3/4,1],

using the classical Kantorovich and modified Kantorovich operators defined by (9) and
(21), respectively.

In Figure 10, we represented this function and Stancu—Kantorovich operators and
modified Stancu-Kantorovich operators with squared binomial polynomials for n = 500
applied to this function, while in Figure 11, we plotted the absolute residual values for six
operators for n = 500.

For better visibility, in the smaller figure inserted in Figure 10, we zoomed in on the
zone around the first discontinuity point x = 0.5.



Mathematics 2025, 13, 2413

22 of 25

As expected, the maxima of the error occurs at the discontinuity points, and their
values are a fraction of the height of the jumps because the operators and their modified
versions have a smooth transition from the values located on the left of the discontinuity
points to the values situated to the right.

One can observe that for most values of x € (0, 1), the residuals for modified Kan-
torovich operators (plotted with dashed line) are smaller than the residuals for their classical
counterparts (plotted with continuous line).

1 T T

09r

0.8
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0.6
o f

05 SK
= = =SmK

0.4r

031

0.2 067

0.1 0.55 L L L s
0.44 0.46 0.48 0.5 0.52 0.54
1 1 1 1 1 1 1

1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 10. Stancu-Kantorovich operators and modified Stancu-Kantorovich operators with squared
binomial polynomials for n = 500 for the function fy.
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Figure 11. Absolute residuals for classic Kantorovich and modified Kantorovich operators for n = 500
for the function f4 defined by (29).
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In Table 8, we show the values of the absolute residuals for three classical binomial-
type Kantorovich operators and for their modified versions. Besides the values from 0 to
0.9 with step 0.1 displayed in the previous tables, we added the value x = 0.502 situated
to the right of the first discontinuity point to emphasize that if the values of the operators
BK, SK, and CK at the left of the jump discontinuity point x = 0.5 are closer to the function
than the values of BmK, SmK, and CmK, in the right proximity of this point are closer to
the function than their classical corresponding ones (because of their smooth transition
mentioned above).

Table 8. Values of the absolute residuals for the classical and modified operators of Kantorovich type
for n = 500 for the function fy.

x | fa — BK| | fs — BmK| | fa — SK| | fa — SmK| | fa — CK]| | fa — CmK|
0.0 5.304 x 10~° 5.304 x 10~° 5.304 x 10~° 5.304 x 10~° 5.304 x 10~ 5.304 x 10~°
0.1 1.094 x 103 5471 x 10~4 1.118 x 1073 5.341 x 10~* 1.143 x 1073 5.200 x 10~4
0.2 1.470 x 1073 7.353 x 10~4 1.503 x 1073 7.189 x 10~* 1.537 x 1073 7.011 x 10~*
0.3 1.414 x 1073 7.073 x 1074 1.448 x 1073 6.951 x 10~4 1.483 x 1073 6.818 x 1074
0.4 1.089 x 103 5.446 x 1074 1.120 x 1073 5427 x 1074 1.152 x 1073 5403 x 1074
0.5 6.942 x 1073 1.078 x 102 6.654 x 1073 1.057 x 102 6.360 x 1073 1.036 x 102
0.502  3.065 x 1072 2.623 x 1072 3.097 x 102 2.648 x 1072 3.130 x 1072 2.673 x 1072
0.6 2.579 x 10~4 1.289 x 10~4 2.638 x 1074 1.260 x 10~4 2.699 x 10~4 1.228 x 1074
0.7 9.984 x 1075 1.561 x 10~4 6.747 x 1075 1.449 x 10~4 3.116 x 10~° 1.324 x 1074
0.8 7.849 x 10~4 3.324 x 1074 8.243 x 10~4 3.262 x 1074 8.679 x 10~* 3.197 x 10~4
0.9 4.600 x 10~4 2.298 x 1074 4.688 x 1074 2224 x 1074 4.780 x 10~* 2.144 x 1074
1.0 1.074 x 1074 1.074 x 1074 1.074 x 1074 1.074 x 1074 1.074 x 1074 1.074 x 10~4

7. Discussion

The conclusion is that the modified binomial operators are more efficient than the
classical ones for approximating functions with specific characteristics, particularly those
that exhibit slower variation near the ends of the interval and have fluctuations in the rest.
This is because the modified operators at a point x situated within the interval [0, 1] (and
not very close to the endpoints) give higher weights to values f(k/n) closer to x and lower
weights to values farther apart compared to the classical operators. For other functions, the
results may vary, and further analysis is needed to determine the best operator choice for
specific applications. For some values of x close to the ends of the interval, the values of
the modified weights are more asymmetrical in the sense that for the left end, the values
of the weights that multiply the values f(k/n) for k/n located at the left of the point x
are much larger than the values of the weights that multiply the values f(k/n) for k/n
located at the right of the point x, so the computed values of the modified operators take
into account the greater weight values of the function to the left of the current value than
those to the right. So, for functions that vary rapidly at the endpoints, this behavior will
lead to a deviation of the value of the operator at that point from the value of the function,
i.e., to higher residuals. Therefore, for functions with rapid variation near the endpoints,
classical operators may yield better results in these areas. Similar observations hold for
Kantorovich-type operators. The choice between classical and modified operators should,
therefore, be guided by the specific properties of the target function.

As a future direction, we mention that we can define and study similar modified
operators for the classes of operators constructed using binomial and Sheffer sequences
considered in [11,12].
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Finally, it is important to mention a new active research field in the use of polynomial-
type operators to obtain solutions to differential equations. In Ref. [25], the authors combine
polynomial approximation to derive a piecewise polynomial representation similar to a
spline function. This technique improves the inference on system properties. Using a
polynomial LD basis (see Remark 4(i)) in [26], nonlinear partial differential equations that
arise in various fields have been solved. In support of our claims, one can also consult [27].

8. Conclusions

The paper is focused on binomial polynomials, and their applications in the construc-
tion of linear and positive approximation operators.

Starting from the classical operators, three new classes of discrete or continuous
operators are investigated. The results obtained aim at the evaluation of the absolute error
in L,([0,1]), p > 1, spaces generated by a Kantorovich integral extension, the introduction
of a discrete class involving squared binomial basis polynomials accompanied by the study
of uniform convergence in C([0, 1]), as well as its generalization in the integral sense with
the evaluation of the maximum error, again in L, ([0, 1]) spaces.

The numerical results presented contain the approximation of some specific functions
using operators belonging to the classes of operators studied. The results obtained are
analyzed in detail, highlighting the usefulness of the new sequences and pointing out their
pros and cons.
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