BULETINUL SOCIETĂȚII DE ȘTIINȚE DIN CLUJ (ROMÂNIA) BULLETIN DE LA SOCIÉTÉ DES SCIENCES DE CLUJ (ROUMANIE) Tome V, 1^{xe} Partie, p. 279 à 286.

5 juin 1930.

REMARQUE SUR LES POLYNOMES DE MEILLEURE APPROXIMATION

par

Tiberiu Popoviciu

Elève à l'Ecole Normale supérieure, Paris.

Reçue le 21 février 1930.

1. Nous considérons la classe (b) des fonctions définies et continues dans l'intervalle fini et fermé (a,b); (a < b). Des propriétés de ces fonctions rappelons-nous qu'elles peuvent s'annuler en un nombre fini ou infini de points, mais l'ensemble de ces points forme toujours un nombre fini d'intervalles pouvant d'ailleurs se réduire à un point.

Soit maintenant un système de n+1 fonctions de la classe (b)

$$(1) f_1, f_2, \ldots, f_n$$

linéairement indépendantes, c'est-à-dire qu'une égalité telle que

(2)
$$P = c_0 f_0 + c_1 f_1 + \dots + c_n f_n = 0$$

 c_0, c_1, \ldots, c_n étant des constantes, ne peut avoir lieu partout dans (a, b) que si

$$c_0=c_1=\cdots=c_n=0$$
.

Remarquons que le système (1) peut n'être pas linéairement indépendant dans un intervalle (α, β) intérieur à (a, b) [tel que $|a-\alpha| + |\beta-b| \neq 0$].

Toute expression linéaire et homogène telle que (2) sera appelée un polynome du système (1). A tout polynome P nous pouvons faire correspodre un point M de coordonnées c_0, c_1, \ldots, c_n dans l'espace ordinaire à n+1 dimensions. Nous appelons le point M, l'image du polynome P correspondant.

Le fait que les fonctions (1) sont linéairement indépendantes peut s'exprimer de la façon suivante:

Il y a correspondance biunivoque entre les polynomes P et leurs images M.

Pour les points où P s'annule nous faisons les conventions sui-

vantes: (1)

1º, Nous appelons zéro simple un point intérieur à l'intervalle (a, b) où P s'annule en changeant de signe, ou bien un point extrémité (a ou b) où P s'annule.

2º. Nous appellons zéro double et nous le comptons pour deux zéros simples, un point intérieur où P s'annule sans changer de signe.

Un système (1) est un système de Tchebyscheff ou système (T) si un polynome quelconque P ne peut avoir plus de n zéros. Il résulte que pour qu'un système ne soit pas un système (T) il faut et il suffit qu'il y ait au moins un polynome avant au moins n+1 zéros.

Par exemple le système

$$1, x, x^2, \ldots, x^n$$

est un système (T) dans tout intervalle fini. Au contraire le système

$$1, \sin x, \cos x, \dots, \sin nx, \cos nx$$

n'est pas un système (T) dans tout intervalle $(0, 2\pi)$, mais il en est un dans un intervalle de longueur plus petite que 2π.

2. Nous allons démontrer la propriété auxiliaire suivante:

Si (1) n'est pas un système (T) on peut trouver n+1 points distincts $x_1, x_2, \ldots, x_{n-1}$ complétement intérieurs à (a, b) tels que le déterminant:

soit nul.

En effet, il existe un polynome ayant au moins n+1 zéros. Si un tel polynome s'annule en au moins n+1 points distincts dont aucun ne coïncide avec une extrémité, la propriété est évidente.

Les points où P s'annule peuvent se ranger en 3 catégories.

1º. Ou bien P s'annule en changeant de signe; soient

(4)
$$x_1, x_2, \ldots, x_m$$
 ces points.

2º. Ou bien P s'annule en ne changeant pas de signe; soient

(5)
$$x'_1, x'_2, \ldots, x'_k$$

ces points. Enfin:

30. Les extrémités où P s'annule

$$x''_1, x''_2, \ldots, x''_i \quad (i=0,1,2)$$

On a par hypothèse:

$$m+2k+i \ge n+1$$

Supposons que:

$$m+k < n+1$$

donc à fortiori

$$k < n+1$$

Supposons d'abord que

et considérons le tableau:

qui contient au moins autant de colonnes que de lignes.

Si dans le tableau (7) tous les déterminants formés par k+i colonnes quelconques sont nuls, la propriété cherchée en résulte. Mais supposons qu'il y ait un déterminant non nul, par exemple:

A chaque point x'_i et x''_i attachons un nombre non nul a'_i resp. a'', tel que son signe soit celui du polynome P au voisinage de x', resp. x"; [le voisinage d'une extrémité est compté uniquement vers l'intérieur de l'intervalle]. On peut alors déterminer un système de nombres non tous nuls

$$\lambda_0, \lambda_1, \ldots, \lambda_{k+1}$$

tel que

⁽¹⁾ S. Bernstein "Leçons sur les propriétés extrémales ... etc." p. 1.; J. W. Young "General theory of approximation by fonctions involving a given nombre of arbitrary parameters* Transactions of the Amer. Math. Soc. 8 (1907), p. 331.

Soit ε > 0 et considérons le polynome

$$P_1=P-\varepsilon (\lambda_0 f_0+\lambda_1 f_1+\cdots+\lambda_{k+i} f_{k+i}).$$

Si $\varepsilon=0$ nous avons $P_1 \equiv P$. Si ε est petit mais non nul, P_1 est voisin de P. On est sûr que si on prend ε suffisamment petit, à chaque zéro x_j de P correspondra un zéro x_j de P_1 voisin de x_j . On voit aussi à cause du choix des nombres a'_j , a''_j qu'à chaque zéro x'_j correspondent au moins deux zéros simples pour P_1 et à un zéro x''_j correspondau moins un zéro à *l'intérieur* de (a, b).

Finalement donc, ε étant suffisamment petit, le polynome P_1 s'annule au moins m+2 k+i fois; la propriété en résulte immédiatement. Dans le cas k=n il suffit d'introduire au plus un point x_i .

3. Soit f(x) une fonction de la classe (b) et considérons l'expression:

$$I(c_0, c_1, \ldots, c_n) = \max_{(a,b)} |f - c_0 f_0 - c_1 f_1 - \cdots - c_n f_n|$$

Pour simplifier l'écriture nous pouvons écrire

$$I(c_0, c_1, \ldots, c_n) = \underset{(a,b)}{\text{Max}} |f - P| = I(M)$$

M étant l'image du polynome P. Alors, la fonction I (M) est continue par rapport aux coefficients c_0, c_1, \ldots, c_n pour tout $a \le x \le b$.

L'expression I (M) admet une limite inférieure et nous savons que cette limite est atteinte par au moins un polynome P, donc par au moins un système de valeurs finies $\gamma_0, \gamma_1, \ldots, \gamma_n$ des quantités $c_0, c_1, \ldots c_n$:

$$lim I(M) = I(M_1) = I(\gamma_0, \gamma_1, \dots, \gamma_n)$$

M₁ est alors un *point minimisant* et le polynome correspondant est un *polynome minimisant*. En général il est difficile de décider si le polynome minimisant est unique ou non, mais:

S'il y a deux polynomes minimisants distincts, il y en a une infinité.

Soient en effet M_1 , M_2 deux points minimisants distincts et considérons le point

$$M_3 = \frac{M_1 + \lambda M_2}{1 + \lambda}, \quad \lambda \ge 0$$

sur le segment $M_1\,M_2$, la représentation symbolique ci-dessus étant claire.

Il est facile de voir que:

$$I(M_3) \leq \frac{I(M_1) + \lambda I(M_2)}{1 + \lambda} = I(M_1)$$

mais par hypothèse

 $I(M_3) \ge I(M_1)$

done

$$I(M_3) = I(M_1)$$
.

Il résulte que tout point du segment M_1 M_2 est minimisant. D'autre part, tout point minimisant est à distance finie, car pour un point à coordonnées non bornées I(M) devient infini et en même temps:

$$\lim_{(a,b)} I(M) \leq \max_{(a,b)} |f| = \text{quantité bornée.}$$

Nous pouvons donc énoncer la propriété:

Les points minimisants forment un domaine convexe fermé et borné.

4. Nous nous proposons de démontrer la propriété suivante:

La condition nécessaire et suffisante pour qu'il y ait un seul polynome minimisant, quel que soit la fonction f de la classe (b), est que le système (1) soit un système (T).

On sait que cette condition est suffisante (1). Nous allons montrer que si le système n'est pas un système de Tchebyscheff, on peut trouver une fonction f admettant une infinité de polynomes minimisants.

Nous savons qu'il existe un polynome

$$P = c_0 f_0 + c_1 f_1 + \cdots + c_n f_n$$

s'annulant en au moins n+1 points distincts à l'intérieur de l'intervalle (a,b). Si $x_1, x_2, \ldots, x_{n+1}$ sont n+1 points vérifiant cette condition le déterminant (3) est nul car nous supposons bien entendu que $P \equiv 0$.

On peut trouver alors n+1 nombres $a_1, a_2, \ldots, a_{n+1}$ tels que le système

$$E_{1} = \overline{c_{0}} f_{0}(x_{1}) + \overline{c_{1}} f_{1}(x_{1}) + \cdots + \overline{c_{n}} f_{n}(x_{1}) - a_{1} = 0
E_{2} = \overline{c_{0}} f_{0}(x_{2}) + \overline{c_{1}} f_{1}(x_{2}) + \cdots + \overline{c_{n}} f_{n}(x_{2}) - a_{2} = 0
E_{n+1} = \overline{c_{0}} f_{0}(x_{n+1}) + \overline{c_{1}} f_{1}(n+1) + \cdots + \overline{c_{n}} f_{n}(x_{n+1}) - a_{n+1} = 0$$

soit incompatible. Dans ce cas l'expression

Max
$$(|E_1|, |E_2|, ..., |E_{n+1}|)$$
 (2)

qui est fonction continue de $\overline{c_0}, \overline{c_1}, \ldots, \overline{c_n}$, admet un *minimum positif* non nul. Soit m la valeur de ce minimum; il est atteint pour une infinité de systèmes de valeurs $\overline{c_0}, \overline{c_1}, \ldots, \overline{c_n}$, car si

$$\overline{c_i} = c^*_i$$
 $i = 0, 1, \ldots, n$

⁽¹⁾ S. Bernstein loc. cit. p. 3; J. W. Joung loc. cit.

⁽²⁾ Max $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ signifie la valeur de la plus grande quantité λ_i .

REMARQUE SUR LES POLYNOMES

est un système minimisant, les systèmes

$$c_i = c^*_i + \lambda c_i$$
 $i = 0, 1, 2, ..., n$

seront aussi minimisants, à étant quelconque.

Maintenant si f est une fonction continue prenant les valeurs a_i aux points x_i $(i=1,2,\ldots,n+1)$, on aura pour tout polynome Q

$$\max |f-Q| \ge m \quad [\text{dans } (a, b)].$$

Posons

$$P^* = c^*_0 f_0 + c^*_1 f_1 + \cdots + c^*_n f_n$$

[on peut d'ailleurs avoir $P^* = 0$].

Pour fixer les idées, supposons que le polynome P pris initiallement, s'annule en un nombre fini de points; ce sont d'abord les points $x_1, x_2, \ldots, x_{n+1}$, et puis certains autres points x'_1, x'_2, \ldots, x'_r (qui peuvent ne pas exister du tout).

Prenons la fonction f telle que:

(9)
$$f(x_i) = P^*(x_i) - a_i \quad i = 1, 2, ..., n+1$$

(10)
$$f(x'_i)=0$$
 $i=1,2,\ldots,r$.

Les points x_i , x'_i partagent l'intervalle (a, b) en un certain nombre de sous-intervalles (n+r, n+r+1) ou n+r+2 tels que dans chacun d'eux le polynome P garde un signe constant.

Soit

$$\max_{(a,b)} |P| = A$$

Prenons

$$0 > \lambda > -\frac{m}{A}$$

alors

$$|\lambda P| < m$$

Nous déterminons f dans chaque sous-intervalle tel qu'il soit continu et tel que (9) et (10) soient vérifiés. Pour cela nous allons examiner les diverses sortes de sous-intervalles qui peuvent se présenter.

1º. Intervalle (a, x'1). Dans un tel intervalle on prendra

$$f = \frac{m}{2 \text{ A}} P$$

alors dans (a, x'_1)

$$\lambda < 0$$
, $|f - \lambda P| = |f| + |\lambda P| = \left\{ \frac{m}{2 A} + |\lambda| \right\} |P|$

et

$$|f-\lambda P| < m$$

pourvu que

$$-\frac{m}{2A} < \lambda < 0$$

On emploie la même construction pour un intervalle (x'_r, b) . 2^0 . Intervalle (a, x_1) [ou (x_{n+1}, b)]. On a

$$|P^*(x_1)-a_1| \leq m.$$

On prendra dans (a, x_1)

$$f = P^*(x_1) - a_1 - \frac{m}{A}P$$
 si $P[P^*(x_1) - a_1] > 0$
 $f = P^*(x_1) - a_1$ si $P[P^*(x_1) - a_1] < 0$

on voit alors que

 $(11) \qquad \qquad \operatorname{Max} |f + \lambda P| \leq m$

pourvu que

$$(12) 0 > \lambda > -\frac{m}{A}$$

3º. Intervalle (x_1, x'_1) . On peut prendre

$$f = (x - x'_1) \frac{P^*(x_1) - a_1}{x_1 - x'_1} - \frac{m}{A} P$$
 si $P[P^*(x_1) - a_1] > 0$

$$f = (x - x_1') \frac{P^*(x_1) - a_1}{x_1 - x_1'}$$
, si $P[P^*(x_1) - a_1] < 0$

et on a encore (11) sous les conditions (12).

4º. Intervalle (x'_1, x'_2) . Il suffit de prendre

$$f = -\frac{m}{A} P$$
.

et (11) sera satisfait avec (12).

50. Intervalle (x_1, x_2) . Posons

$$g = \frac{x \left[P^*(x_1) - a_1 - P^*(x_2) + a_2\right] + x_2 \left[P^*(x_1) - a_1\right] - x_1 \left[P^*(x_2) - a_2\right]}{x_1 - x_1}$$

Nous posons alors

$$f = g - \frac{m}{A} P \quad \text{si} \quad P \left[P^* (x_1) - a_1 \right] > 0 , P \left[P^* (x_2) - a_2 \right] > 0$$
ou bien si $\left[P^* (x_1) - a_1 \right] \left[P^* (x_2) - a_2 \right] < 0$

$$f = g \quad \text{si} \quad P \left[P^* (x_1) - a_1 \right] > 0 , P \left[P^* (x_2) - a_2 \right] < 0.$$

On peut déterminer encore un $\lambda_1 > 0$ tel que si

$$0 > \lambda > -\lambda_1$$

on ait encore

$$\max |f - \lambda P| \le m$$

dans l'intervalle (x_1, x_2) .

Cette propriété résulte de la remarque suivante:

Soit g(x) une fonction continue dans (0,1) (nous prenons l'internalle (0,1) pour simplifier l'exposé) positive (négative) dans cet intervalle et

$$g(0)=g(1)=1$$

Soient, pour fixer les idées, a' > 0, b' < 0. On peut alors déterminer un $\lambda_1 > 0$ tel que pour $0 < \lambda < \lambda_1$ on ait

$$a'+x(b'-a')+\lambda g < a$$

dans (0,1). La démonstration est immédiate.

La fonction f ainsi construite répond à la question, car λ étant compris entre

$$0, -\lambda_1$$

où λ_1 est un nombre positif, on a

$$|f-\lambda P| \leq m$$

dans (a, b) et au moins dans un point x_i on a l'égalité

$$|f-\lambda P|=m$$
.

D'autre part, n'importe quel autre polynome donne

$$|f-Q| \ge m$$
.

5. Si P s'annulait dans tout un intervalle (α, β) par exemple, on pourrait encore faire la construction très facilement. Les points x_1, x_2, \dots, x_{n+1} peuvent être pris à l'intérieur de (α, β) . Alors en dehors de (α, β) nous faisons la même construction que toute à l'heure. Dans (α, β) nous gardons encore les conditions (9); et dans chaque intervalle x_i, x_{i+1} nous prenons la fonction f linéaire; et constante dans (α, x_1) et (x_{n+1}, β) , La fonction ainsi obtenue répond encore à la question.