BULETINUL SOCIETATII DE STIINTE DIN CLUJ (ROMANIA) BULLETIN DE LA SOCIÉTÉ DES SCIENCES DE CLUJ (ROUMANIE) Tome VIII, p. 572-582.

23 juin 1937.

Il tandra faire la distanction cottee los dans aux suivists de los

REMARQUES SUR LE MAXIMUM D'UN DÉTERMINANT DONT TOUS LES ÉLÉMENTS SONT NON NÉGATIES

Tiberiu Popoviciu à Cernăuți.

Reçue le 26 février 1937.

1. — Soit $\Delta = ||a_{ik}||$ un déterminant à éléments réels et d'ordre n_{i} . D'après le théorème, bien connu, de M. J. HADAMARD on a

$$|\Delta|^2 \leq \prod_{i=1}^n \left(\sum_{j=1}^n a_{jk}^2 \right)$$

$$(1) \qquad |\Delta| \leq \sqrt{n^n} \, \mathbf{M}^n \quad \text{si} \quad |a_{ik}| \leq \mathbf{M}.$$

Soit $F = F(x_1, x_2, ..., x_n) = \sum_{l,k=1}^{n} c_{lk} x_l x_k$ une forme quadratique définie positive. Considérant la transformation linéaire qui ramène F à sa forme canonique $\sum_{i=1}^{n} x_{i}^{2}$, on trouve immédiatement que $|\Delta|^{2} \leq \frac{\prod_{i=1}^{n} F(a_{i1}, a_{i2}, \dots, a_{in})}{\sum_{i=1}^{n} f(a_{in}, a_{in}, \dots, a_{in})},$

(2)
$$|\Delta|^2 \leq \frac{\prod\limits_{i=1}^n \mathbb{F}(a_{i1}, a_{i2}, \dots, a_{in})}{\delta},$$

οù δ est le déterminant de la forme F. L'inégalité (2) n'est d'ailleursqu'une conséquence de celle de M. J. Hadamard. Des exemples simples

(1) On obtient cette formule en multipliant le déterminant ligne par ligne par un déterminant quelconque d'ordre n et $\neq 0$.

D'une manière plus générale, $F(x_1, x_2, \ldots, x_n)$ étant une forme hermitienne définie positive, de déterminant δ, on a

$$(\text{valeur absolue de } \|a_{ik}\|)^2 \leq \frac{\prod\limits_{i=1}^n F(a_{i1}, a_{i2}, \ldots, a_{in})}{\delta}$$

pour un déterminant $\|a_{ik}\|$ à éléments réels ou complexes quelconques.

mous montrent qu'un choix convenable de la forme F permet, dans certains cas, de donner, par la formule (2), une limitation meilleure que celle de M. J. HADAMARD, pour la valeur absolue du déterminant.

2. - En particulier, nous portons notre attention sur la formule (1). Nous allons supposer que les a_{ik} soient tous ≥ 0 et nous allons montrer qu'on peut alors abaisser le facteur $\sqrt{n^n}$ dans le second membre de la formule (1). On peut évidemment prendre M=1 pour les démonstrations et notre problème peut alors s'énoncer de la manière suivante:

Déterminer la forme F qui, sous l'hypothèse $0 \le a_{lk} \le 1$, donne, en général, la meilleure limitation (2).

On voit tout de suite qu'il faut pour cela résoudre cet autre problème:

Déterminer la forme quadratique F, définie positive, de détermimant d. de manière que

(3)
$$\max_{0 \le x_i \le 1} \frac{F(x_1, x_2, \dots, x_n)}{\sqrt[n]{\delta}}$$

soit le plus petit possible.

La fonction $F(x_1, x_2, \ldots, x_n)$ est convexe au sens de Jensen, on a donc

$$F\left(\frac{x_1+x_1'}{2}, \frac{x_2+x_2'}{2}, ..., \frac{x_n+x_n'}{2}\right) < \frac{1}{2}[F(x_1, x_2, ..., x_n) + F(x_1', x_2', ..., x_n')],$$

pourvu que $|x_1-x'_1|+|x_2-x'_2|+...+|x_n-x'_n|>0$. On sait alors que, dans le domaine (convexe) $0 \le x_i \le 1$, elle ne peut atteindre son maximum que sur la frontière. La fonction étant à fortiori convexe par rapport à chaque groupe de variables, on en conclut que

$$\max_{0 \leq x_i \leq 1} F(x_1, x_2, \ldots, x_n)$$

ne peut être atteint que si x_1, x_2, \ldots, x_n sont tous égaux à 0 ou 1. Ce maximum est donc égal à l'un des 2^n nombres qu'on obtient en remplaçant dans F toutes les variables x_i par 0 ou 1. La valeur est 0 pour $x_1 = x_2 = \dots = x_n = 0$ et on peut donc la laisser de côté; les autres se partagent alors en n groupes. Le kème groupe de valeurs est formé par les $\binom{n}{k}$ nombres qu'on obtient en donnant à n-k+1 des variables la valeur 1 et aux autres k-1 variables la valeur 0. La movenne arithmétique des nombres du kème groupe est égale à

MAXIMUM D'UN DÉTERMINANT

(4)
$$\sum_{i=1}^{n} c_{ii} + (n-k)(n-k+1) \frac{\sum_{i,k=1}^{n} c_{ik}}{n(n-1)}$$

en convenant de désigner par $\sum_{i,k=1}^{n}$ une sommation où les valeurs i=k sont exclues.

3. — Pour trouver le minimum de l'expression (3) il suffit de considérer seulement des formes F symétriques par rapport aux variables. Cette propriété résultera du lemme suivant:

Lemme. Si la forme quadratique $F = \sum_{i,k=1}^{n} c_{ik} x_i x_k$ est définie posi-

tive, si δ est son déterminant et si δ_1 est le déterminant de la forme quadratique symétrique

$$G = C\left(\sum_{i=1}^{n} x_i^2\right) + D\left(\sum_{i,k=1}^{n'} x_i x_k\right)$$

où

$$C = \frac{\sum_{i=1}^{n} c_{ii}}{n}, \quad D = \frac{\sum_{i,k=1}^{n} c_{i,k}}{n(n-1)}$$

on a:

1º. La forme G est définie positive.

20. $\delta \leq \delta_1$, l'égalité n'étant possible que si $F \equiv G$, donc si F est symétrique.

Le déterminant δ est une fonction des coefficients c_{ik} (il est une polynome en c_{ik}). Supposons que ces coefficients varient de manière que la forme reste définie positive et que

$$\sum_{i=1}^{n} c_{ii} = A = \text{const.}, \quad \sum_{i,k=1}^{n} c_{ik} = B = \text{const.}$$

Le domaine de variation des c_{ik} est alors ouvert et évidemment borné. Sur la frontière de ce domaine δ devient nul (2). Le maximum de δ est donc atteint à l'intérieur et on l'obtient en appliquant les règles du calcul différentiel. Si nous désignons par C_{ik} les mineurs (avec leurs-

signes) de 8, il faut pour le maximum que

$$\frac{\partial \delta}{\partial c_{ij}} = \lambda$$
, $\frac{\partial \delta}{\partial c_{jk}} = \mu$, $i, j, k = 1, 2, \ldots, n$, $j \neq k$

donc que

(5)
$$C_{11}=C_{22}=\ldots=C_{nn}, C_{ik}=C_{i'k'} (i \pm k, i' \pm k').$$

Il faut donc que la forme adjointe et, par conséquent, que la forme elle même soit symétrique.

Comme le maximum doit nécessairement exister et comme, d'autre part, le système (5) n'a que la seule solution G, les propriétés en résultent (3).

Théorème I. Si la forme F n'est pas symétrique on peut construire une autre forme pour laquelle le nombre (3) soit plus petit.

La forme G construite plus haut répond à la question. Ceci résulte immédiatement des faits que (4) est une moyenne arithmétique, que cette expression est la même pour la forme G et que le lemme est démontré.

4. — Supposons maintenant que
$$F = \sum_{i=1}^{n} x_i^2 - \lambda \sum_{i,k=1}^{n} x_i x_k$$
 soit

(3) La propriété 10 du lemme peut aussi s'établir directement. On peut toujours écrire $c_{ik} = \sum_{j=1}^{n} \alpha_{ij} \alpha_{kj}$ où les nombres réels α_{ik} sont tels que le déterminant $\|\alpha_{ik}\| \neq 0$. Nous avons alors

$$G = \frac{\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{i,j}^{2}}{n} \sum_{i=1}^{n} \sum_{i,k=1}^{n} \sum_{i,k=1}^{n'} \alpha_{ij} \alpha_{kj} \sum_{i,k=1}^{n'} x_{i} x_{k} = \frac{1}{n(n-1)} \sum_{j=1}^{n} \left[(n-1) \left(\sum_{i=1}^{n} \alpha_{ij}^{2} \right) \left(\sum_{i=1}^{n} \alpha_{i}^{2} \right) + \left(\sum_{i,k=1}^{n'} \alpha_{ij} \alpha_{kj} \right) \left(\sum_{i,k=1}^{n'} x_{i} x_{k} \right) \right] = \frac{1}{n!} \sum_{j=1}^{n} \left[\sum^{*} (\alpha_{1j} x_{1} + \alpha_{2j} x_{2} + \ldots + \alpha_{nj} x_{n})^{2} \right]$$

la somme Σ^* étant étendue aux n! permutations des variables x_1, x_2, \ldots, x_n .

Une propriété analogue a lieu pour les formes hermitiennes définies positives.

⁽²⁾ Les c_{lk} doivent rester positifs. On a aussi $c_{lk}c_{kk}-c_{lk}^2>0$ donc ledomaine est bien borné. La frontière correspond évidemment aux formes quissont seulement positives.

MAXIMUM D'UN DÉTERMINANT

symétrique. Nous avons $\delta = [1-(n-1)\lambda](1+\lambda)^{n-1}$ et pour que la forme soit définie positive il faut que $-1 < \lambda < \frac{1}{n-1}$.

Considérons les nombres

$$N_{k}(\lambda) = N_{k} = (n-k+1) \frac{1 - (n-k) \lambda}{\sqrt[n]{\delta}}$$

Nous devons déterminer λ tel que $\max_{1 \le k \le n} N_k$ soit le plus petit possible. Nous avons

(6)
$$N_k - N_{k_1} = (k_1 - k) \frac{1 - (2n - k - k_1 + 1)\lambda}{\sqrt[n]{\delta}}$$

ret on voit tout de suite que $N_k > N_{k_1}$ si $k_4 > k$, $k+k_1=n+2$; donc il suffit de considérer les nombres N_i , $i=1,2,\ldots,\left\lceil\frac{n}{2}\right\rceil+1$, en désignant par [a] le plus grand entier compris dans a. Si nous posons $\lambda_0 = -1$, $\lambda_i = \frac{1}{2(n-i)}, \lambda_{\left[\frac{n}{2}\right]+1} = \frac{1}{n-1}$, la formule (6) nous montre alors q e $\max_{1 \leq k \leq n} N_k = N_i \text{ dans l'intervalle } (\lambda_{l-1}, \lambda_l), i=1,2,\ldots, \left|\frac{n}{9}\right| + 1.$

Il reste à examiner N_i dans l'intervalle $(\lambda_{i-1}, \lambda_i)$. Désignons par N' (λ) la dérivée de Ne par rapport à λ, débarassée d'un facteur qui reste positif dans l'intervalle $(\lambda_{i-1}, \lambda_i)$. Nous avons

$$N_i^*(\lambda) = [(n-2)(n-i) + n-1] \lambda - (n-i)^*$$

et on voit que $N_i^*(\lambda_i) < 0$ pour $i \leq \left\lfloor \frac{n}{2} \right\rfloor$, donc, pour $i = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor$;

(7)
$$\min_{(\lambda_{\ell-1}, \lambda_{\ell})} N_{\ell}(\lambda) = N_{\ell}(\lambda_{\ell}) = \frac{(n-i)(n-i+1)}{\sqrt{(n-2i+1)(2n-2i+1)^{n-1}}}$$

Lorsque $i = \left\lceil \frac{n}{2} \right\rceil + 1$, on a $N_{\left\lceil \frac{n}{2} \right\rceil + 1}^* (\lambda_{\left\lceil \frac{n}{2} \right\rceil}) > 0$ si n est pair et

 $N_{\lfloor \frac{n}{n} \rfloor + 1}^* \left(\frac{1}{n} \right) = 0$ si n est impair, donc dans l'intervalle $\left(\lambda_{\lfloor \frac{n}{n} \rfloor}, \frac{1}{n-1} \right)$,

(8)
$$\min N_{\left[\frac{n}{2}\right]+1} = N_{\left[\frac{n}{2}\right]+1} \left(\frac{1}{n}\right) = \begin{cases} \frac{n(n+2)}{n} & n \text{ pair} \\ 4\sqrt[n]{(n+1)^{n-1}} & \\ \frac{n}{\sqrt[n]{(n+1)^{n+1}}} & n \text{ impair} \end{cases}$$

On trouve facilement que (8) est plus petit que les nombes (7)

et nous avons donc le (4) Théorème II. Si $F = \sum_{i=1}^{n} x^2 - \lambda \sum_{i,k=1}^{n} x_i x_k$ est définie positive on a

$$\min_{\substack{-1 < \lambda < \frac{1}{n-1}}} \max_{\substack{0 \le x_{\ell} \le 1}} \frac{F(x_1, x_2, \dots, x_n)}{\sqrt[n]{\delta}} = \begin{cases} \frac{n(n+2)}{\sqrt[n]{(n+1)^{n-1}}} & n \text{ pair} \\ \frac{4\sqrt[n]{(n+1)^{n-1}}}{\sqrt[n]{(n+1)^{n+1}}} & n \text{ impair} \end{cases}$$

et ce minimum est atteint pour $\lambda = \frac{1}{n}$

5. — Revenant au déterminant Δ, nous pouvons énoncer le Théorème III. Si tous les éléments du déterminant $\Delta = \|a_{ik}\|$ sont non négatifs et aux plus égaux à M, on a

(9)
$$|\Delta| = \begin{cases} \sqrt{\frac{n^n (n+2)^n}{4^n (n+1)^{n-1}}} M^n & n \text{ pair} \\ \frac{\sqrt{(n+1)^{n+1}}}{2^n} M^n & n \text{ impair.} \end{cases}$$

Pour que l'égalité ait lieu dans (9) il faut:

1º. que l'égalité ait lieu dans (2), qui provient de l'inégalité de M. HADAMARD.

2º. que parmi les éléments d'une ligne (ou d'une colonne) a_{i1} , a_{i2} ,..., a_{in} $n = \left| \frac{n}{2} \right|$ soient égaux à 1 (à M) et les autres soient égaux à 0.

La condition 1º s'écrit

$$\sum_{i=1}^{n} a_{kj} \frac{\partial F(i, a_{l2}, \dots, a_{ln})}{\partial a_{ij}} = 0, \quad i \neq k$$

qui, en tenant compte de la forme spéciale de la forme $F(\lambda =$ t de la condition 20, devient

(10)
$$(n+1) \sum_{i=1}^{n} a_{ij} a_{kj} = \left(n - \left\lceil \frac{n}{2} \right\rceil \right)^{2}, \quad i \neq k.$$

⁽⁴⁾ Si on pose n-2i=x dans le second membre de la formule (7) on vérifie facilement que la dérivée par rapport à x de cette expression est positive pour x > 0. Pour n impair on a encore à vérifier l'inégalité $(n+1)(n+2)^{n-1} < (n+3)^n (n > 1)$, ce qui est immédiat.

Le premier membre de (10) est un multiple de n+1, il faut donc que n soit de la forme n=4p-1. Dans ce cas la condition 2^0 et les égalités (10) sont nécessaires et suffisantes pour que le déterminant soit maximisant. Par exemple pour n=3,7,11 nous avons les déterminants maximisants

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ \end{vmatrix}$$

qui sont égaux, en valeur absolue, à 2, 25, 2,36 respectivement.

6. — On peut se poser le problème plus général de chercher la meilleure limitation en supposant que les éléments a_{ik} du déterminant soient compris entre deux nombres m et M, m < M. On peut supposer M > 0, $-M \le m < M$, sans restreindre la généralité. Nous pouvons résoudre ce problème en suivant la même voie que plus haut, mais if est à remarquer que les résultats sont, en général, plus compliqués.

Il suffit encore de considérer seulement des formes F symétriques par rapport aux variables. Les nombres N_k deviennent

 $N_{k} = \frac{(n-k+1)M^{2} + (k-1)m^{2}}{\sqrt[n]{\delta}} - \frac{[(n-k)(n-k+1)M^{2} + 2(k-1)(n-k+1)Mm + (k-1)(k-2)m^{2}}{\sqrt[n]{\delta}} \lambda.$

La formule (6) devient

(6')
$$N_k - N_{k_1} = (k_1 - k)(M - m) \frac{M + m - [(2n - k - k_1 + 1)M + (k + k_1 - 3)m]\lambda}{\sqrt[n]{\delta}}$$

et on voit encore que $N_k > N_{k_1}$ si $k_1 > k$, $k+k_1=n+2$.

Dans ce cas il faut poser $\lambda_0=-1$, $\lambda_i=\frac{M+m}{2(n-i)M+2(i-1)m}$,

 $\lambda_{\begin{bmatrix} n \\ n-1 \end{bmatrix}+1} = \frac{1}{n-1} \text{ et on aura encore}$

 $\max_{1 \le k \le n} N_k = N_i \text{ dans l'intervalle } (\lambda_{i-1}, \lambda_i), i = 1, 2, \dots, \left\lceil \frac{n}{2} \right\rceil + 1.$

L'expression $N_i^*(\lambda)$ devient

$$\begin{array}{l} \mathbf{N_i^*} \ (\lambda) = & \{(n-i+1)[(n-2)(n-i)+n-1] \ \mathbf{M^2} + 2(i-1)(n-i+1)(n-2) \mathbf{M_m} + \\ & + (i-1) \ [(n-2) \ (i-2)+n-1] \ m^2 \} \ \lambda - (n-i)(n-i+1) \mathbf{M^2} \\ & - 2(i-1)(n-i+1) \ \mathbf{M_m} - (i-1)(i-2) \ m^2 \end{array}$$

et tout dépend du signe de cette fonction de λ dans l'intervalle $(\lambda_{i-1}, \lambda_i)$. Nous pouvons écrire

$$N_{i}^{*}(\lambda_{i}) = \frac{M-m}{2(n-i)M+2(i-1)m} \left\{ (n-i+1)[-2i^{2}+(3n+2)i-n^{2}-n-1](M-m) + + 2(n-i+1)[(2n-1)i-n^{2}](M-m)m + n(n-1)(2i-n-1)m^{2} \right\}.$$

7. — Supposons, en particulier, que $m \ge 0$. On voit alors que $N_i^*(\lambda_i) < 0$ pour $i \le \left\lceil \frac{n}{2} \right\rceil$ et il est maintenant permis d'écrire encore les formules (7), qui deviennent

(7')
$$\min_{(\lambda_{i-1}, \lambda_i)} N_i(\lambda) = N_i(\lambda_i) = \frac{(M-m)[(n-i)(n-i+1)M^2 - i(i-1)m^2]}{\sqrt{(M-m)(n-2i+1)[(2n-2i+1)M+(2i-1)m]^{n-1}}}$$
pour $i=1, 2, ..., \left|\frac{n}{2}\right|$.

Si l'on pose n-2i=x, on vérifie aisément que la dérivée du second membre de (7') est positive pour x>0. Le plus petit parmis les nombres (7') est donc

(11)
$$\frac{n(M-m)[(n+2)M^2-(n-2)m^2]}{n} \quad \text{pour } n \text{ pair}$$

$$4\sqrt[n]{(M-m)[(n+1)M+(n-1)m]^{n-1}}$$

MAXIMUM D'UN DÉTERMINANT

(12)
$$\frac{(M-m)[(n+1)(n+3)M^2-(n-1)(n-3)m^2]}{4\sqrt[n]{2(M-m)[(n+2)M+(n-2)m]^{n-1}}} \text{ pour } n \text{ impair.}$$

8. — Supposons d'abord que n soit pair. Nous trouvons alors que $N_{\left[\frac{n}{2}\right]+1}^* (\lambda_{\left[\frac{n}{2}\right]}) > 0$ et le minimum cherché est égal à

 $N_{\left[\frac{n}{2}\right]+1}\left(\frac{M+m}{nM+(n-2)m}\right)$ dont la valeur numérique est (11), donc

Théorème IV. Si tous les éléments du déterminant $\Delta = \|a_{ik}\|$, d'ordre pair n, sont compris entre deux nombres positifs m et M > m, on a

$$|\Delta| \le \sqrt{\frac{n^{n}(M-m)^{n-1}[(n+2)M-(n-2)m]^{n}}{4^{n}[(n+1)M+(n-1)m]^{n-1}}}.$$

Pour que l'égalité ait lieu il faut 1 que

$$\sum_{j=1}^{n} a_{ij} \ a_{kj} = \frac{n^{2}(M+m)^{3}}{4 \left[(n+1)M+(n-1)m\right]} \qquad i \neq k.$$

2 que parmi les éléments d'une ligne (ou colonne) $\frac{n}{2}$ soient égaux à M et $\frac{n}{2}$ égaux à m.

La somme $\sum_{j=1}^{n} a_{ij} a_{kj}$ est de la forme $\mu M^2 + (n-2\mu) Mm + \mu m^2 = -\mu(M-m)^2 + nMm$, où μ est un entier positif (le cas $\mu=0$ est évidemment à exclure si n > 2). Nous trouvons facilement

$$\mu = \frac{n}{4} \left[1 - \frac{(M+m)^2}{(M-m)[(n+1)M+(n-1)m]} \right]$$

On doit donc avoir $\mu < \frac{n}{4}$. D'autre part on peut toujours écrire les deux premières lignes d'un déterminant maximisant sous la forme

et pour qu'on puisse placer une troisième ligne vérifiant les condi-

tions 1° et 2° il faut que $\mu > \frac{n}{6}$. Nous pouvons donc affirmer que pour n = 4, 6, 8 il n'y a sûrement pas de déterminants maximisants.

Remarque. Le cas n=2 fait exception. Dans ce cas le déterminant $\left|\begin{array}{cc} M & m \\ m & M \end{array}\right|$ peut être maximisant. Il faut et il suffit pour cela que $M=(1+\sqrt{2})m$.

9. — Le cas où n est impair est plus intéressant. Dans ce cas $N_{\left[\frac{n}{2}\right]+1}^{\frac{1}{2}}(\lambda_{\left[\frac{n}{2}\right]}) < 0$ et le minimum est donné par la racine de l'équation, $N_{\left[\frac{n}{2}\right]+1}^{*}(\lambda) = 0$ qui est égale à

$$\lambda' = \frac{(u+1)M^2 + 2(n+1)Mm + (n-3)m^2}{n(n+1)M^2 + 2(n+1)(n-2)Mm + (n^2-3n+4)m^2}.$$

Ce minimum est égal à

$$N_{\left[\frac{n}{2}\right]+1}^{n}(\lambda') = \frac{(n+1)(M-m)^{2}[(n+1)M+(n-1)m]^{2}}{4\sqrt[n]{(n+1)(M-m)^{2}[(n+1)M+(n-1)m]^{2n-2}}}$$

qui est effectivement plus petit que (12) (5), Nous avons donc le

Théorème V. Si tous les éléments du déterminant $\Delta = \|a_{ik}\| d$ 'ordreimpair n, sont compris entre deux nombres positifs m et M > m, on a

$$|\Delta| \le \frac{\sqrt{(n+1)^{n-1}}}{2^n} (M-m)^{n-1} [(n+1)M + (n-1)m].$$

Pour que l'égalité puisse avoir lieu il faut

$$\sum_{j=1}^{n} a_{ij} a_{kj} = \frac{(n+1)M^2 + 2(n+1)Mm + (n-3)m^2}{4}$$

2º que parmi les éléments d'une ligne (ou colonne) $\frac{n+1}{2}$ soient égaux à M et les autres $\frac{n-1}{2}$ égaux à m.

Dans ce cas la somme $\sum_{j=1}^{n} a_{ij} a_{kj}$ est de la forme μ M² + $+(n-2\mu+1)Mm+(\mu-1)m^2=\mu(M-m)^2+(n+1)Mm-m^2, \mu \text{ étant un entier}$

$$\left[\frac{(n+1)(n+3)}{(n+1)(M-m)[(n+2)M+(n-2)m]}\right]^{n} > \frac{2[(n+1)M+(n-1)m]^{2}}{(n+1)(M-m)[(n+2)M+(n-2)m]}$$

revient à l'inégalité élémentaire de Bernoulli.

⁽⁵⁾ Sous la forme

*positif. On trouve facilement $\mu = \frac{n+1}{4}$ et il faut donc que n soit de la forme n=4p-1. Le résultat est le même que dans le cas m=0. D'ailleurs le fait qu'un déterminant est maximisant ne dépend pas de m=1.

Remarque finale. Nous avons voulu montrer simplement quelques conséquences élémentaires de la formule (2). Il resterait à démontrer l'existence de déterminants maximisants de tout ordre de la forme n=4p-1. Lorsque n n'est pas de cette forme le problème de maximum ne peut être résolu par la formule (2) (tout au moins pour n=4p-3 et pour n=4, 6, 8).

The finite and the second of t

tuil it mit wave makepullings i ung mot

Van(E-m) E-m/E (FEX.-FM(1-m)) E-m/E

toring 14 to controles und conti cauch channels and loring part. S.

The country of the co

rolling in the property of the section of the secti

-n) + M(2+n)(m-M)(1+n) [n(2+n)+M(2+n)+M(2+n)(m-M)+1+n] -n) + M(2+n)(m-M)(1+n) [n(2+n)+M(2+n)+M(2+n)+M(2+n)] n(2+n)+M(