COMPTES RENDUS

DES SÉANCES

DE

L'INSTITUT DES SCIENCES DE ROUMANIE

ANCIENNE

ACADEMIE DES SCIENCES DE ROUMANIE

PUBLIÉS PAR LE COMITÉ DE RÉDACTION DE L'INSTITUT

Parus à Bucarest le 1 juillet 1939

"CARTEA ROMÂNEASCĂ", BUCUREȘ

N. F.

COMPTES RENDUS DES SÉANCES

DE

L'INSTITUT DES SCIENCES DE ROUMANIE

ANCIENNE ACADÉMIE DES SCIENCES DE ROUMANIE

SOMMAIRE

altoporter of	Page
I. SCIENCES MATHEMATIQUES.	
370. Sur les suites de fonctions également continues à l'infini. Par L. B r u w i e r,	
Présentée par Miron Nicolesco, Mt. I. S. R	393
Tiberiu Popoviciu, Mc. I. S. R	396
II. SCIENCES PHYSIQUES.	
372. Mesures de magnétisme terrestre en Transylvanie, en 1938. Par G. A t a n a s i u,	
Mc. I. S. R	403
M. O. I. S. R.	405
374. Réponse aux objections de M. Aurel Ionescu au sujet de mon travail sur les décharges oscillantes. Par Ilie C. Purcaru, Mf. I. S. R 375. La tension superficielle des solutions équimoléculaires. Par C. Sălceanu,	411
Mc. I. S. R. et Henry MC. Cormick	416
Sălceanu, Mc. I. S. R	419
III. SCIENCES NATURELLES ET BIOLOGIE APPLIQUÉE.	
377. Quelques mots sur la flore halophyte de la Moldavie. Par C. P a p p, Mc. I.S.R. 378. Nouvelles épreuves sur l'action vasculaire de l'urée. Par M a r i n P o p e s c o,	421
Mc. I. S. R	423
Mc. I. S. R	424
Par I. Bistriceano, Mc. I. S. R	426
moiu, Mt. I. S. R. et V. Platareanu	428
Par C. Michailes co, Mf. I. S. R. et Fl. C. Ulmeanu	434
Paulian, Mt. I. S. R. et I. Bistriceanu.	439

COMPTES RENDUS

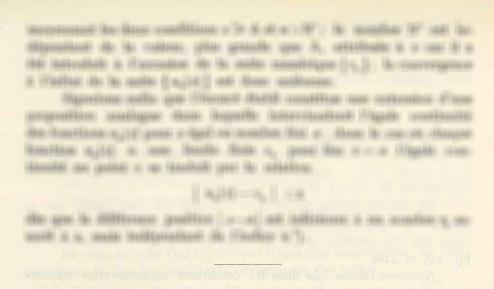
L'INSTITUT DES SCIENCES

ACADEMIE DES SCIENCES DE ROUMANIE

NAMES FOR TH COMPANY OF REDUCTION OF PARSONER

Partie & Bucainst to 1 justles 1950

CARTEA ROMANHASCA", BUCURE,



371. SUR QUELQUES INÉGALITÉS ENTRE LES FONCTIONS CONVEXES

(TROISIÈME NOTE)

Par TIBERIU POPOVICIU, Mc. I. S. R.

(Séance du 6 mai 1939)

1. Posons, en conservant les notations des deux notes précédentes 1),

$$B(\varphi) = A_{\varphi} - \varphi(A)$$
.

Nous avons l'inégalité classique $B(\phi) \ge 0$.

Nous allons chercher une inégalité contraire, donc le maximum de $B(\varphi)$, lorsque φ est donné et f sont des fonctions de $(E_a^b)_n$ pour un n donné.

Dans cette Note nous examinerons le cas n=1 et nous dirons quelques mots aussi sur le cas n=o. Le cas n>1 sera étudié dans la cinquième Note.

Rappelons que φ est continue et convexe dans l'intervalle fermé (0,1). Nous pouvons supposer que φ (0)=0, φ (1)=1, $0 \le \varphi \le 1$, sans restreindre la généralité, puisque $B(\varphi)$ ne varie pas lorsqu'on ajoute à φ une fonction linéaire. La fonction φ est alors positive et crois-

sante pour $0 < x \le I$. L'ensemble $(E_a^b)_a$ est formé par les fonctions f, continues et non-concaves d'ordre 0, I, ..., n dans l'intervalle (0, I) telles que $f(0) = a \ge 0$ $f(I) = b \le I$. La fonction φ est une fonction convexe de $(E_0^1)_1$.

Remarquons que dans toutes nos formules n'interviennent que les valeurs de φ dans (a,b). Il suffit donc de supposer que φ est une fonction qui est continue et convexe dans l'intervalle fermé (a,b). Si la dérivée à droite $\varphi'_a(a)$ en a et la dérivée à gauche $\varphi'_g(b)$ sont finies, on peut modifier la fonction φ dans les intervalles (o,a), (b,\mathbf{I}) de manière qu'elle devienne, à une fonction linéaire additive près, une fonction convexe de $(\mathbf{E}_0^1)_1$.

Remarquons aussi que nous avons des inégalités analogues, mais de sens contraire, si φ au lieu d'être convexe est concave. Les inégalités sont vraies, bien entendu, aussi lorsque φ est seulement non-concave (ou non-convexe). Seule l'unicité des maxima (ou minima) peut éventuellement être en défaut.

2. Le problème de maximum posé plus haut a été résolu pour n=0 par M. K. K n o p p 1). Dans ce cas nous avons

(I)
$$B(\varphi) \leq \max_{(a,b)} \left[\frac{(b-x)\varphi(a) + (x-a)\varphi(b)}{b-a} - \varphi(x) \right]$$

ce qui résulte immédiatement de l'inégalité

$$\frac{(b-A)\varphi(a) + (A-a)\varphi(b)}{b-a} - A_{\varphi} = \frac{\mathbf{I}}{b-a} \int_{a}^{1} \left[(f-a)\varphi(a) - (b-a)\varphi(f) + (b-f)\varphi(b) \right] dx \ge 0.$$

Le maximum est atteint pour une seule valeur x_1 de x, puisque la fonction du second membre de (1) est concave. Le maximum de B (φ) ne peut d'ailleurs être atteint par une fonction de $(E_{al}^b)_o$, mais seulement par certaines fonctions limites de cette famille. Telle est la fonction

$$a = \begin{cases} a, & 0 \le x \le x \frac{b - x_{1}}{b - a_{1}} \\ b, & \frac{b - x_{1}}{b - a} < x \le 1. \end{cases}$$

[.] Mémorial des Sciences Mathématiques. Fasc. XLIV, p. 12. Les suites de fonctions en général. Domaine réel, par M. L. Léau,

^{1.} Je prie le lecteur de se rapporter aux deux notes précédentes pour les hypothèses et les notations. Voir ce C. R., 2, 449-454, 454-458 (1938).

K. Knopp "Über die maximalen Abstände und Verhältnisse verschiedener Mittelwerte" Math. Zeitschrift, 39, 768—776 (1935). Les hypothèses faites sur φ par M. K. Knopp sont un peu plus restrictives (l'existence de la dérivée seconde φ").

On peut remarquer que x_1 , ne coıncide jamais avec a ou b. Ce nombre peut être $< ou > \frac{a+b}{2}$. Pour que l'on ait $x_1 \ge \frac{a+b}{2}$ il faut et il suffit que

$$\frac{\varphi(b)-\varphi(a)}{b-a} \ge \varphi_g'\left(\frac{a+b}{2}\right)$$

ou

(2)
$$\frac{1}{b-a}\int_{a}^{1}\varphi'_{g}(x) dx \geq \varphi'_{g}\left(\frac{a+b}{2}\right).$$

en désignant par φ, la dérivée à gauche de φ. Pour qu'il en soit ainsi pour toutes les valeurs de a, b il faut et il suffit que \varphi soit une fonction de (E'o)2, donc non-concave d'ordre 2.

La démonstration de ce fait n'est pas difficile. La fonction ϕ_g' est croissante et positive. Je dis qu'elle doit être continue dans l'intervalle ouvert (0,1). Soit, en effet, x_0 , $0 < x_0 < 1$, un point de discontinuité éventuelle. Soit aussi

$$0 < \varepsilon < \frac{\varphi_g(x_0 + 0) - \varphi_g(x_0 - 0)}{2}$$

On peut trouver alors un $\eta > 0$, tel que l'on ait $0 < x_0 - \eta < x_0 +$ $+2\eta < 1$ et $\varphi_g'(x_0 + 2\eta) < \varepsilon + \varphi_g'(x_0 + 0)$. Nous avons, en prenant $a = x_0 - \eta, b = x_0 + 2\eta,$

$$\frac{1}{3\eta} \int_{\varphi_g'(x_0+o)}^{x_0+2\eta} \varphi_g'(x) dx - \varphi_g'(x_0+\frac{\eta}{2}) < \frac{\varphi_g(x_0-o+2[\epsilon+\varphi_g'(x_0+o)]}{3} - \frac{\varphi_g'(x_0+o)-\varphi_g'(x_0-o)}{3} + \frac{2\epsilon}{3} < 0$$

qui est en contradiction avec (2). La fonction ϕ_g' doit donc être continue 1). On voit aussi que la fonction $\varphi_g' + \alpha x$ vérifie encore la propriété (2), quel que soit α . On démontre facilement sur (2) que $\phi_g' + \alpha x$ ne peut atteindre son maximum dans un intervalle (a, b) qu'aux extrémités a ou b, à moins qu'elle ne soit constante dans (a,b). D'après une remarque de M. S. Saks2), la fonction \(\phi_g \) est non-concave d'ordre 1, donc φ est non-concave d'ordre 2.

On démontre de la même manière que pour avoir $x_1 \le \frac{a+b}{2}$, pour toutes les valeurs de a et b, il faut et il suffit que \u03c3 soit non-convexe d'ordre 2.

Pour φ=log x, a>0, l'inégalité (1) nous donne

$$\frac{A}{G} \leq \frac{c-I}{c^{\frac{c-1-\log c}{(c-1)\log c}} \cdot \log c} = \frac{I-3}{e \cdot \log \frac{I}{c}} \left(\frac{I}{c}\right)^{\frac{1}{1-c}}, \quad c = \frac{a}{b}$$

où G=exp. $\int log f dx$ est la moyenne géométrique de f. Nous avons démontré cette inégalité dans un travail précédent 1).

3. Passons maintenant à l'étude du cas n=1. La formule (6) et les résultats de la première note permettent d'énoncer la propriété

Si φ est une fonction de la forme indiquée et f une fonction de (E_a)₁, on a l'inégalité

(3)
$$A_{\varphi} - \varphi(A) \leq \max_{\left(a, \frac{a+b}{2}\right)} \left[\varphi(a) + \frac{2(x-a)}{(b-a)^2} \int_{a}^{b} \left[\varphi(t) - \varphi(a) \right] dt - \varphi(x) \right]$$

l'égalité n'étant possible que pour une seule valeur x2 de x et pour la tonction

(4)
$$f=a+(b-a)\frac{x-\lambda+|x-\lambda|}{2(1-\lambda)}$$
, $\lambda=\frac{b+a-2x_2}{b-a}$

seulement.

Le nombre x_2 ne coïncide jamais avec a et peut être > ou < que $\frac{2a+b}{2}$. Pour avoir $x_2 \ge \frac{2a+b}{3}$ il faut et il suffit que l'on ait

$$\frac{2}{(b-a)^2} \int_a^b \left[\varphi(t) - \varphi(a) \right] dt - \varphi'_g \left(\frac{2a+b}{3} \right) = \frac{2}{(b-a)^2} \int_a^b (b-t) \varphi'_g(t) dt - \varphi'_g \left(\frac{2a+b}{3} \right) \ge 0.$$

^{1.} Il en résulte que φ a une dérivée continue.

^{2.} S. Saks "O funckjach wypuklych i podharmoniczhych" Mathesis Polska, 6, 43-64 (1931).

I. Tiberiu Popovici "Asupra mediilor aritmetice și geometrice" Gazeta Matematică, 40, 155-160 (1934). M. Knopp a également signalé cette inégalité, comme application, avec une légère erreur dans le second membre.

On démontre exactement comme plus haut pour l'inégalité (2) que :

Pour que x_2 soit $\geq \frac{2a+b}{3}$, quels que soient a et b, il faut et il suffit que la fonction φ soit non-concave d'ordre 2, donc une fonction de $(E_0^1)_2$.

Pour que x_2 soit $\leq \frac{2a+b}{3}$, quels que soient a et b, il faut et il suffit que la fonction φ soit non-convexe d'ordre a.

Le nombre x_2 peut aussi coïncider avec $\frac{a+b}{2}$. Nous avons alors l'énoncé suivant.

Si φ est une fonction de la forme indiquée, f une fonction de $(\mathbf{E}_a^b)_1$ et si

(5)
$$\frac{2}{(b-a)^2} \int_a^b \left[\varphi(t) - \varphi(a) \right] dt - \varphi'_g \left(\frac{a+b}{2} \right) \ge 0,$$

nous avons l'inégalité

$$A_{\varphi} - \varphi(A) \leq \frac{1}{b-a} \int_{a}^{b} \varphi(t)dt - \varphi\left(\frac{a+b}{2}\right)$$

l'égalité n'étant possible que pour la fonction f=a+(b-a)x.

Mais, il est à remarquer que ceci ne peut arriver pour toutes les valeurs de a et b. La propriété résulte de ce qui précède si φ n'est pas non-concave d'ordre 2. Si φ est non-concave d'ordre 2 la dérivée φ' existe, est continue, croissante et non-concave d'ordre 1. Soit ξ , $0 < \xi < 1$ un point où la dérivée seconde $\varphi''(\xi)$ existe et est > 0. Il existe évidemment un tel point 1). Soit alors ε un nombre positif et $<\frac{2\,\varphi''(\xi)}{3}$ et $\eta > 0$ tel que $0 < \xi - \eta < \xi + \eta < 1$ et que

$$\frac{\phi'(\xi) - \phi'(\xi - \eta)}{\eta} > \phi''(\xi) - \epsilon \quad , \quad \frac{\phi'(\xi + \eta) - \phi'(\xi)}{\eta} < \phi''(\xi) + \epsilon.$$

Si nous prenons $a=\xi-\eta$, $b=\xi+\eta$ et si nous tenons compte du fait que φ' reste, dans l'intervalle $(\xi-\eta, \xi+\eta)$, non-audessus des seg-

ments de droites joignant les points de la courbe $y = \varphi'(x)$ pour $x = \xi - \eta$, $\xi, \xi + \eta$, nous trouvons que

$$\frac{1}{2\eta^{2}}\int_{\xi-\eta}^{\xi+\eta} (\xi+\eta-t)\varphi'(t)dt-\varphi'(\xi) \leq \frac{\eta}{12} \left[\frac{\varphi'(\xi+\eta)-\varphi'(\xi)}{\eta} - \frac{5\varphi'(\xi)-\varphi'(\xi-\eta)}{\eta}\right] < \frac{\eta}{12} \left[-4\varphi''(\xi)+6\varepsilon\right] < 0,$$

ce qui démontre la propriété.

Nous n'insistons pas sur cette question. En général, on peut démontrer que si pour un a donné le nombre b est suffisamment près de a on a nécessairement $x_2 < \frac{a+b}{2}$.

4. Faisons quelques applications des formules précédentes.

10. $\varphi = x^p$, p > 1, a = 0, b = 1. L'inégalité (5) s'écrit $2^p \ge p(p+1)$ et nous pouvons énoncer la propriété suivante.

Si f est une fonction de (F), on a l'inégalité

$$\int_{0}^{1} f^{p} dx - \left(\int_{0}^{1} f dx\right)^{p} \leq \begin{cases} (p-1) \left[\frac{2}{p(p+1)}\right]^{\frac{p}{p-1}} & \text{si} \quad 1$$

où p_1 est la racine, comprise entre 4,79 et 4,8, de l'équation $2^p = p(p+1)$. Dans le premier cas l'égalité n'est possible que si

$$f = \frac{x-\lambda+|x-\lambda|}{2(\mathbf{I}-\lambda)}$$
 , $\lambda=\mathbf{I}-2\left[\frac{2}{p(p+\mathbf{I})}\right]^{\frac{1}{p-1}}$

dans le second cas seulement si f=x.

 z^0 . $\varphi = x^p$, 0 , <math>a = 0, b = 1. La fonction φ est concave d'ordre 1 et convexe d'ordre 2. Nous en déduisons que

Si f est une fonction de (E₀), on a l'inégalité

$$\left(\int_{0}^{1} f dx\right)^{p} - \int_{0}^{1} f^{p} dx \leq (\mathbf{I} - p) \left[\frac{p(p+1)}{2}\right]^{\frac{p}{1-p}} \quad \text{si} \quad 0$$

l'égalité n'étant possible que pour la fonction

$$f = \frac{x - \lambda + |x - \lambda|}{2(1 - \lambda)} \quad , \quad \lambda = 1 - 2 \left[\frac{p(p+1)}{2} \right]^{\frac{1}{1-p}} .$$

^{1.} ϕ'' existe, sauf peut-être sur un ensemble au plus dénombrable.

Nous avons, en particulier,

$$\int_{0}^{1} f^{2} dx - \left(\int_{0}^{1} f dx\right)^{2} \leq \frac{1}{9} , \sqrt{\int_{0}^{1} f dx} - \int_{0}^{1} \sqrt{f} dx \leq \frac{3}{16}$$

l'égalité n'étant possible que pour les fonctions

$$f = \frac{3x - 1 + |3x - 1|}{4} , \quad f = \frac{32x - 23 + |32x - 23|}{18}$$

respectivement. La première inégalité est connue et nous la reprendrons dans la cinquième note.

3°. On peut également considérer $\varphi = x^p$, p < 0, a > 0. Dans ce cas \phi est convexe d'ordre I et concave d'ordre 2. Soit, en particulier,

le cas p = -1. Désignons par $H = 1/\int \frac{dx}{f}$ la moyenne harmonique

de f. Nous en déduisons la propriété suivante :

Si f est une fonction de $(E_a^b)_1$, a>0, A et H la moyenne arithmétique et la moyenne harmonique de f, on a l'inégalité

$$\frac{\mathbf{I}}{\mathbf{H}} - \frac{\mathbf{I}}{\mathbf{A}} \leq \frac{\mathbf{I}}{b} \left[\frac{\mathbf{I}}{\sqrt{c}} - \frac{\sqrt{2}}{\mathbf{I} - c} \sqrt{\mathbf{I} - c + c \log c} \right]^2 \quad , \quad c = \frac{a}{b} ,$$

l'égalité n'étant possible que pour une seule fonction de la forme (4) où

$$\lambda = \frac{1+c}{1-c} - \sqrt{\frac{2c}{1-c+c\log c}} , \quad c = \frac{a}{b}$$

 4° . Considérons encore le cas $\varphi = \log x$, a > 0. Cette fonction est concave d'ordre 1 et convexe d'ordre 2. Nous en déduisons la propriété suivante.

Si f est une fonction de $(E_a^b)_1$, a>0, A et G la moyenne arithmétique et la moyenne géométrique de la fonction f, on a l'inégalité

$$\frac{A}{G} \leq \frac{2c(c-1-\log c)}{(c-1)^2 \cdot e^{\frac{1+c}{1-c}}} \left(\frac{1}{c}\right)^{\frac{2c}{(c-1)^2}} , \quad c = \frac{a}{b}$$

l'égalité n'étant possible que pour une seule fonction de la forme (4) où

$$\lambda = \frac{1+c}{1-c} - \frac{1-c}{c-1-\log c} \quad , \quad c = \frac{a}{b} \quad .$$

