NOTES SUR LES GÉNÉRALISATIONS DES FONCTIONS CONVEXES D'ORDRE SUPÉRIEUR (III) 1)

PAR

TIBERIU POPOVICIU

Note présentée par Mr. S. Stoilow, Mc. A. R. das la séance du 9 janvier 1942

LES FONCTIONS D'ORDRE $(n \mid k)$ ET LES FONCTIONS D'ORDRE n PAR SEGMENTS

1. Dans la note précédente 2) nous avons défini les fonctions d'ordre n par segments. Nous allons montrer maintenant qu'il y a une étroite liaison entre ces fonctions et les fonctions d'ordre (n | k) que nous avons étudié dans la note I de cette série 3). Nous allons voir, en effet, que toute fonction d'ordre n par segments est d'un certain ordre (n | k) déterminé et, réciproquement, toute fonction d'ordre (n | k) est d'ordre n par segments.

2. Démontrons d'abord le

Théorème 1. Toute fonction d'ordre n par segments et de caractéristique h est au plus d'ordre $(n \mid (h-1), (n+2))$.

Soit $e = \{x_1, x_2, \ldots, x_m\}$ une suite finie (et ordonnée) de l'ensemble E de définition de la fonction. On peut supposer que parmi ces points au plus 2(n+1) appartiennent à chacun des sous-ensembles Ei de la décomposition canonique. Autrement, en effet, e est certainement réductible.

Si nous avons s > 1, $x_{j-1} \in E_i^{\bullet}$, x_j , x_{j+1} , ..., $x_{j+n+s} \in E_j^{\bullet}$, $x_{j+n+s+1} \in F_{i+1}^*$, la suite

$$\Delta_{n+1}^{j}$$
 $(f), \ \Delta_{n+1}^{j+1}$ $(f), \ldots, \ \Delta_{n+1}^{j+s-1}$ (f)

ne présente pas de variations. Ceci nous montre que le cas le moins avantageux est si m = h(n+2), $x_{(i-1)(n+2)+j} \in E_i^*$, j = 1, 2, ..., n+2, i = 1, 2, ..., h et si la suite d_{n+1} de e présente le nombre

2) Bulletin de la Sec. Sci. de l'Acad. Roumaine t. 22.
2) Disquisitiones Mathematicae et Physicae, 1, 35—42, 1940.

¹⁾ Cette note a été sous presse dans le Bulletin de la Faculté des Sciences de Cernauti en Juin 1940. Ayant réussi a retrouver le manuscrit je le publie maintenant sans modifications.

maximum de variations possibles. En effet, si on ajoute encore des points à un tel e on n'élève pas le nombre des variations de la suite d_{n+1} . La suite d_{n+1} de e a alors h(n+2)-n-1 termes et présente done an plus (h-1) (n+2) variations.

Démontrons maintenant le

Théorème 2. Toute fonction d'ordre n par segments et de caracté-

ristique h est au moins d'ordre $(n \mid h-1)$.

Nous faisons la démonstration par induction sur le nombre h. Pour h = 1 la propriété est évidente car la fonction est alors d'ordre n sur E. Pour h=2, la fonction n'est pas d'ordre n, on peut donc trouver deux disférences divisées $[x_1, x_2, \ldots, x_{n+2}; f]$ $[x'_1, x'_2, \dots, x'_{n+2}; t]$ non nulles et de signes contraires. De la formule de la moyenne des différences divisées il résulte immédiatement que la suite d_{n+1} de la réunion des points x_i , x_i' présente au moins une variation.

Examinons le cas h > 2. Supposons que la propriété soit vraie jusqu'à h-1 et démontrons - la pour h. La fonction étant de caractéristique h-1 sur $E-E_h^*$ on peut trouver, par hypothèse, la suite $\{x_1, x_2, \ldots, x_r, x_{r+1}, \ldots, x_{r+r'}\}$, $x_i \otimes E - E_h^* - E_{h-1}^*, i=1$, $2, \ldots, r, x_{r+1} \otimes E_{h-1}^*, i = 1, 2, \ldots, r'$ telle que la suite d_{n+1} correspondante présente au moins h-2 variations. Il se peut, bien entendu, que r'=0, alors tous les $x_i \in E - E_h - E_{h-1}$. La fonctions étant de caractéristique 2 sur $E_{h-1}^* + E_h^*$, on peut trouver la suite $\{x_1', x_2', \ldots, x_s', x_{s+1}', \ldots, x_{s+s'}'\}$ telle que $x_i' \in E_{h-1}^*$, $i = 1, 2, \ldots, s$, $x_{s+i} \in E_h^*, i = 1, 2, \ldots, s'$ et la suite d_{n+i} correspondante présente au moins une variation. Ici $s \ge 1$, $s' \ge 1$, $s + s' \ge n + 3$, d'après la propriété qui caractérise une décomposition propre. Parmi les points x_i , x_i' appartenant à E_{h-1}' il y a s'' distincts, $r'+s \ge s'' \ge \max(r', s)$. Désignons par e l'ensemble des x_i , x_i distincts appartenant à $E-E_h^*$ et par e' l'ensemble des x_i , x_i distincts appartenant à $E_{h-1} + E_h$. La suite d_{n+1} de la réunion de e et e' est

(4)
$$\Delta_{n+1}^{1}(f), \ \Delta_{n+1}^{2}(f), \dots, \ \Delta_{n+1}^{r+s''+s'-n-1}(f)$$

et alors les suites d_{n+1} de e et de e' sont

(2)
$$\Delta_{n+1}^{4}(f), \Delta_{n+1}^{2}(f), \dots, \Delta_{n+1}^{r+s''-n-1}(f),$$

(3) $\Delta_{n+1}^{r+1}(f), \Delta_{n+1}^{r+2}(f), \dots, \Delta_{n+1}^{r+s''+s'-n-1}(f)$

(3)
$$\Delta_{n+1}^{r+1}(f), \Delta_{n+1}^{r+2}(f), \ldots, \Delta_{n+1}^{r+s''+s'-n-1}(f)$$

respectivement. La suite (2) présente au moins h-2 variations et la suite (3) au moins une variation. Si les suites (2), (3) n'ont pas de termes communs, la suite (1) présente au moins h-1 variations. Si $r'' = s'' - n - 1 \ge 1$, les suites (2), (3) ont les termes communs $\Delta_{n+1}^{r+1}(f), \Delta_{n+1}^{r+2}(f), \ldots, \Delta_{n+1}^{r+r''}(f)$ et cette suite ne présente pas de variations puisqu'elle est la suite d_{n+1} d'une suite de points appartenant à E_{h-1}^* . Il en résulte encore que (1) présente au moins h-1variations. Le théorème 2 est donc démontré.

3. Il reste à montrer que toute fonction d'ordre $(n \mid k)$ est d'ordre npar segments. Il suffira de démontrer que si la fonction n'est pas d'ordre n par segments, elle n'est pas d'un ordre $(n \mid k)$ déterminé. Démontrons d'abord le

Lemme 1. Si la fonction i n'est pas d'ordre n par segments sur E, on peut décomposer cet ensemble en deux sous-ensembles consécutifs $E^{(1)}$, $E^{(2)}$ de manière que :

 4° Sur l'un au moins des ensembles $E^{(1)}$, $E^{(2)}$ la fonction n'est pas d'ordre n par segments.

 2° La fonction n'est pas d'ordre n sur les ensembles $E^{(1)}$, $E^{(2)}$.

Il est clair que E ne peut être un ensemble fini et que chacun des ensembles $E^{(1)}$, $E^{(2)}$ doit avoir au moins n+3 points. La première partie est évidemment vraie pour toute décomposition en deux sous-ensembles consécutifs. Démontrons donc la seconde partie. Soit E_1 , E_2 une décomposition de E en deux sous-ensembles consécutifs, chacun des sous-ensembles ayant au moins n+3 points. Si la fonction n'est pas d'ordre n sur E_1 et sur E_2 la propriété est démontrée et on peut prendre $E^{(1)} = E_1$, $\hat{E}^{(2)} = E_2$. Supposons le contraire, donc que sur l'un des ensembles E_1 , E_2 la fonction soit d'ordre n. Soit, pour fixer les idées, E_1 cet ensemble. Alors E_2 contient une infinité de points et la fonction n'est pas d'ordre n par segments sur cet ensemble. Soit x_0 l'extrémité droite de l'ensemble des $x \in E$ tels que sur l'intersection de E avec l'intervalle (a, x) la fonction soit d'ordre n, a étant l'extrémité gauche de E ($a = \min E$). L'ensemble des x tels que $x_0 > x \, \varepsilon \, E$ est alors infini. Il est clair qu'il existe un $x_1 > x_0$, $x_1 \in E$ tel que la fonction ne soit pas d'ordre n par segments sur l'intersection de E avec l'intervalle (x_1, b) , b étant l'extrémité droite de E ($b = \max E$). En prenant comme $E^{(2)}$ ce dernier ensemble et $E^{(1)} = E - E^{(2)}$ le lemme 1 est complètement démontré.

Nous pouvons maintenant démontrer le

Théorème 3. Si une fonction n'est pas d'ordre n par segments sur E et si k est un nombre naturel, on peut trouver une suite finie de E dont la suite d_{n+1} présente au moins k variations.

Cette propriété démontre, évidemment, qu'une fonction qui n'est pas d'ordre n par segments ne peut être d'un ordre $(n \mid k)$ déterminé.

Passons à la démonstration du théorème. Soit $E^{(1)}$, $E^{(2)}$ une décomposition de E satisfaisant au lemme 1. Désignons par $U^{(1)}$ l'un de ces sous-ensembles sur lequel la fonction n'est pas d'ordre n par segments et soit U_1 l'autre sous-ensemble. Sur U_1 la fonction n'est pas d'ordre n. Nous procédons de la même manière avec $U^{(1)}$ et nous en déduisons un $U_o \subset U^{(1)}$ sur lequel la fonction n'est pas

d'ordre n, tel que sur $U^{(1)} - U_2 = U^{(2)}$ elle ne soit pas d'ordre n par segments. De $U^{(2)}$ nous déduisons, de la même manière U_3 , $U^{(3)}$ et ainsi de suite. Si nous faisons k fois cette opération, nous déduisons les sous-ensembles (sections de E)

$$(4) U_1, \ U_2, \ldots, \ U_k$$

de E, qui sont disjoints et la fonction n'est d'ordre n sur aucun de ces ensembles. Les ensembles (4), rangés dans un certain ordre

$$U_1^{\bullet}, U_2^{\bullet}, \ldots, U_k^{\bullet}$$

donnent une décomposition en sous-ensembles consécutifs de leur somme $U_1 + U_2 + \ldots + U_k$.

La fonction n'étant pas d'ordre n sur les U_{i}^{\bullet} , on peut trouver une suite finie $e_{i} \leq U_{i}^{\bullet}$ dont la suite d_{n+1} présente au moins une variation $i=1,2,\ldots,k$. Il en résulte que la suite d_{n+1} de $e=e_{1}+e_{2}+\ldots+e_{k}$ présente au moins k variations.

Le théorème 3 est donc démontré.

Il est clair qu'on peut obtenir une suite partielle de e dont la

suite d_{n+1} présente exactement k variations.

Remarque. Dans le cas particulier n=-1, il est clair que toute fonction de caractéristique h est d'ordre $(-1 \mid h-1)$ et réciproquement.

4. En nous rapportant aux résultats des notes précédentes, remarquons que si n=-1, toute suite maximisante et irréductible a h termes, dont un appartient à chacun des $E_{\bf i}^*$ de la décomposition canonique. Ce cas ne présente donc pas beaucoup de particularités. Au contraire pour $n\geq 0$ nous pouvons faire d'intéressantes remarques sur les fonctions d'ordre n par segments. Nous allons d'abord examiner le cas n=0, donc le cas des fonctions monotones par segments.

Considérons une décomposition de E

$$(5) E_1, E_2, \ldots, E_m,$$

pour une fonction f, monotone par segments et soient a_i , b_i les extrémités (gauche et droite) de E_i , i = 1, 2, ..., m.

Nous allons considérer maintenant certaines suites finies e_{ε} de E définies de la manière suivante:

1° Si E_i a un seul point ce point appartient à e_{ε} .

2° Si E_i a au moins deux points, il a en commun avec e_{ε} exactement deux points x_i' , y_i' . Si $a_i \in E_i$ on a $x_i' = a_i$ et si a_i n'appartient pas à E_i on a $x_i' = a_i < \varepsilon$. Si $b_i \in E_i$ on a $y_i' = b_i$ et si b_i n'appartient pas à E_i on prend $b_i - y_i' < \varepsilon$.

3°. Le nombre positif ε est assez petit pour que l'on ait $x_i < y_i$ et de plus $f(x_i) \neq f(y_i)$ si la fonction ne se réduit pas à une constante sur E_i (i = 1, 2, ..., m).

Si E n'est pas borné à gauche $(a_1 = -\infty)$, la condition $x_1 - a_1 < \varepsilon$ doit être remplaçée par $x_1' < -\frac{1}{\varepsilon}$ et si E n'est pas borné à droite $(b_m = +\infty)$, la condition $b_m - y_m' < \varepsilon$ doit être remplaçée par $y_m' > \frac{1}{\varepsilon}$. Il peut, bien entendu, arriver qu'il n'y ait qu'un seul e_{ε} .

Ceci arrive si a_i , b_i ϵ E_i , $i=1,2,\ldots,m$ et, en particulier, si E est fini. On voit donc que e_{ϵ} contient deux sortes de points. Les points fixes, qui coincident avec une extrémité a_i , b_i et les points variables qui sont à une distance moindre que ϵ de l'une des extrémités a_i , b_i .

Démontrons maintenant le

Lemme 2. Si les points variables de e_{ε} s'approchent des extrémités a_{i} , b_{i} correspondantes, le nombre des variations de la suite d_{1} de e_{ε} ne

peut pas diminuer.

Il suffit de démontrer la propriété lorsque un de ces points varie. Si ce point est x_1 ou y_m , la propriété est immédiate et le nombre des variations de la suite d_1 ne change pas. Supposons maintenant, pour fixer les idées, qu'un y_i varie. Si la fonction est constante sur E_i le nombre des variations ne change pas. Dans le cas contraire, il n'y a diminution éventuelle du nombre des variations que si $f(x_i)$ — $f(y_i)$, $f(y_i)$ — $f(x_{i+1})$ sont de signes contraires. Ici x_{i+1} désigne le point unique de E_{i+1} si cet ensemble est formé par un seul point. Mais si y_i croit vers b_i , $f(x_i)$ — $f(y_i)$ ne peut diminuer en valeur absolue, donc $f(y_i)$ — $f(x_{i+1})$ ne peut diminuer en valeur absolue. D'autre part, $f(y_i)$ variant dans le même sens, on voit, qu'on ne perd pas de variations dans la suite d_i . On fait la démonstration de la même manière si un x_i décroit vers a_i .

On en déduit que si ε tend vers zéro, le nombre des variations de la suite d_1 de e_{ε} tend vers une limite k, qui est évidemment finie.

On peut aussi dire qu'il existe un nombre positif ε_1 tel que pour $\varepsilon < \varepsilon_1$ la suite d_1 de e_{ε} présente k variations. Si $e_{\varepsilon} = \{x_1, x_2, \dots, x_r\}$ on peut, d'ailleurs, remplacer la suite d_1 de e_{ε} par la suite

(6)
$$f(x_2) - f(x_1), f(x_3) - f(x_2), \dots, f(x_r) - f(x_{r-1})$$

De cette façon chaque décomposition (5) est caractérisée par un certain nombre k. Nous avons le

Théorème 4. La fonction f est d'ordre (0 | k).

En effet, il existe des suites finies e de E dont la suite d_1 présente k variations. Ces sont, en particulier, les suites e_{ε} pour ε assez petit.

² A. R. - Bulletin de la Section Scientifique. Tome XXIV.

Soit maintenant e une suite finie quelconque de E et considérons un e de manière que:

1° $\varepsilon < \varepsilon_1$, ε_1 étant le nombre positif defini plus haut. 2° Si E_i contient plus d'un point et si la partie commune e_i de e et de E_i n'est pas vide, on a e_i \subset intervalle fermé $(x_i, y_i), x_i, y_i$

étant les points de e_{ε} appartenant à E_{i} .

Soient e^* la réunion des suites e, e_{ϵ} . Si de e^* on supprime les points qui n'appartiennent pas à e_{ε} , on ne diminue pas le nombre des variations de la suite d1, ce qui résulte du fait que la fonction est monotone sur chacun des ensembles E_i . Il en résulte que la suite d_1 de e^* présente exactement k variations, donc la suite d_1 de e présente au plus k variations, d'où résulte le théorème 4.

5. Reprenons la décomposition (5). La fonction f est monotone sur E_i . Si a_i , b_i sont toujours les extrémités de E on a ou bien $a_i \otimes E_i$ et nous prenons alors $c_{2i-1} = f(a_i)$, ou bien la limite

$$\lim f(x) = c_{2i-1},$$

$$E_i \ni x \rightarrow a_i$$

existe au sens propre ou est $+\infty$ ou $-\infty$. De même, ou bien $b_i \in E_i$ et nous prenons alors $c_{2i} = f(bi)$, ou bien la limite Is he mounted des variableur de change pas Baux le uns contraire.

im
$$f\left(x
ight) =c_{2i}$$
 , where $\lim_{n\rightarrow\infty} f\left(x
ight) =c_{2i}$

$$E_i \ni x \to b_i$$

existe au sens propre ou est $+\infty$ ou $-\infty$.

En particulier, si E_i est formé par un seul point on a $a_i = b_i$ et $c_{2i-1} = c_{2i} = f(a_i)$.

Considérons la suite

$$(7) c_2 - c_1, c_3 - c_2, \ldots, c_{2m} - c_{2m-1}.$$

Dans cette suite nous convenons, comme d'habitude, que $(+\infty)$ — $-u = u - (-\infty) = (+\infty) - (-\infty) = +\infty > 0, (-\infty) - u = u -(+\infty) = (-\infty) - (+\infty) = -\infty < 0$ si u est un nombre fini. De plus, nous ferons les conventions $(+\infty) - (+\infty) = (-\infty) -(-\infty)=0$. Alors chaque terme de la suite (7) est ou bien nul ou bien a un signe déterminé. La suite (7) peut être regardée comme la limite, pour $\varepsilon \to 0$, de la suite (6) correspondante à un e_{ε} , en supprimant éventuellement certains termes nuls provénant du fait que certains Ei peuvent avoir un seul point. La suite (7) présente done k variations.

De ce qui précède il résulte donc que

Théorème 5. Le nombre des variations de la suite (7), correspondante à la décomposition (5), est indépendant de cette décomposition. Si k est ce nombre, la fonction est d'ordre $(0 \mid k)$ sur E.

On peut établir l'invariance du nombre des variations de la suite (7), indépendamment de la définition, déjà donnée, de l'ordre d'une fonction. On a ainsi une nouvelle définition de l'ordre d'une fonction monotone par segments.

6. Nous allons étendre maintenant les résultats précédents au cas n > 0. Nous allons, tout d'abord, construire les suites e_{ε} dans ce cas. Pour celà précisons les points de es qui appartiennent à un E_i . Soit d'abord $i \neq 1$, m, donc E_i n'est ni le premier ni le dernier terme de la décomposition (5) de E pour la fonction f, d'ordre n par segments. Si E_i a moins de 2 (n+1) points tous ces points appartiennent à e_{ϵ} . Si E_i a au moins 2 (n+1) points il a en commun avec e_{ε} exactement 2 (n+1) points x_i , x_i^i , \dots , $x_i^{(n+1)}$; y_i^i , y_i^i , \dots , $y_i^{(n+1)}$. Convenons que $x_i < x_i^i < \dots < x_i^{(n+1)}$. $y_i^i > y_i^i > \dots > y_i^{(n+1)}$. Si a n'appartient pas à E_i nous prenons $x_i^i - a_i < \varepsilon$, $x_i^i - x_i^i < \varepsilon$, \dots , $a_i^{(n+1)}$. $x_i^{(n+1)} - x_i^{(n)} < \varepsilon$. Si $a_i \in E$, désignons par a_i l'extrémité gauche de $E - a_i$, par a_i'' l'extrémité gauche de $E - (a + a_i)$ et ainsi de suite. Le cas général est que a_i , a_i' , ..., $a_i^{(r-1)}$ sont des points isolés de E_i et $a_i < a_i' < \ldots < a_i^{(r-1)} < a_i^{(r)} = a_i^{(r+1)} = \ldots$ Alors deux cas peuvent se présenter: 1° $a_i^{(r)}$ ε E_i et nous prenons $x_i = a_i$, $x_i^{\varepsilon} = a_i$, \dots , $x_i^{(r+1)} = a_i^{(r)}$, $x_i^{(r+2)} - x_i^{(r+1)} < \varepsilon$, $x_i^{(r+3)} - x_i^{(r+2)} < \varepsilon$, \dots , $x_i^{(n+1)} - x_i^{(n)} < \varepsilon$, 2° $a_i^{(r)}$ n'appartient pas à E_i et nous prenons alors $x_i^{\varepsilon} = a_i$, \dots , $x_i^{\varepsilon} = a_i^{\varepsilon} + a_i$, $x_i^{\varepsilon} = a_i^{$ tous les points x_i ont une position fixe. Les points y_i , y_i' , ..., $y_i^{(n+1)}$ sont distribués de la même manière au voisinage de l'extrémité b_i . Il reste à préciser les points de e_{ε} appartenant à E_1 et à E_m . Si E_1 a moins de n+2 points tous ces points appartiennent à e_{ε} . Si E_1 a au moins n+2 points il a en commun avec e_{ε} exactement n+2 points $x_1, y_1, y_1, \dots, y_1^{(n+1)}$, où les n+1 derniers points sont distribués dans le voisinage de b₁ comme plus haut. Le point x₁ coincide avec a_1 si $a_1 \in E$ et on a $a_1' - a_1 < \varepsilon$ si a_1 n'appartient pas à E_1 . Lorsque $a_1 = -\infty$ nous prenons x_1' tel que $x_1' < -$ Il en est exactement de même pour E_m , sauf qu'ici nous aurons n+1points dans le voisinage de a_m et un point dans le voisinage de b_m . De cette façon l'ensemble e_{ε} est parfaitement caractérisé. Si le nombre positif ε est assez petit, on a $x_i^{(n+1)} < y_i^{(n+1)}$, $i=2,3,\ldots,m-1,x_i'< y_i^{(n+1)}$, $x_m^{(n+1)}< y_m$. Il peut encore arriver que e_{ε} soit

complètement déterminé. C'est ce qui arrive, par exemple, si E est fini et ε est suffisamment petit. En général, les points de eε sont les uns fixes et les autres variables en décroissant vers a: ou en croissant

Nous avons encore le

Théorème 6. Il existe un nombre positif ε_1 , tel que, pour $\varepsilon < \varepsilon_1$,

la suite d_{n+1} de e_{ε} présente le même nombre k de variations.

Nous allons suivre ici, pour la démonstration, une voie un peu différente de celle dans le cas n = 0. La fonction étant d'ordre npar segments, le nombre des variations de la suite d_{n+1} d'une suite e a un maximum, autrement dit la fonction est d'un certain ordre (n | k). Soit e une suite maximisante et et la partie de e appartenant à \dot{E}_i . Considérons alors une suite $e_{m{arepsilon}}$. Si arepsilon>0 est assez petit tous les points de e_i qui n'appartiennent pas à e_{ε} sont dans l'intervalle $(x_1^{(n+1)}, y_1^{(n+1)})$ [ou $(x_1, y_1^{(n+1)})$ si $i = 1, (x_m^{(n+1)}, y_m)$ si i = m]. Il en résulte que les suites d_{n+1} de e_{ε} et de la réunion e^* de e et e_{ε} présentent le même nombre de variations. Mais e étant maximisante, e^* est aussi maximisante, donc la suite d_{n+1} de e_{ε} présente k variations et le théorème est démontré.

On peut énoncer la propriété précédente aussi sous la forme

suivante:

Théorème 7. Si $\varepsilon > 0$ tend vers zéro, le nombre des variations de la suite d_{n+1} de e_{ε} tend vers une limite. Si k est cette limite, la fonction est d'ordre $(n \mid k)$ sur E.

Soit $e_{\varepsilon} = \{x_1, x_2, \dots, x_r\}$. La suite d_{n+1} de e_{ε} peut être remplaçée

a suite
$$\Delta_n^2(f) \longrightarrow \Delta_n^1(f), \ \Delta_n^3(f) \longrightarrow \Delta_n^2(f), \ldots, \ \Delta_n^{r-n}(f) \longrightarrow \Delta_n^{r-n-1}(f).$$

Donc si $\varepsilon \to 0$, le nombre des variations de cette suite tend vers k. On peut encore introduire une suite analogue à (7), en utilisant les dérivées jusqu'à l'ordre n des fonctions d'ordre n et les limites de ces dérivées lorsqu'on s'approche d'une extrémité ai ou bi et qui existent toujours au sens propre ou impropre. Nous laissons de côté cette généralisation.

state the state of the state of