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SUR CERTAINS DETERMINANTS DEDUITS
DU DETERMINANT DE VANDERMONDE

PAR
D. V. IONESCU.

1. Considérons le déterminant de Vandermonde

1 5y £ .. g7
2 n-1
“) V= 1 X X2 . . . X
2 n-1
1 Xp Xy . . Xn
ainsi que les déterminants
2 — _
1 x, £ .. . g gt
i
- ~142
. 11 a8 X
‘2) v’ = ] 2
—2 -
1 x, % .. .o P l

quon déduit du déterminant de Vandermonde en remplagant la dernidre
colonne par x]~'F*, &571P xi7'H 5 &tant un entier quelconque positif.
Pour p=0, 0on a Vo=V,

M. Th. Anghelutza a montré dans un article un procédé simple et
élégant pour calculer ces déterminants.

On a démontré que
(3) V,=VS,,
oit S, est un polynome homogene et de degré p, de variables x,, X,,..., ¥n
ayant tous les coefficients égaux a unité.

2. Considérons 1’équation

(4) AT A =0,
dont les racines sont x,, x,,..., X,.
) Th. Anghelufd. Formarea citului §i restului imparfirii a doud polinoame, cind

impirfitorul este descompus in factori de gradul Intii. Gazeta Matematici, 1940,
XLV, p. 459.
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On démontre sans difficulté les relations suivantes
V,+A,V,=0
VoA VA V=0
(2) Vot A Varr+ A Vaca -+ Au Vo =0
V,.+1+A|V,.+A-_.Vn—1+‘ '--{-AnV, =0
Vu+2+ A] vn+l + Ag Vn+ et + A,, V2=0.
A laide de ces relations on démontre immédiatement la formule (3).
En effet considérons le développement en série suivant les puissances de 4

W=V, AV, 42Vt - 2V, 4
En multipliant la premiére des relations (5) par 4, la seconde par 4%, . ..
ét en les ajoutant on obtient )
W= Vo
1A A-A 22 - AL 2

— V .
Tl —2x)il —Ax)...(1—2x,)

on bien
16} \

V, est le coefficient de 2° dans le développement du second membre de la
formule (6) suivant les puissances de 4.
Tenant compte du fait que
1
M=2x)l —Ax)...(1—42x,)

=14+8,4+ 8,8+ +85, 24
on a immédiatement la formule (3)

3. Si ’on cherche a intégrer les équations (5) suivant la méthode classique,
on est conduit 3 des nouveaux déterminants.
Il s’agit dintégrer I’équation de récurence

(7) V,,.+Al VM—1+"' +Anvm—n=0;
ot m=n, n41, n+2,..., avec les conditions suivantes
V,+A,V,=0

V. +ALY, +A,V,=0
®) e
Vn-—t + A; Vn—z + Ag V,,_J + LR + Ayt Vo =0.
L’équation caractéristique de ’équation (7) est I’équation (4), dont les
racines sont X,, Xo,...) Xn-



5b L D. V. Yonesca

L’intégrale générale de P’équation (7} est

(9) vm=c1 xr+cr‘t;+"'+cn x::‘
ot C,, C;,..., C, sont des constantes par rapport i Vindice m.

Mais pour résoudre notre probléme il faut choisir les constantes
C,, Cy,..., C, de fagon a satisfaire aux conditions (8).

En faisant dans la formule (9) m=0, 1, 2,..., n— 1, nous avons

Vo=C,+C 4+ +C,

(10) V1=C1x1+c:xz+"'+cnxn

Vuey =C, 574G, 45 ‘+ FCu ™
et en formant les équations (8), nous aurons les équations
v=C_C,+:--+C,
0=, +A}Ci+- -+ {4+ A)C,s
0 —(x|+A X.+A=)C +-- +(xn+A xn+A2)C~

0= (xr ’+A A ’+ A Gt (x"“+A, B4 A Ca,
pour déterminer C,, C,,..., C,.
En posant ) )
Bis=xa+4 A, '+ + A,
et en remplacant successivement
'Al = — Xtp— ka,

A=Y+,

. " Pk
A==l gy oo+ =1 yr. 0

ot X, % ...x, est la somme des produits des nombres qui entrent dans les

combinaisons Ch des nombres x,, x,, x, excepté le nombre x5, nous aurons

Bia=(—1 2% 5. .x.
On peut donc écrire les équations (10) sous la forme suivante
v=C_C+4---4+C,
0= (zl 05)C 4+ (Z"%)C,
(11) 0—{2 xlx.)Cl-F (2 r. x,)C

0= (24 Xy Xy . xn-wl) (‘1 + + (2" Xy Xy X,...]) C,, .
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En eliminant C, C,,..., C. entre les équatibns (11) et ’équation (9),
nous aurons

Vo X B e e x5
\Y% 1 L 1
(12) 0 ' D PN X x =0.

0 Srr.xy ke ... 2x x;...x,,_l
Dans cette formule le coefficient de V,, est:
1

— x4+ Ay
0= A+A x4 A
(=17 T A AT A)

| S

ou

x, . Xn
1424 (n—1)
d={(—1) g .. P )
x‘n-l x‘u—l
1 .
c’est-a-dire
nin — 1)

b=(=1 % V.

En développant e déterminant (12) suivant la premitre colonne nous
aurons

m "

X3 X2
wer = 1) Ok X, 3 X, ...
(_1) 2 Vv,—V E'xlx., szlx, .. =0

1 ’ 2
ox xe e Xum TOx, Xp . Xy
d’oit ré;ulte la formule que nous avons en vue:

m

1 1 1
I Y PRE 7D Y A NN

"” . . 2 oot
(13] A= 2 22 %1 szl Xy . . X Xy Xy oo Ky =(-1} 2 : Viu

Pl SE TR YE A NP Y A AP

et en tenant compte de la formule (3}, nous aurons
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nin - 1)

1134 A,=(—1} 2 V.S,.

Ce sont les formules {13) et (13/) que nous avons voulu mettre en évi-
dence dans ce travail.

Par exemple pour 7 =4, nous aurons

g xtxtr nntonxntrr L 1 % o g0
5 x’+x‘+x‘ X3 x‘+x‘ %y +xl Xy Xy XXy 1 x Xg x'z"”
5 oxtntr axntrnntdane onxn - 1 5 5 &7
5ogtntn antantag anx 1 x £ "

c’est-a-dire
- .
5 ntxtr, nxFrx e xrx,

¥y xytx4n xx,dxxdrx xxon
=V.S,..
x5 ontadtx rxodardrnx xunx

5 adntn nntoaten nnx

La formula (13) a été établie pour m=un, n+1,... Nous allons prouver
maintenant qu’elle est valable encore pour m =0, 1,..., n—1.

4. Remarquons d’abord que pour m =0, le déterminant 4, est identique
au déterminant 6 du numéro précédent. Nous avons donc
”nin=1)

(14) Ay=d=(—1} 2 V,

et cette formule est en accord avec la formule (13/).
Pour prouver que la formule {13/} convient encore pour m=1,2,...,n—1,
il suffit de démontrer les relations
A+ A j =0
Ay 4+ Ay A+ A A =0
Buoy+ Ay Bzt Au A =0
identiques aux formules (8).

En tenant compte de la formule (14} il résultera que

nin -1)

Ai=(—1 2 Vi  (i=1,2...,0—1)
ce qui prouvera que la formule (13/) est démontrée.
Nous avons:
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x{—l—A,xi"-{»— cooA; DT ..E'x,x,...x,.-,
i i—1 2 2
At A b A A= xot-Ayxys - A Yo Tanx. cxan
xf,-}-A,xf,_'-i—----I—A.- 2”4\'1 ...E"xlxg...x,,_|
Mais nous avons démontré que
Gt A A== k.

de sorte que
1 ) 1
Tax,...xs Zx . . o TXX5.0.X0y

Bt Ay sy 4 - A by = Pax...n Xx Tk, Xy Kney
Txxp.x X% . . . Tlrixe.. Xy
Pour i=1, 2,..., n—1, ce déterminant est nul ayant deux coionnes
identiques. Nous avons donc

A.‘+ AlA,'_|+"'+A;A°=0.
La formule {13’) est donc démontrée pour toutes les valeurs de m
Comme exemples de la formule (13/), nous avons les identités suivantes
bien connues:

X, xXgFxg xyxy
%y xgbx, xyxp|=—n—x) ln—x) (4—x) (x; 45t 5},
Xy xtxy xx
0 oatr x Xy

5 Lydxy  xyx, [= — I —x) e —x) ey —xy) (xf+x§+x§+x, XX xytxy X))

2
X3 Xpfxy x %



