REFERENCES

[1] Choczewski B., Regular solutions of a linear functional equation of the first order. Nehézipari Müszaki Egyetem Közleményei, Miskolc, 140-145 (1969).

[2] Choczewski B., Some theorems on the existence of a one-parameter family of C1 solu-

tions of a linear functional equation. Mathematica, Cluj 10(33), 47-51 (1968). [3] Choczewski B. and Kuczma M., On the ,, indeterminate case" in the theory of a linear functional equation. Fund. Math. 58, 163-175 (1966).

[4] Kuczma M., Sur l'équation fonctionnelle de Böttcher. Mathematica, Cluj, 8 (31), 279-285 (1966).

[5] Kuczma M., Functional equations in a single variable. PWN, Warszawa, 1968.

buildings of the read out to Dong with the Tong out the Thomas of the Atlanta

the amount of about a first and a grade of the first transfer and

E-man b. Luy expended to a high a well as the market p meet

troinalizating a soled name rate) "nor of " in the are " to the sie

[6] Thron W. J., Sequences generated by iteration. Trans. Amer. Math. Soc., 96, 38-53

has after a grant control to the

Received 16, III, 1970

ON UNIFORM APPROXIMATION BY FUNCTIONS HAVING RESTRICTED RANGES

GH. CIMOCA Cluj

1. Introduction

It has recently been studied by A. C. BACOPOULOS [1], F. DEUTSCH [4], J. W. KAMMERER [5], P. J. LAURENT [6] and G. D. TAYLOR [8] some problems of uniform approximation of continuous functions by functions

In this note we shall examine a problem of uniform approximation having restricted ranges. of real-valued continuous functions on a compact metric space, which is a generalization of all problems studied in the above mentioned papers. Thus we shall discuss in detail the existence and the characterization of the best approximations to a given continuous function. Finally we give some results concerning the uniqueness of the best approximation.

2. Definitions and notations

Let T, U, L be compact sets, not necessarily disjoints, of a metric space $S = T \cup U \cup L$ and let C(S) denote the linear space of all real-valued continuous functions defined on S.

Let $M = [\varphi_1, \varphi_2, \dots, \varphi_n]$ be an *n*-dimensional linear subspace of C(S), where the functions $\varphi_1, \varphi_2, \ldots, \varphi_n$ form a basis for M.

We shall fix away a couple (u, l) of extended real-valued functions $u: U \to \overline{R}$ and $l: L \to \overline{R}$ subject to the following restrictions:

$$u: U \to \overline{R} \text{ and } l: L \to R \text{ subject to the lone way}$$

$$\{s \in U: u(s) = -\infty\} = \emptyset \quad \text{but}$$

$$\{s \in U: u(s) = +\infty\} = U_{+\infty} \quad \text{may be not empty.}$$

To Wash - A ch.

 ${s \in L: \ l(s) = +\infty} = \emptyset$ (ii) but $\{s \in L: \ l(s) = -\infty\} = L_{-\infty}$ may be not empty.

(iii)
$$U_{+\infty}$$
 is an open subset of U and $L_{-\infty}$ is an open subset of L .

(iv)
$$u$$
 is continuous on $U^* = U - U_{+\infty}$ and l is continuous on $L^* = L - L_{-\infty}$.

(v) If
$$s \in U \cap L$$
 then $u(s) > l(s)$.

Then define the set of approximating functions:

$$\overline{M} = \{ p \in M : l(s) \leq p(s), s \in L \text{ and } p(s) \leq u(s), s \in U \}.$$

Let

$$||f|| = \max_{s \in T} |f(s)| \text{ for } f \in C(S).$$

Definition. A function $p_0 \in \overline{M}$ is said to be a best approximation in \overline{M} to $f \in C(S)$ if

$$\rho(f) = ||f - p_0|| = \inf_{p \in \overline{M}} ||f - p||.$$

Remarks. 1) If T = U = L we obtain the approximation problem studied in [8].

2) If $U = \emptyset$ and $l = f \in C(S)$ respectively $L = \emptyset$ and $u = f \in C(S)$ we obtain the one-sided approximation problem of functions [5], [6] and a generalization if $l \neq f$ respectively $u \neq f$.

3) If $U = \{s_1, s_2, \ldots, s_k\}, k < n, L = \emptyset$ we get the approximation problems with interpolatory and s-interpolatory constraints [4], [7], [1].

3. Existence of best approximations

We begin this section by proving an existence theorem.

THEOREM 3.1. If \overline{M} is nonempty for the couple (u, l) then there exists at least one best approximation $p_0 \in \overline{M}$ to $f \in C(S)$.

Proof. We observe immediately that \overline{M} is a closed convex subset of M. If $p^* \in \overline{M}$ is not a best approximation to f then:

And the second of
$$\eta = ||f - p^*|| > \rho(f)$$

and for $p \in M$ such that $||p - p^*|| > 2\eta$ we give:

$$||f - p|| \ge \left| ||p - p^*|| - ||p^* - f|| \right| > \eta.$$

Therefore the infimum for ||f-p|| may be attained only in the closed ball:

$$D = \{ p \in M : ||p - p^*|| \le 2\eta \}.$$

Hence

2 3

$$\rho(f) = \inf_{p \in \overline{D}} ||f - p||, \quad \overline{D} = D \cap \overline{M},$$

the infimum being attained taking into account that \overline{D} is compact. It is possible to prove in an easy way the following statement:

THEOREM 3.2. If $f \in C(S)$ then the set of the best approximations in \overline{M} to f is a convex set.

4. Characterizations of best approximations

To begin the characterization theorems of best approximations in \overline{M} to the elements of C(S) we define for $p_0 \in \overline{M}$ and $f \in C(S)$ the following critical points sets:

$$\gamma_{0}^{+} = \{s \in T : f(s) - p_{0}(s) = ||f - p_{0}||\}
\gamma_{0}^{-} = \{s \in T : f(s) - p_{0}(s) = -||f - p_{0}||\}
\gamma_{0}^{u} = \{s \in U : p_{0}(s) = u(s)\}
\gamma_{0}^{l} = \{s \in U : p_{0}(s) = l(s)\}
\Gamma_{0}^{+} = \gamma_{0}^{+} \cup \gamma_{0}^{l}, \quad \Gamma_{0}^{-} = \gamma_{0}^{-} \cup \gamma_{0}^{u}
\overline{\Gamma_{0}} = \gamma_{0}^{+} \cup \gamma_{0}^{-}, \quad \Gamma_{0} = \Gamma_{0}^{+} \cup \Gamma_{0}^{-}.$$

It is easy to prove

Lemma 4.1. If

4.1. If
$$\Gamma_0^+ \cap \Gamma_0^- \neq \emptyset$$

then $p_0 \in \overline{M}$ is a best approximation to $f \in C(S)$.

For the remainder of this note we assume that the function $f \in C(S)$ is taken such that the hypothesis:

$$(H_1) \qquad \qquad \Gamma_0^+ \cap \ \Gamma_0^- = \emptyset \ \text{for all } p_0 \in \overline{M},$$

is satisfied.

Remark. If $f \in C(S)$, $f \notin \overline{M}$ and

$$u(s) \ge f(s)$$
, $s \in U$ and $f(s) \ge l(s)$, $s \in L$,

then f satisfies $(\mathbf{H_1})$.

THEOREM 4.2. If M is a subspace with identity and $p_0 \in \overline{M}$ is a best approximation to $f \in C(S)$, then the sets Γ_0^+ and Γ_0^- are nonempty.

Proof. We shall prove by contradiction only that $\Gamma_0^+ \neq \emptyset$. Suppose $\Gamma_0^+ = \gamma_0^+ \bigcup \gamma_0^l = \emptyset$. Because $\gamma_0^l = \emptyset$:

$$\alpha = \min_{s \in L^{\bullet}} \{ p_0(s) - l(s) \} > 0$$

and from $\gamma_0^+ = \emptyset$ we give:

$$f(s) = p_0(s) < \rho(f), \quad s \in T.$$

Then

$$\max_{s \in T} \{f(s) - p_0(s)\} = \rho(f) - 2\beta \leq \rho(f) - 2h$$

where

$$0 < h = \min \{\alpha, \beta\}.$$

Therefore for all $s \in T$ we have

$$-\rho(f) \le f(s) - p_0(s) \le \rho(f) - 2h$$

and immediately

$$-\rho(f)+h\leq f(s)-\{p_0(s)-h\}\leq \rho(f)-h.$$

As $p_0 - h \in \overline{M}$ and

$$|f(s) - \{p_0(s) - h\}| \leq \rho(f) - h, \quad s \in T$$

we obtain the desired contradiction. noise and the last a self and made

THEOREM 4.3. If for a function $p_0 \in \overline{M}$ there exists a function $p \in M$ satisfing

(1)
$$p(s) > 0 \text{ for all } s \in \Gamma_0^+, \text{ and}$$

$$p(s) < 0 \quad for \quad all \quad s \in \Gamma_0^-$$

then p_0 is not a best approximation to $f \in C(S)$.

Proof. We shall prove that for an $\varepsilon > 0$ the function $\widetilde{p} = p_0 + \varepsilon \cdot p$ is from \overline{M} and

$$||f-\widetilde{p}||<||f-p_0||$$
. And the second is

First we observe that Γ_0 , γ_0 , γ_0^u are compact sets. If $\alpha = \min |p(s)|$ then $\alpha > 0$. For the remainder of this proof we denote $\sigma(s_0, \delta)$ an open ball with the radius δ in the metric space S. Since p is a uniform continuous function on S there exists a $\delta > 0$ such that:

3)
$$|p(s)| > \alpha \text{ and } |f(s) - p_0(s)| > r\rho,$$

for all $s \in \sigma(s_0, \delta)$ and for all $s_0 \in \overline{\Gamma}_0$, where 0 < r < 1 and $\rho = ||f - p_0||$,

(4)
$$p(s) < 0$$
 for all $s \in \sigma(s_0, \delta)$ and for all $s_0 \in \gamma_0''$,

(5) p(s) > 0 for all $s \in \sigma(s_0, \delta)$ and for all $s_0 \in \gamma_0^l$.

$$\Sigma_0 = \bigcup_{s_0 \in \overline{\Gamma}_0} \sigma(s_0, \delta) \cap T$$
 and $\widetilde{T} = T - \Sigma_0$,

$$\Sigma_0^u = \bigcup_{s_0 \in \Upsilon_0^u} \sigma(s_0, \delta) \cap U \text{ and } \widetilde{U} = U - \Sigma_0^u,$$

$$\Sigma_0^l = \bigcup_{s_0 \in \gamma_0^l} \sigma(s_0, \delta) \cap L$$
 and $\widetilde{L} = L - \Sigma_0^l$, with A and A

where \widetilde{T} , \widetilde{U} , \widetilde{L} are compact sets. To determine the desired ε we consider the following cases:

3 — Mathematica Vol. 12(35) — fascicola 2/1970

Next we define

a) Let $s \in \Sigma_0$. Then:

$$|f(s) - \widetilde{p}(s)| = |f(s) - p_0(s) - \varepsilon p(s)| \le |f(s) - p_0(s)| - \varepsilon |p(s)|$$

if $|f(s) - p_0(s)| > \varepsilon |p(s)|$, that is $\varepsilon < r \rho m^{-1}$ with $m = \max_{s \in S} |p(s)|$. In this case $|f(s) - \widetilde{p}(s)| \le \rho - \varepsilon \alpha < \rho$.

b) Let $s \in \widetilde{T}$. If denote $\widetilde{\rho} = \max_{s \in \widetilde{T}} |f(s) - p_0(s)|$ we certainly have $\widetilde{\rho} < \rho$. Then

$$|f(s) - \widetilde{p}(s)| \leq \widetilde{\rho} + \varepsilon m < \rho$$
 if $\varepsilon < (\rho - \widetilde{\rho})m^{-1}$.

c) Let $s \in \Sigma_0^u$. Then

$$u(s) - \widetilde{p}(s) = u(s) - p_0(s) - \varepsilon p(s) > 0$$
 because $u(s) \ge p_0(s)$ and $-\varepsilon p(s) > 0$.

d) Let
$$s \in \widetilde{U}$$
. Denote $\alpha_u = \min_{s \in \widetilde{U}} \{u(s) - p_0(s)\} > 0$. Then $u(s) - \widetilde{p}(s) \ge \alpha_u - \varepsilon m > 0$ if $\varepsilon < \alpha_u m^{-1}$.

e) Let $s \in \Sigma_0^l$. Then

 $\widetilde{p}(s) - l(s) = p_0(s) - l(s) + \varepsilon p(s) > 0$ because $p_0(s) \ge l(s)$ and $\varepsilon p(s) > 0$.

f) Let $s \in \widetilde{L}$. Denote $\alpha_l = \min_{s \in \widetilde{L}} \{ \phi_0(s) - l(s) \} > 0$.

Then $\widetilde{p}(s) - l(s) \ge \alpha_l - \varepsilon m > 0$ if $\varepsilon < \alpha_l m^{-1}$.

Thus if

$$0 < \varepsilon < \min m^{-1} \{ r \rho, \rho - \widetilde{\rho}, \alpha_u, \alpha_l \},$$

the function $\widetilde{p} = p_0 + \varepsilon p$ is in \overline{M} and

$$||f-\widetilde{p}||<||f-p_0||.$$

Remark. By the Theorem 4.3., the Theorem 4.2. it may be proved without the additional hypothesis that M is a subspace with identity.

The next characterization theorem is a corolar of the Theorem 8 from [2]. We shall give a direct proof in the case $\gamma_0^u = \gamma_0^l = \emptyset$.

THEOREM 4.4. The function $p_0 \in \overline{M}$ is a best approximation to $f \in C(S)$ if and only if for any function $p \in \overline{M}$ there exists a point $s' \in \Gamma_0^+$ such that

 $p(s') \leq p_0(s')$

or a point $s'' \in \Gamma_0^-$ such that

$$p(s'') \ge p_0(s'').$$

Proof. Sufficiency. If $p \in \overline{M}$ and $s' \in \gamma_0^+$ then

$$||f - p_0|| = f(s') - p_0(s') \le f(s') - p(s') \le ||f - p||.$$

If $s'' \in \gamma_0^-$ we obtain

7

$$||f - p_0|| = p_0(s'') - f(s'') \le p(s'') - f(s'') \le ||f - p||.$$

Necessity. By contradiction. Let $p_0 \in \overline{M}$ be a best approximation to $f \in C(S)$ and suppose that (6) and (7) are not satisfied. That is, there exists $p \in \overline{M}$ such that

$$p(s) > p_0(s)$$
 if $s \in \gamma_0^+$ and $p(s) < p_0(s)$ if $s \in \gamma_0^-$.

Also by continuity and compactness considerations there exists a $\delta > 0$ such that

$$p(s) - \delta \ge p_0(s)$$
 if $s \in \gamma_0^+$ and $p(s) + \delta \le p_0(s)$ if $s \in \gamma_0^-$.

Now we take a number ϵ satisfing $0 < \epsilon < \delta$ and consider the sets:

$$V^{+} = \left\{ s \in T : p(s) - \varepsilon > p_{0}(s) \text{ and } f(s) - p_{0}(s) > \frac{\rho(f)}{2} \right\},\$$

$$V^{-} = \left\{ s \in T : p(s) + \varepsilon < p_{0}(s) \text{ and } f(s) - p_{0}(s) < -\frac{\rho(f)}{2} \right\}.$$

It is straightforward to establish that $\gamma_0^+ \subseteq V^+$, $\gamma_0^- \subseteq V^-$, $V^+ \cap V^- = \emptyset$ and also by continuity considerations that V^+ and V^- are open sets in T. If we denote $Z = T - (V^+ \cup V^-)$ and $\rho = \max_{s \in Z} |f(s) - p_0(s)|$ then $\rho < \rho(f)$.

Next let

$$\mu_{u} = \min_{s \in U^{\bullet}} |u(s) - p_{0}(s)| > 0, \quad \mu_{l} = \min_{s \in L^{\bullet}} |l(s) - p_{0}(s)| > 0.$$

.

Now we select $\lambda > 0$ such that $\lambda v < \eta$ where $v = \max_{s \in S} |p_0(s) - p(s)|$ and $\eta = \min \left\{ \rho(f) - \overline{\rho}, \frac{\rho(f)}{2}, \mu_u, \mu_l \right\}.$

Finally we will show that $\tilde{p} = p_0 - \lambda(p_0 - p)$, certainly from \overline{M} , is the best approximation.

Letting $\widetilde{\rho} = \max_{s \in T} |f(s) - \widetilde{p}(s)|$ the proof will be completed by showing that $\widetilde{\rho} < \rho(f)$.

Indeed:

1) If $s \in Z$ we have

$$|f(s) - \widetilde{p}(s)| \leq |f(s) - p_0(s)| + \lambda |p_0(s) - p(s)| < \overline{\rho} + \rho(f) - \overline{\rho} = \rho(f)$$

' and are 's fro T. BA H Application as

2) If $s \in V^+$ we obtain

$$|f(s) - \widetilde{p}(s)| = f(s) - p_0(s) - \lambda \{p(s) - p_0(s)\} \le \rho(f) - \lambda \varepsilon$$

using the definition of the set V^+ and the choice of λ .

3) If $s \in V^-$ then

$$|f(s) - \widetilde{p}(s)| = p_0(s) - f(s) - \lambda \{p_0(s) - p(s)\} \leq \rho(f) - \lambda \varepsilon$$

using the definition of the set V- and the choice of λ .

The necessity of the next theorem may be proved only if M verifies the hypothesis:

 (\mathbf{H}_2) There exists at least one $p \in M$ such that the inequalities

$$p(s) < u(s)$$
 if $s \in U$ and $p(s) > l(s)$ if $s \in L$

are satisfied.

THEOREM 4.5. Suppose that (\mathbf{H}_2) is verified. The function $p_0 \in \overline{M}$ is a best approximation to $f \in C(S)$ if and only if there exists k points $(k \le n+1)$: s_1, s_2, \ldots, s_k in Γ_0 (at least one in $\overline{\Gamma}_0$) and a functional of the form:

$$\Phi(p) = \sum_{i=1}^k \alpha_i \, p(s_i), \quad p \in C(S)$$

such that:

(8)
$$\Phi(p) = 0 \quad \text{if} \quad p \in M, \quad and$$

(9)
$$\alpha_i > 0 \quad \text{if} \quad s_i \in \Gamma_0^+ \quad \text{and} \quad \alpha_i < 0 \quad \text{if} \quad s_i \in \Gamma_0^-.$$

Proof. Sufficiency. Suppose that $p_0 \in \overline{M}$ verifies the conditions of the theorem but it is not a best approximation to $f \in C(S)$. Let $p_1 \in \overline{M}$ be a best approximation to $f \in C(S)$, that is

$$\rho(f) = ||f - p_1|| < ||f - p_0||.$$

Letting $\tilde{p} = p_1 - p_0 = (f - p_0) - (f - p_1)$ we see that $\tilde{p} \in M$ and:

$$\tilde{p}(s_i) > 0$$
 if $s_i \in \gamma_0^+$ and $\alpha_i > 0$,

$$\tilde{p}(s_i) < 0$$
 if $s_i \in \tilde{\gamma_0}$ and $\alpha_i < 0$,

$$\tilde{p}(s_i) \leq 0$$
 if $s_i \in \gamma_0''$ and $\alpha_i < 0$,

$$\widetilde{p}(s_i) \ge 0$$
 if $s_i \in \gamma_0^l$ and $\alpha_i > 0$.

Because at least one of s_i is in $\overline{\Gamma}_0$ we have:

$$\Phi(\widetilde{p}) = \sum_{i=1}^k \alpha_i \, \widetilde{p}(s_i) > 0$$

that is in contradiction with (8).

Neccesity. Let $p_0 \in \overline{M}$ be a best approximation to $f \in C(S)$.

Denote

$$\mathcal{G} = \{\xi(s)\hat{s} : s \in \Gamma_0\} \subset \mathbb{R}^n$$

where

$$\xi(s) = \begin{cases} +1 & \text{if} & s \in \Gamma_0^+, \\ -1 & \text{if} & s \in \Gamma_0^-, \end{cases}$$

$$\hat{s} = (\varphi_1(s), \ldots, \varphi_n(s))$$

and R^n is the Euclidean *n*-dimensional space. First we prove by contradiction that the origin θ of the R^n space belongs to the convex hull $Co(\mathcal{G})$ of \mathcal{G} . Indeed if $\theta \notin Co(\mathcal{G})$, $Co(\mathcal{G})$ being a compact set (because \mathcal{G} is compact) there exists a support hyperplane. Thus there exists $\tau > 0$ and β_j , $j = 1, \ldots, n$ such that:

$$\sum_{j=1}^n \beta_j z_j \ge \tau \qquad \text{for any } z = (z_1, \ldots, z_n) \in \mathrm{Co}(\mathcal{G}).$$

In particular for the points of & we have:

$$\sum_{j=1}^{n} \beta_{j} \, \varphi_{j}(s) \ge \tau > 0 \quad \text{if} \quad s \in \Gamma_{0}^{+} \qquad \text{and}$$

$$-\sum_{j=1}^{n}\beta_{j}\,\varphi_{j}(s)\geq\tau>0\quad\text{if}\quad s\in\Gamma_{0}^{-}.$$

Letting $p = \sum_{i=1}^{n} \beta_i \varphi_i$ we get that $p \in M$. By Theorem 4.3 we obtain that p_0 is not a best approximation. Thus $\theta \in Co(\mathcal{G})$. Consequently by Carathéodory's theorem on convex sets in R" there exist k points $(k \le n+1)$ $z^{(1)}, \ldots, z^{(k)}$ in \mathcal{G} such that

$$\theta \in \text{Co } \{z^{(1)}, \ldots, z^{(k)}\}.$$

Let s_1, \ldots, s_k be the points in S corresponding to $z^{(1)}, \ldots, z^{(k)}$. Thus

$$\theta = \sum_{i=1}^{k} \delta_{i} z^{(i)}, \qquad \sum_{i=1}^{k} \delta_{i} = 1, \qquad \delta_{i} > 0, \quad i = 1, \ldots, k,$$

or in projection

$$0 = \sum_{i=1}^{k} \delta_i \, \varepsilon_i \, \varphi_j(s_i), \qquad j = 1, \ldots, n,$$

where

$$\varepsilon_i = \begin{cases} +1 & \text{if} & s_i \in \Gamma_0^+ \\ -1 & \text{if} & s_i \in \Gamma_0^- \end{cases}.$$

Taking $\alpha_i = \delta_i \cdot \varepsilon_i$ we obtain the functional $\Phi(p) = \sum_i \alpha_i p(s_i)$, which satisfies the conditions (8) and (9).

Now we shall prove that at least one of s_i belongs to $\overline{\Gamma}_0$. We have the cases:

- a) If $s_i \in U T$ then for any $p \in \overline{M}$ we get $p(s_i) = u(s_i)$. Indeed, if for an index $p(s_i) < u(s_i) = p_0(s_i)$, then $\Phi(p_0 p) < 0$ which is a contradiction.
- b) If $s_i \in L T$ then for any $p \in \overline{M}$ we get $p(s_i) = l(s_i)$, using the above way.

By the hypothesis (H2) the proof is complete.

Now we use a last hypothesis:

(H₃) M is an n-dimensional Haar subspace of C(S). That is, M is an n-dimensional subspace of C(S) such that the zero function is the only element of M which vanishes at n or more distinct points of S,

to prove the following statement [8, Theorem 3.2].

THEOREM 4.6. Let $S \subset [a, b]$, $f \in C(S)$, $p_0 \in \overline{M}$ and suppose (\mathbf{H}_3) verified. The following three statements are equivalent.

(10) po is a best approximation to f.

(11) The origin of R^n space belongs to the convex hull of $\{\xi(s)\hat{s}: s \in \Gamma_0\}$, where $\xi(s) = +1$ if $s \in \Gamma_0^+$, $\xi(s) = -1$ if $s \in \Gamma_0^-$ and $\hat{s} = (\varphi_1(s), \ldots, \varphi_n(s))$ is in R".

(12) There exist n+1 distinct points s_1, \ldots, s_{n+1} in Γ_0 satisfying $\xi(s_i) = (-1)^{i+1}(s_1), \quad i = 2, \ldots, n+1.$

Proof. (10) implies (11). This implication belongs to the proof of neccesity of Theorem 4.5.

(11) implies (12). This may be found in [3, p. 74-75].

(12) implies (10). By contradiction. Let s_1, \ldots, s_{n+1} be distinct points in Γ_0 satisfying $\xi(s_i) = (-1)^{i+1} \xi(s_1)$, $i = 2, \ldots, n+1$. We assume that there exists $p_1 \subseteq \overline{M}$ such that $||f - p_1|| < ||f - p_0||$ and $\xi(s_1) = +1$. Thus we have either $f(s_1) - p_0(s_1) = ||f - p_0||$ or $p_0(s_1) = l(s_1)$. In either case it follows that $p_0(s_1) \leq p_1(s_1)$. By a similar argument at the remaining points we find that:

find that:

$$(-1)^{i+1}(p_1(s_i) - p_0(s_i)) \ge 0$$
, $i = 1, 2, ..., n + 1$.

Now using the hypothesis (H₃) and Theorem 4.4 we conclude that $p_0 \equiv p_1$.

5. Results concerning the uniqueness of the best approximation

If the hypothesis (H_3) is satisfied and $S \subset [a, b]$ then it may be easyly got a uniqueness theorem and a strong unicity theorem [3, p. 77].

THEOREM 5.1. If $f \in C(S)$ and $p_0 \in \overline{M}$ is a best approximation to f

Proof. The proof given in (12) implies (10) can be used to show that then po is unique.

THEOREM 5.2. Let $f \in C(S)$ and let $p_0 \in \overline{M}$ be the best approximation p_0 is unique. to f. Then there exists a constant $\gamma > 0$ depending only on f such that for $||f-p|| \ge ||f-p_0|| + \gamma ||p_0-p||.$ any $p \in \overline{M}$:

$$||f - p|| \ge ||f - p_0|| + \gamma ||p_0 - p||$$

12

Proof. By Theorem 4.6 there exist points s_1, s_2, \ldots, s_k in Γ_0 and the signs ξ_1, \ldots, ξ_k such that

$$\theta \in \text{Co } \{\xi_i(\varphi_1(s_i), \ldots, \varphi_n(s_i)), i = 1, 2, \ldots, k\}.$$

By the hypothesis (H_3) and Carathéodory's theorem we have k = n + 1. Thus, in projection we get

(13)
$$0 = \sum_{i=1}^{n+1} \alpha_i \, \xi_i \, \varphi_j(s_i), \quad j = 1, 2, \ldots, n \text{ and } \alpha_i > 0, \quad i = 1, 2, \ldots, n+1.$$

If $p \in M$ then $p(s) = \sum_{j=1}^{n} \beta_j \varphi_j(s)$ and by (13) it follows that:

$$\sum_{i=1}^{n+1} \alpha_i \, \xi_i \, p(s_i) = \sum_{j=1}^n \beta_j \sum_{i=1}^{n+1} \alpha_i \, \xi_i \, \varphi_j(s_i) = 0.$$

By the hypothesis (\mathbf{H}_3) at least one of $\xi_i p(s_i)$ is positiv. Because the functional $F(p) = \max_i \xi_i p(s_i)$ is continuous on the compact set $M^* = \{ p \in M : ||p|| = 1 \}$ we obtain:

$$\gamma = \min_{p \in M^*} F(p) > 0.$$

Now, if $p \in \overline{M}$, $p \neq p_0$, the function $\widetilde{p} = (p_0 - p)||p_0 - p||^{-1}$ belongs to M^* and thus there exists an index v, $1 \leq v \leq n+1$ such that

$$\xi_{\nu}(p_0(s_{\nu})-p(s_{\nu})) \geq \gamma ||p_0-p||.$$

We shall prove that $s_v \in \overline{\Gamma}_0$. Indeed:

(a) If $s_i \in \gamma_0^l$ then $\xi_i = +1$ and $p_0(s_i) = l(s_i)$.

Therefore $\xi_i(p_0(s_i)-p(s_i))\leq 0$. Let with the printer of the

(b) If $s_i \in \gamma_0^u$ then $\xi_i = -1$ and $p_0(s_i) = u(s_i)$.

Hence $\xi_i(p_0(s_i) - p(s_i)) \leq 0$.

$$||f - p|| \ge \xi_{\nu}(f(s_{\nu}) - p(s_{\nu})) = \xi_{\nu}(f(s_{\nu}) - p_{0}(s_{\nu})) + \xi_{\nu}(p_{0}(s_{\nu}) - p(s_{\nu})) \ge ||f - p_{0}|| + \gamma||p_{0} - p||,$$

and the proof is ended.

If we assume that only the hypothesis (\mathbf{H}_2) is satisfied then we get the following theorem:

THEOREM 5.3. Suppose that $U \cap L = \emptyset$. Then each function from C(S) has only one best approximation in \overline{M} if and only if there does no exist a functional of the form

$$\Psi(p) = \sum_{i=1}^k \alpha_i \, p(s_i), \quad p \in C(S),$$

with $k \leq n$, $s_i \in S$, i = 1, ..., k and such that:

- (14) If $p \in M$ then $\Psi(p) = 0$.
- (15) At least one s, belongs to T.
- (16) $\alpha_i > 0$ if $s_i \in L T$ and $\alpha_i < 0$ if $s_i \in U T$.

Proof. Sufficiency. If the conditions of theorem are verified then for the functional Φ in the Theorem 4.5 we have k=n+1. Denote p_0 and p_1 two best approximations in \overline{M} to $f \in C(S)$. By the Theorem 3.2, the element $p_2 = (p_0 + p_1)2^{-1}$ is also a best approximation in \overline{M} to f. Let $s_1, s_2, \ldots, s_{n+1}$ be points in Γ_2 . It immediately follows that these points belong to Γ_0 and Γ_1 and also they have the same character.

If
$$h = p_0 - p_1 = \sum_{j=1}^n \gamma_j \varphi_j$$
, then $h(s_i) = 0$, $i = 1, 2, ..., n$.

We shall prove that $h \equiv 0$, that is $\eta_j = 0$, j = 1, 2, ..., n. Because $\overline{\Gamma}_2 \neq \emptyset$, at least one s_i , i = 1, ..., n+1 belongs to T. More precisely $s_v \in T$. The coefficients η_j are the solution of the linear homogeneous system:

$$\sum_{j=1}^{n} \eta_{j} \, \varphi_{j}(s_{i}) = 0, \quad i = 1, \ldots, n+1, \ i \neq y.$$

We shall prove that $D = \det \left[\varphi_j \left(s_i \right) \right] = 0, \ j = 1, \ldots, n, \ i = 1, \ldots, n + 1, i \neq \nu$, which implies $\eta_j = 0, \ j = 1, \ldots, n$. Denote α_i , $i = 1, \ldots, n + 1$ the coefficients of the characterization functional Φ for p_2 . If suppose D = 0 then the system

$$\sum_{\substack{i=1\\i\neq\nu}}^{n+1}\alpha_i\,\varphi_j(s_i)=-\alpha_\nu\,\varphi_j(s_\nu),\qquad j=1,\ldots,n,$$

regis agguifat vielaibragges is vand

has not a unique solution. May be selected an index μ and a solution α'_{i} , $i = 1, \ldots, n + 1$ such that

$$lpha_i lpha_i' > 0, \quad i = 1, \ldots, n+1, \ i \neq \mu \text{ and}$$

$$lpha_\mu' = 0.$$

15

14

The functional $\Psi(p) = \sum_{\substack{i=1\\i\neq\mu}}^{n+1} \alpha_i' p(s_i)$ verifies the conditions (14), (15) and (16), which is a contradiction.

Neccesity. Suppose that there exists a functional Ψ such that the conditions (14), (15), (16) are verified with k = n.

The coefficients α_i , i = 1, ..., n form a non-trivial solution of the system

$$\sum_{i=1}^n \alpha_i \, \varphi_j(s_i) = 0, \qquad j = 1, \ldots, n.$$

Thus $\Delta = \det [\varphi_j(s_i)] = 0$, $i, j = 1, \ldots, n$.

It immediately follows that there exists $p = \sum_{j=1}^{n} \beta_j \varphi_j$ with non-zero coefficients β_j , $j = 1, \ldots, n$ such that

$$p(s_i) = \sum_{j=1}^n \beta_j \, \varphi_j(s_i) = 0, \qquad i = 1, \ldots, n.$$

May be chosen p with $\max_{s \in S} |p(s)| < 1$ and $\overline{f} \in C(S)$ such that:

$$1^{\circ}. \ \overline{f}(s_i) = \begin{cases} +1 & \text{if} \quad s_i \in T \\ -1 & \text{if} \quad \alpha_i < 0, \ s_i \in T - U \text{ or } \alpha_i > 0, \ s_i \in T - L \\ 0 & \text{if} \quad \alpha_i < 0, \ s_i \in U \text{ or } \alpha_i > 0, \ s_i \in L \end{cases}$$

 2° . $||\bar{f}|| = 1$.

Now letting $f = \overline{f}(1 - |p|)$ and $p_0 = \varepsilon \cdot p$ we shall prove that for each $\varepsilon \in [0, \delta]$, $0 < \delta \le 1$, p_0 is a best approximation in \overline{M} to f. First we get that $||f - p_0|| \le 1$. Indeed, for all $s \in T$ and each $\varepsilon \in [0, 1]$ by the condition 2° we have:

$$|f(s) - p_0(s)| = |f(s) - \varepsilon p(s)| \le |f(s)| + \varepsilon |p(s)| =$$

$$= |\overline{f}(s)|(1 - |p(s)|) + \varepsilon |p(s)| \le 1 - (1 - \varepsilon)|p(s)| \le 1.$$

It is obvious that it may be chosen a $\delta' > 0$ such that p_0 belongs to \overline{M} for each $\epsilon \in [0, \delta']$. Set $\delta = \min\{1, \delta'\}$.

Now it immediately follows that

$$f(s_i) - p_0(s_i) = \overline{f}(s_i), \qquad i = 1, \ldots, n$$

and by the condition 1° we observe a concordance between the character of the points s_i and the signs of the coefficients α_i . By the Theorem 4.5, p_0 is a best approximation in \overline{M} to f for each $\epsilon \in [0, \delta]$. Thus the unicity of the best approximation does not hold.

REFERENCES

[1] Bacopoulos A. C., Approximation with vector-valued norms in linear spaces. Thesis, University of Wisconsin, 1966.

[2] Breckner W. W., Kolumbán I., Über die Charakterisierung von Minimallösungen in linearen normierten Räumen. Mathematica. 10(33), 1, 33-46 (1968).

in linearen normierten Raumen. Mathematica. 1969, 7, 6 Graw-Hill, New York.
[3] Cheney E. W., Introduction to Approximation Theory. Mc Graw-Hill, New York.

1966.
[4] Deutsch F., On uniform approximation with interpolatory constraints, J. Math. Anal. Appl., 24, 62-79 (1968).

Appl., 24, 02-18 (1800).

[5] Kammerer J. W., Optimal approximation of functions; One-sided approximations [15] Kammerer J. W., Optimal approximations. Thesis, University of Wisconsin 1959.

and extrema preserving approximations. Thesis, University de type inégalité.

[6] Laurent P. J., Approximation uniforme de fonctions avec contraintes de type inégalité, R.I.R.O., 1, 5, 81-95 (1967).

R.I.R.O., 1, 5, 81-95 (1901).
[7] Paszkowski S., Sur l'approximation uniforme avec des noeuds. Ann. Polon. Math.,

[8] Taylor G. D., Approximation by functions having restricted ranges III. J. Math. Anal. Appl., 27, 241-248 (1969).

Received 6. 11. 1970.