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ON UNIFORM APPROXIMATION BY FUNCTIONS
HAVING RESTRICTED RANGES

by
GH. CIMOCA
Cluj

1. Introduetion

1t has recently been studied by A. C. BACOPOULOS [1], ¥. DEUTSCH (4],
J. W. KAMMERER (5], p. J. LAURENT [6] and G. D. TAVLOR [8] some pro-
blems of uniform approximation of continuous functions by functions

having restricted ranges. ) _ _
In this note we shall examine a problem of upiform approximation

of real-valued continuous functions on a compact metric space, which

1s a generalization of all problems studied in the above mentioned papers.
Thus we shall discuss in detail the existence and the characterization of
the best approximations to a given continuous function. Finally we give

{ the best approximation.

some results concerning the uniqueness O

2. Pefinitions and notations

of a metric space

Let T, U, L be compact sets, not necessarily disjoints,
11 real-valued

s=Tyuul and let C(S) denote the linear space of a

continuous functions defined on S
Let M = [y @2 -+ p,] be an n-dimensional linear subspace of
form a basis for

C(S), where the functions @q, Pz, - -+» Pn .
(u, 1) of extended real-valued functions

We shall fix away & couple
> R subject to the following restrictions:

4:U - R and I+ L

() {seU:u(s):——oc}=Q5 but

s&e U: u(s) = + oc} = Uita may be not empty.
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(ii) seLl: Us) = + oc} =

sl ot
: 1(3) = — O(‘}
=L
@) Uy, i ~*  may be not
+= 1S an open subset of U and 7 empty.

s . e IS

(iv) % i comfimume gn f¥ an open subset of 7
= {J — U-{-an

*
.L =—.L._L_°J'

(v
v) If s€eUNL then u(s) > Is)

Then defin
e th
e set of approximating functi
ions :

H—— : l n
{pe : (8) = = a =
t M p(s), S L d ;b(s) gu(s), S U}

’ = max
il 1ax |f(s)] for feC(s),

n. P
Q@ }0.{?711(1{“) 4

e(f) = IIf — poll = int
,,leur, I — 2ll.

Re

studied 11":1“[78? = BT
2 If U=g

we obtain the onez-lstilge(lirat

o & T i
g g;zr;%xz?}lin{;f {32 f respectively u == f.
problems with inte i S |
ith mterpolatorykand ji::{:eéo?ag) r i T
Ty constraints [4] 71 0.
) [7]: [IJ'

»

3. Exis
lence of hest approximations

We begi ;
gin this secti
P _911_ by proving an i
o 1 If 17 is Kool existence theorem.
st ap 'y Jor the couple (u, 1) then ti
A , iere exists

Droximati,
Proof. We observex “ation P &M o f & C(S)

of M. If p* < T ; immediatel Vi
P* €M is not a best J th'rflt M is a closed co
approximation to f then: SR BRisE

b= [l =¥ 2 alf)

and i i
! is continuous g¢p

(3%
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M such that {[p — p*|| > 29 we give !

f—pli=\lip — 2% — [* — JiL| & %

be attained only in the closed

and for PE

Therefore the infimum for ||f — Pl may

ball :
D={peM:I|p— ¥l = 21}

Hence
o(f) = inf 11— 2l p=DNM,
pED
1to account that D is compact.
y way the following statement:

the best approximations i

attained taking i1

the infimum bheing
rove in an eas

It is possible to P
THEOREM 3.2. If feC(S) then the set of
M to [ is a convex sel.
4. Characterizations of hest npproximations
To begin the characterization theorems of best approximations in
7 to the elements of C(S) we define for po € M and f € C(5) the follow-
ing critical points sets :

= (R T fis) — pols) = I1f — 2oll3
g =48 T: f(s) — po(8) = — If — 2oll}

o o={seU: pols) = u(s)}

={se Lt Po(s) == l(S)}

—

Yo

W=ﬁU%,H=ﬁU%
To=1 U Yo- ,=Ts UT-

It is easy to prove
Lemma 4.1 If
s NTe=9

then po = M s a best approximation to f e C(S).
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4

For the remaind i " - . g

3% talen such that t}i ?_fyg(l}lti“»h:scge. we assume that the function e T_HEOREM 4.3. If for a function Py € M there exists a function P& M
3 )| satisfing

H - e :
is s (t ;) q o NTo =@ for all p, &M, (1) =1 Jop it S Ky &
1s satisfied.

Remark. If fe C(S), fe M and @ pls) <0 for all s€ Lo

u(s)gf(s),se(] d il
then f satisfies (H,). and f(s) = Is), seL,

THEOREM 4.2. If iM s a subsp i bo =M

] : ace with identst

approximation to fec (S), then the sets I‘S' andz yl“and "
0

Proof. We shall
= . prove by c 3 s
T = Yy UY. = 0. Becauseyy(!-, Zli;;a'dlctlon only

are nonemply,

«= min (py(5) = s)} >0

seL

and from Yt = @ we give :>

Then ) =4 <olf), seT.

where

max {/(s) — 2o(s)} = o(f) — 28 < p(/) — 2

0 < % = min {«, .

‘Therefore for all s & T we have

—e() S f5) — pals) < o(f) — 2k

and immediately

~o(f) + B f(s) — {ho(s) - B < of
As po—h e M and i h}Sp(f)——k_‘

) = (o )= B p(f) — 8, s :f'

‘we obtain the desired contradiction.

s a bes

that I'f = 0. Suppose

fhen po is mot a best approxzimation to f & C(S).

Proof. We shall prove that for an & > O the function j;= pote-p
is from M and

I/ — 2l < Ilf — Pull-
First we observe that T,, b, ¥4 are compact sets. If « = min |p(s)| then «> 0.
sel y
For the remainder of this proof we denote o(s,, ) an open ball with the

radius 8 in the metric space _ _
Since p is a uniform continuous function on S there exists a >0

such that:

3) |p(s)] > « and |f(s) — Pol8) > 7p

for all s & o(sg, 9) and for all s, € ITo, where 0<7 < 1 and P=”f"'.p0“-

4 p(s) <0 for all s € o(so, 8) and for all s & Yo |
5) p(s) >0 for all s & o(sq ) and for all s, & yf,.

Next we define

To= U oo 3N T and T=T— Z,

5e€ET

5¢ — U ofse )N U and U =U — g,

Soe‘f:‘
Th = u,c(s(,, 5L and L=L— 3
!-EY.

where T, U, I are compact sets.
To determine the desired ¢ we consider the following cases:

3 — Mathematica Vol. 12(35) — fascicola 2/1970
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a) Let s € Z,. Then:

/(5) = Bs)| = 1/(s) — Bols) — ep(s)| < If(s) — pols)] — elp(s)],

if |f(s) — pols)| > elp(s)|, that is e <7pm—! with m = max [p(s)]. I
this case |f(s) — ]g'(s)i =p—ca<p. < |

b) Let T o=
) se 1. If denote p = max |f(s) — po(s)| we certainly have

e < p. Then =

Ifs) =) <o+ em < p
¢} Let s & Z;. Then

if e<<(p— ;)m‘ 1,

B e:(is));(f(s) = #(s) — po(s) — €p(s) > 0 because u(s) = p,(s) and

d) Let s & U. Denote «, = min {#(s) — po(s)} > 0. Then
seU

u(s) —p(s)=a, — em >0 if & <am1

e) Let s € Z}. Then
E;}{)(s;b(;) O— I(s) = po(s) — U(s) + ep(s) > 0 because p,o(s)=1I(s) and

f) Let s & L. Denote o, = min {p(s) — I(s)} > 0
seL .

Then ) —IUs) = o, — em >0

if -1
Thus if sa-ih

0 <e<minm?{rg,p—op a o}
the function p = p, 4 ep is in M and

- I1f — 211 < If = poll.

Re : |
mark. By the Theorem 4.3., the Theorem 4.2. it may be proved with- |

- s .
the additional hypothesis that M is a subspace with identity

The izati
next characterization theorem is a corolar of the Theorem 8

P : :
rom [2). We shall give a direct proof in the case Yo =Yv,=9
0o — Y= ¥.

n

Ay
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THEOREM 4.4. The function p, & M __z's a best approximation to faC(S)
if and only if for amy function p &M there exists a point ' &To suoh

that

(6) p(s') S pols)
or a point s & o such that
() p(s") = Pols")-

Proof. Sufficiency. 1f p & M and s’ & o then
I = poll = (s") — pols’) =S — i) < IIf — 2l
If s y; we obtain
1] — poll = pols”) — fs”) = ") — fs"y = If — 2ll-

Necessity. By contradiction. Let p, & M be a best approgimation
to f € C(S) and suppose that (6) and (7) are not satisfied. That is, there

exists p € M such that
p(s) > pols) if s €vs and p(s) <pols) i S Yo -

Also by continuity and compactness considerations there exists a §>0
such that

S5 — 8= pels) if sEv and () + 3= pols) I €

Now we take a number e satisfing 0 < e < 8 and consider the sets:
v+ ={5 € T:pls) — &> pols) and f(s) — £ol5) >%ﬂ}
P {s & T:p(s) + € < pofs) and fls) — pols) < — %)—}

It is straightforward to establish that vy SV, v; © 7= PO =i

and also by continuity considerations that V+ and V™ are open sets in 7.

I we denote Z=T—(V+ V") and p= max |f(s) — Pols)! then
sEZ

p < elf)-
Next let

B, = rsxéig. lu(s) — pols) >0, w = 132? li(s) — pols)l > 0.
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Now we select A > 0 such that Av < n where v = 1?2? Bo(5) — p(s)] -

: = ¢l
hn = nlln{p(f) — P %‘)—: Fess P«;} z

&

Finally we will show that f:j)o — AMpo — p), certainly from Af i
the best approximation. ;

Letting ‘5= n-g_x |f(5) _25(5)[ the proof will be completed by showing

that p < p(f).
Indeed:
1) If s &Z we have
/) = BOI < If) — pols)l + Mpols) — p(5)l <o + o) — ¢ = o(f)
2) If s = V+ we obtain
1A(s) — D) = £ls) — pols) — Mp(s) — pols)} < o(f) — he

using the definition of the set ¥+ and the choice of 2.
3) If s € V— then

() — ()] = pols) — f(s) — Apo(s) — £(9)} < o(f) — Ae

using the definition of the set ¥— and the choice of A.

The necessity of the next theorem may be proved only if M verifies |

the hypothesis :
(Hy) There exists at least one p & M such that the tnequalities

P() <uls) if s U and p(s) > i(s) if s L
are satisfied.

THEOREM 4. 5. Suppose that (Hy) is verified. The function p, < M is a .

best appfoximc.ztion to f & C(S) of and only if there exists k points (k<n-+1):
S1: 82, v, Sy 1 D'y (atb least one in Ty) and a functional of the form:
k
O(p) = ; o0 p(s;), p &C(S)
such that:
(8) Op) =0 if peM, and
) %>0 if ;&) and o, <0 if s;aly.
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el 3 verifies the conditions of the
- Sufficiency. Suppose that p, & M ven i3
B 113 is not a best approximation to feC(S). Let p & M be
jon to f & C(S), that is
o(f) = Ilf = pall < IIf = Poll:
) — (f — 1) we see that peM and:

eorem but 1t
:h best approxnnat

Letting p = p1 — Po = (f— 2o
ﬂm>0if&eﬁ and o; > 0,
Bs) <0 if s; &y, and «; <0,
P) =0 if s, € 4 and e« <0,

RQEOif&eﬂ and o, > 0.

=

Because at least one of s; is 1 I’y we have:

O(F) = 2y @ pls) > 0

=1

that is in contradiction with (8).

Neccesity. Let po € 3 be a best approximation to f & C15).

Denote

§=(is)s: seTYC R

where
£ if sery
B =1_1 if sa Ty

§ = (‘?1(5); vy (Pn(s))

and R" is the Euclidean n-dimensional space.

First we prove by contradiction that the origin 0 of the R" space

belongs to the convex hull Co(G) of G.

i , Co being a compact set (because § is compact)
lofeed B F Sl fls Coc i Thus there exists >0 and B,

there exists a support hyperplane.
j=1, ..., n such that:

;BJ'ZJZT

for any z = (23, - - -, 2») S Co(§).
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In particular for the points of @ we have:
2P =7>0 if sely
and

—;lﬁf%-(s);v>0 W se T

Betling &= B, 5
d ; Bjo; we get that p & M. By Theorem 4.3 we obtain that
a

po is not a best i
approximation. Th
us 0 & Co(§). Consequently by

Carathéodory’
1y’s theorem on ¢ : ’
¥, ..., z% in § such that onvex sets in R” there exist % points (k << n+1)

0 & Co {z, ..., 2t}

1 g » » .

k &
9=i=‘:8,‘2(’), 28‘-=1, 8‘.>O, g 1. . j2

i=1

or in projection

k
0= R O
i=21 151591(81): ]= 1,

where

={+1 if s el
—1 if s; el .

g;

'y ) ) 'El 13 ( l)’

satisfies the conditions (8) and (9)

Now we shall pro
mai prove that at least one of s; belongs to Fo_ We have the E
i

a) If S" = U — M
T then for any p & M we get p(s;) = u(s;). Indeed, E

if for an index »
is a contradic:tio)nfmppose p(s) < u(s)) = pofs,), then ®(p, — p) < 0 which

b) If s;, &L — . —
above way. T then for any p & M we get p(s;) = I(s;), using the
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11
By the hypothesis (H,) the proof is complete.

Now we use 2 last hypothesis:

H,) M s an n-dimensional Haar subspace of C(S). That is, M s

(Hy) M
o n-dimensional subspace of C(S) such that the zero fumction is the only

element of M which vanishes at n 07 more distinct points of S,

to prove the following statement [8, Theorem 3.2].

crnEOREM 4.6. Let S C (a, b), fECS), P& M and suppose (Ha)
verified. The following three statements are equivalent.

(10) po is @ best approximalion 1o E
(11) The origin of IR" space belongs 10 the convex hull of (Z(s)s: s&loh
where E(s) = + 1 s & re e =—1isslo and § = (@(s); - +-» Pal)) 95
in R".
(12) There exist n -+ 1 distinct points  S1, e §and
Eis) = (— 1)it(s,), =2, .-% + L

Proof. (10) implies (11). This implication belongs to the proof of nec-
cesity of Theorem 4.5.
(11) implies (12). This may be found in [3, P- 74—175].

(12) implies (10). By contradiction. Let Sp .- Sat1 be distinct points
in I'y satisfying Z(f_,-) = (— 1)‘“&(51 L E=2,..a" 4+ 1. We assume that
there exists pr& M such that [If — 2l < ILf — 2ol and E(sy) =+ 1.
Thus we have either flsy) = Polsi) = |If — poll of polsy) = I(s,). In either
case it follows that 2 ofs1) = (s,).- Bya similar argument at the remaining

points we find that:
(— 1) (pals) — Polsi)) = 0, =12 ...ntl
Now using the hypothesis (H,) and Theorem 4.4 we conclude that po = bi1-

in T, satisfving

5. Results concerning the uniqueness of the best approximation

C [a, b] then it may be easyly

If the hypothesis (Hy) is satisfied and S
ty theorem (3, p- 77}

got a uniqueness theorem and a strong unici
rHEOREM O.1. If f& C(S) and poeﬁ is a best approximation to f

then po 15 unique.
Proof. The proo
po is unique.

rHEOREM 5.2,
to f. Then there exists a con

any peM:
=l =lf— poll + Yllpo — 2l

f given in (12) implies (10) can be used to show that

Let f& C(S) and let poe'M be the best approximation
stant v >0 depending only on f such that Sfor
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12

Proof. By Theorem 4.6 there exist points s,, s,,

the signs &, ..., & such that res S i Toang

0 Co {E(pulss), --h 0ulss), ¢=1,2, ... R

By the hypothesis (H;) and Carathéodor

Thus, in projection we get y's theorem we have k= 4 |,

n+1

13) 0= . Eoo. | = ;
(13) ;«,E,cp,(s,-), 1=12,...,nand ,>0, i=1,2,...,n 41

If p e M then p(s) =;=21 B; @;(s) and by (13) it follows that :

141 #n41

2 o & p(s) = ?L;:l B; 21 ;& @s(s;) = 0.

By the hypothesis (H,;) at least omne ) i iti
: _ of & p(s;) is positiv. Becaus
the functional F(p) = m‘ax E;p(s;) is continuous on the compai?::::

M* = {p= M:||p|| = 1} we obtain:
v = min F(p) > 0.
. pEM*
Now, if p &M, p = p,, the function p — =
to M* and thus there exists an index v],b 1=<=(_p\? gﬁ)l—lfib (i ;ujzllll ;habtelongs

E(Bofs)) — £(s)) = vllpo — 2II.
We shall prove that s, T,. Indeed:
(@) If s;&v) then £, = 4+ 1 and Dols;) = Us;).
Therefore E,(p,(s;) — p(s,) = 0.

(b) If s;& v, then & =-— 1 and p,(s;) = u(s;).
Hence E(p,(s;) — p(s)) < 0.
Thus

”f_' j,” 2_ E.w(f(sv) = p(sv)) Ok Ev(f(sv) —150(8?)) o

53 gv(PO(Sv) —P(sv)) ; ”f_IbOH = T”Po_ P”’

and the proof is ended.

If we assume

the following theoren?t; only the hypothesis (H,) is satisfied then we get
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1

cupOREM 5.3. Suppose that U\ L =@. Then ecach funciion Jrate
C(S) has only onme best approximation in M if and only if there does no
cxist @ functional of the form

™M=

W(p) = 2w plsd, p e CS)

1=1

sith k< n, $;€3S, i=1,..., k and such thal:

(14) If pe M then Y(p) = 0.
(15) At least one s; belongs to T.
(16) «; >0 if €l — T and w0, < 0if s,eU—T.

Proof. Sufficiency. 1f the conditions of theorem are verified then for
the functional @ in the Theorem 4.5 we have k = n + 1. Denote p, and
P, two best approximations in M to f& C(S). By the Theorem 3.2. the ele-

ment p, = (po + P1)271 18 also a best approximation in M to f. Let
Sy, Sgr + s Sap1 DE points in T'y. It immediately follows that these ponts
belong to Iy and T, and also they have the same character.

"

H b= po— b= 2, 0P

j=1

then Ah(s) =0, 1= 1, B, oosp

We shall prove that & =0, that is 9=07=12...,n

Because I, =@, at least one s, i=1,...,n+ 1 belongs to T.
More precisely s,& 7. The coefficients n; are the solution of the linear
homogeneous systeni:

Noayeis) =0, i=1..,n4+1 i

j=1

We shall prove that D = det loi(s)1 =0, 1= L veesty 8= 1yt + L
i == v, which implies 7;,=0, 7=1, ..., 7

Denote «;, i=1, ..., n+1 the coefficients of the characterization
functional ® for p,. If suppose D = O then the system

n-41

Zl o @i(s) = — o ;(sy),

Lo _
}_1as not a unique solution. May be selected an index p and a solution o,
i=1,...,n+4 1 such that

j=1,...,n,.

o o > 0, i=1,...,n+1, 7y and

o, = 0.
('
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The f i
“The functional ¥(p) = : 1fi iti
onal ¥(p) ; a; p(s;) verifies the conditions (14), (15) and (16)
igkn ’

which is a contradiction.

Neccesity. Suppose that ther i

Ne e exists a functional ¥ such

.-’cr;ndxtlo;lfs-; .(14), (15), (16) are verified with & = . = SRR
e coefficients «;, 2 =1, ..., n form a non-trivial solution of the systerm

;ﬂ.—‘?j(se)=0, j=1,...,n

Thus A = det [g;(s)] =0, 4,5j=1,...,

.

ficients 8;, =1, ..., n such that
2(sy) =j;(3j<9j(si) = [ i=1,...,n

"May be chos i f
en p with 111;1;: Ip(s)] < 1 and f& C(S) such that:

e +1 if s,&§T

0 if o, <0, s;,&Uo0r >0, 5,6L t

. 2° |ifll = 1.

ow letti = f(l —

c& [0, 83ng0f< ng 1 e _and Po= € - p we shall prove that for each
; = 1, po 1s a best approximation in M to f. First we

get that ||f — pol| < 1. Inde
= L ed
$he: condibion. 27 we have , for all s& T and each e g [0, 1] by

1) — 2o(s)l = | f(s) — ep(s)] < I£(s)| + elp(s)] =
= If = 1)) + elp() =1 — (1 — )p(s)| < 1.

Now it immediately follows that

fls:) — polsy) = S(s:), =1
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-

15

,nd by the condition 1° we observe a concordance between the character
*F the points S; and the signs of the coefficients o By the Theorem 4.5,

5 is a best approximation in M to f for each e & [0, 8). Thus the unicity

Of the best approximation does not hold.
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